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Abstract

These notes were made in preparation for the �rst part of the seminar given by
myself on physics for W-algebraists, in the team seminar of Pr. Suh UhiRinn
at Seoul National University the 2024/05/14. In these, I introduce quantum
mechanics, quantum �eld theories and conformal �eld theories for non physicists,
by focusing on the intuitive side. In particular, I try to explain the reason for
a lot of formulas, relations and operators appearing in mathematical physics,
I also give the tools necessary to later understand the WZW-model and its
reductions. I end these notes by showcasing a simple exemple of 2D CFT, the
free boson. Be aware that these notes weren't proofread by anyone, and that
there are most probably errors in it. One should not have too much faith in the
details of every formula. However, the intuition behind each of them should be
right.
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Chapter 1

Quantum mechanics

The main idea of quantum mechanics, compared to classical mechanics, is to
add some form of uncertainty to the data of a system. Instead of considering
measurable quantities such as position or momentum, we consider probability
densities on the space of these quantities, such as probability densities on the
space of all possible positions and momentums. This leads to the intepretation
of particles as "wave" as often heard when speaking of quantum mechanics,
where the "wave" is the probability density.

1.1 A �rst toy model

To better understand the idea of quantum mechanics, let's �rst consider a simple
massive system in 1 spatial dimension, whose physical state at a given time is
de�ned solely by its position and derivatives according to time. We can for
exemple imagine it to be a particle, or a bowling ball.

What do classical mechanics say about this sytem? We can write the position
of the object according to time x(t), its velocity ẋ(t), and its acceleration ẍ(t).
Given the forces F (t) acting on the object, Newton's �rst law then says

F⃗ (t) = mẍ(t) (1.1)

Supposing F (t) is a known external parameter, ẍ(t) and higher derivatives of
x(t) are completely determined. For this reason, we only consider the position
and velocity of the object, linked by the relation

ẋ(t) =
dx

dt
(t) (1.2)

Given a starting position and starting velocity, the dynamics of the system are
completely known, determined by

x(t) = x(0) + tẋ(0) + C(F, t) (1.3)

With

C(F, t) =

∫ t

0

∫ T

0

F (λ)dTdλ (1.4)
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From this, how can we integrate the idea of quantum mechanics? We would
like to introduce some uncertainty in our system. Moreover, quantum mechanics
say that some quantities are linked such that the more we know of one, the less
we know of the other. In our exemple, velocity and position are linked, such
that the more we know of the position, the less we know of the velocity, and
reciprocally.

To picture these, imagine a bowling ball rolling on a line1. We want to
measure the velocity and position of the ball, but we only have a cheap and slow
camera. We may take one photo with it, or a serie of photos with somewhat
regular time interval. If we take one single photo, we might have a good idea
(though not perfectly accurate due to the slowness of the camera) of the position
of the ball, but we won't have any idea of its velocity. If we take a serie of photos,
we might have a good guess of its velocity, but we won't know actually where
is the ball among the di�erent pictures.

Figure 1.1: Pictures of a bowling ball rolling

Figure 1.2: The double slit experiment

Remark. Although this comparison makes it easier to understand the uncer-
tainty of quantum mechanics, it should remain a simple comparison. In quan-
tum mechanics, the uncertainty is inherent to the system, and not due to cheap
measure instruments. A particle is no more embodied by a position but by a
probability measure on all possible positions. In fact, this idea of uncertainty
was developped after physicists realized electrons sometimes act as waves and
can interfere with themselves, as shown by the double-slit experiment (�g.1.2).
The "wave" is interpreted to be the probability wave, showing the intrinsic
nature of the uncertainty in quantum mechanics.

1This comparison was given to me by my little brother
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Now, how can one capture these ideas in a framework? Recall that in classical
mechanics, the data is captured by 2 functions

x : R → R
ẋ : R → R

(1.5)

which are in fact redundant, and linked by the relation (1.2). Replacing the
data of a known position or velocity by a probability on the space of all possible
positions or velocities, we may have

X : R → (R → R+)

V : R → (R → R+)
(1.6)

However, transforming the relation (1.2) isn't as straightforward. If we simply
had a similar relation, the uncertainty of the position would be proportional to
the one of the velocity, instead of being inversely proportional.

The right idea, �rst introced by Heisenberg, Born and Jordan as an axiom
called the "quantum condition", is to use some kind of Fourier transform. This
use of the Fourier transform will be better justi�ed later, but we should now give
the intuition behind it. Classically, the Fourier transform is used to decompose a
periodic signal onto a basis of standard signals with di�erent frequencies. In our
case, we may understand the "frequency" of a probability density as the velocity
of the object studied, and assimilate the basis of standard signals with di�erent
frequencies as a basis of standard objects with di�erent velocities. Then, as
one can understand by looking at �gure 1.1, an object with very well de�ned
position won't have a very well de�ned velocity, whilst an object with very well
de�ned velocity won't have a very well de�ned position.

Formally, to introduce the Fourier transform, we should allow for one more
degree of freedom in the probability functions, and replace the data suggested
in (1.6) by

X : R → (R → C)
V : R → (R → C)

(1.7)

where we read the probability by taking the norm on C. Then, we may link the
two functions at a given time by

V (t)(v) =
1√
2π

∫ ∞

−∞
e−ivxX(t)(x)dx

X(t)(x) =
1√
2π

∫ ∞

−∞
eixvV (t)(v)dv

(1.8)

Note how in this framework, an object with a known position would be
represented by a delta function in the position space and by a forever rotating
function with diverging integral in the velocity space, and reciprocally for an
object with known velocity.

1.2 The general framework

How do one generalise this to any kind of system? In general, we may have any
space of con�guration instead of simply R for the space of all possible positions.
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We want to consider functions from a space of con�gurations to C. But we
may instead treat the space of con�gurations as a vector space (where each
dimension corresponds to a con�guration) and consider complex forms on this
vector space, or equivalently complex vectors in this space. This leads to the
�rst axiom

1. All possible states of the physical system are described by a vector in a
separable complex Hilbert space H

Next, we want to be able to read o� data from vectors in H. Basically, we
want to give meaning to the dimensions in H. This is done by associating to
each measurable value an operator, whose eigenvalues are the possibles values,
and eigenvectors are the proper states having these values. For exemple, in our
toy model, we would have an operator giving the position, having all of R as
eigenvalues, with the eigenvector δ(x− y) associated to the eigenvalue y, in the
position space. In term of axioms, this reads

2. To each observable physical property O corresponds a self-adjoint operator
A on H

3. If A is the operator of an observable O then any experimentally observed
value of O must be an eigenvalue of A.

4. For any observable O, with associated operator A, whose eigenvectors
and eigenvalues are {xn, λn}n, given a system in the state ψ ∈ H, the
probability for this system to measure λ for the observable O is equal to

P(λ) =
∑
i:λi=λ

⟨xi, ψ⟩
⟨ψ,ψ⟩

(1.9)

At a �rst glance, (1.9) doesn't seem very convenient to use. We thus have
some notations and conventions to make this more usable.

First of all, we usually suppose the state of the system to be normalised,
that is ⟨ψ,ψ⟩ = 1. With this, (1.9) reduces to

P(λ) =
∑
i:λi=λ

⟨xi, ψ⟩ (1.10)

We also use Dirac's notations. Dirac's idea was simply to have better no-
tations to deal with brackets, since most of quantum mechanics computations
come down to brackets. The bracket notation doesn't intuitively show its lin-
earity, and doesn't allow for an easy expression of operator. Therefore, Dirac
suggested to break down the bracket ⟨ψ, ϕ⟩ into two parts: the bra ⟨ψ|, and
the ket |ϕ⟩. In these notations, |ϕ⟩ ∈ H simply corresponds to the vector ϕ,
whilst ⟨ψ| ∈ H∗ corresponds to the form dual to ψ. This way, we obviously
have ⟨ψ|ϕ⟩ ≡ ⟨ψ||ϕ⟩ = ⟨ψ, ϕ⟩, but we can also think of the two as separate
entities. For exemple, linearity now simply correspond to distributivity in the
computations

⟨ψ|

(∑
i

|ϕi⟩

)
(1.11)
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and (∑
i

⟨ψi|

)
|ϕ⟩ (1.12)

In these notations, we can also easily measure physical quantities. For ex-
emple, for a given observable O whose associated operator is A with eigenvalues
and eigenvectors {xn, λn}n, one would typically write

⟨λ| ≡
∑
i:λi=λ

⟨xi| (1.13)

Then, (1.9) becomes
P(λ) = ⟨λ|ψ⟩ (1.14)

With these notations, we can also de�ne operators as kets followed by bras.
In particular, with the notations from the exemple above, we can easily de�ne
the projector onto the eigenspace associated to the eigenvalue λ

Pλ = |λ⟩⟨λ| (1.15)

Given (λk)k the di�erent measurable values of O, we then have∑
k

|λk⟩⟨λk| = 1 (1.16)

where here 1 is the identity on H.

1.3 The Hamiltonian

Let's now try to generalize (1.8) to our framework. Actually, this may be done
very naturally.

Our system should be invariant through time translation: if a system act
a certain way now, it should act the same way later on. Therefore, a time
symmetry is present in the system, and there should be a representation of this
symmetry on the Hilbert space H. The representation of a symmetry is either
unitary or antiunitary. We may assume it is unitary. Moreover, the symmetry is
parametrized by time R, which is continuous. We may therefore suppose that the
image of R on the operators acting on H through the representation constitutes
a strongly continous unitary group, meaning if we write this representation
(U(t))t∈R, we may suppose that the following hold true:

� ∀s, t ∈ R, U(t+ s) = U(s)U(t)

� for any x ∈ H the map t→ U(t)x is continuous

This should also be an axiom of quantum mechanics, as we assumed unitarity
and strong continuity:

5. If the system is not a�ected by external in�uences, then its state evolves
in time as |ψ(t)⟩ = U(t)|ψ⟩ for some strongly unitary group U that solely
depends on the system

From this, we may use Stone's theorem:
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Theorem (Stone's theorem). To any strongly continuous unitary group U , we
can associate a unique self-adjoint operator H. We then write U(t) = e−itH .

Supposing our system is not a�ected by external in�uences (we should add
any external force into our system), we then have a self-adjoint operator H,
such that

|ψ(t)⟩ = e−itH |ψ⟩ (1.17)

But
d

dt
e−itH = −iHe−itH (1.18)

such that (1.17) may be rewritten

i
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ (1.19)

This equation is known as Schrödinger's equation, and governs the time evolu-
tion of the state |ψ(t)⟩

In the right-hand side of Schrödinger's equation, we can see the operator H
given by Stone's theorem appear in fron of our state. What is its meaning? If
|ψ(t)⟩ is an eigenvector of H, we may de�ne E to be its associated eigenvalue.
Then, the rate at which |ψ(t)⟩ changes is proportional to E. The bigger E is,
the more |ψ(t)⟩ will move between con�gurations, whilst if E is equal to 0 then
|ψ(t)⟩ will stay constant. We can therefore interpret E as the energy, and H as
the operator giving the energy. As a direct comparison to classical mechanics,
we call H the Hamiltonian, as in Hamiltonian mechanics.

Remark. Usually, for a free particle, we take H = P 2

2m to be the kinetic energy,
where m is the mass of the particle and P the operator giving its momentum.
Writing X the position operator, Schrödinger's equation leads to the commuta-
tion relation

[X,P ] = i (1.20)

which, in turn, necessarily leads to (1.8) when considering a particle moving in
1 dimension.

1.4 System with multiple particles

In our toy model, we considered a system made of one particle. From this, how
can one handle multiple particles? And how can one construct a system with a
variable number of particles? The key here is to consider the system as a whole,
instead of just considering a system made up of one particle.

For the following discussion, we will only talk of bosons. Bosons are the most
basic particles one could imagine. In particular, they are indistinguishable one
from another. Suppose we have H, the Hilbert space capable of describing all
possible con�gurations of a single boson. Naively, we may want to use H⊕n, the
product of n copies of H, to model n bosons. However, in that case, one could
number each particle, and they would therefore be distinguishable. To bypass
this issue, we must symmetrize this space. The �nal product should then be
H⊕n

sym, whose complete construction won't be shown here. However, it can be
found in [Cha18].
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Now that we have constructed the space of con�guration for any number of
particles, we should try to construct a space B capable of modelling a variable
number of particles. This can be made by taking the sum of all H⊕n

sym, but by
forcing the states in it to have a �nite norm. Formally, we have

B =

{
(ψ0, ψ1, . . . ) ∈

⊕
n∈N

H⊕n
sym /

∞∑
n=0

⟨ψn|ψn⟩ <∞

}
(1.21)

This space capable of holding any number of particles is called the Fock space.
In our case, it is the bosonic Fock space.

Now, let (ek) be a basis of H. We have a cannonical basis on the associated
Fock space. For a state having nk bosons in the state ek for all k, we write:
|n1, n2, n3, . . . ⟩. De�ning this basis on the Fock space and reformulating every-
thing in it is called the second quantization. From there, we can easily create
the creation and annihilation operators.

For k, we de�ne the creation operator a†k : B → B that create a boson in
state ek, as follow:

a†k|n1, n2, . . . ⟩ =
√
nk + 1|n1, n2, . . . , nk−1, nk + 1, nk+1, . . . ⟩ (1.22)

We similarly de�ne the annihilation operator ak : B → B that destroy a boson
in state ek, as follow:

ak|n1, n2, . . . ⟩ =
√
nk|n1, n2, . . . , nk−1, nk − 1, nk+1, . . . ⟩ if nk > 0

= 0 if nk = 0
(1.23)

We can also de�ne the density operator a†kak, which acts on states as

a†kak|n1, n2, . . . ⟩ = nk|n1, n2, . . . ⟩ (1.24)

When the context is clear, we may sometimes write this operator nk ≡ a†kak.

Remark. Note how in the de�nition of the density operator, we should have the
annihilation operator before the creation operator. This order makes sure the
operator returns a 0 when the state it is acting on is empty, or more generally if
there is no particle in the state ek. Taking the operators the other way around,
we would get a value of 1 upon acting on the vacuum state. This will have its
importance later on, and will motivate normal ordering.

1.5 Changing the point of view

So far, we have always considered a state evolving in time, upon which �xed
operators act. This point of view is called the Schrödinger picture, but it is not
the only one. We will �nish this section by looking at another point of view
called Heisenberg picture, which will prove useful in the following section.

Up until now, we have considered the state of a system, for exemple a par-
ticle, which is evolving in time according to the relation

|ψ(t)⟩ = e−itH |ψ(0)⟩ (1.25)
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In this setting, the world is �xed, and the particle is moving in it. But we
can also switch to the point of view of the particle, from which the particle itself
is �xed and the world is moving. Translating this into the quantum framework,
this means we could also consider a �xed |ψ⟩ describing the particle across
all spacetime, and have the operators depend on time. This is the so-called
Heisenberg picture. In this picture, the operators evolve instead of the state.
Instead of (1.25), for an operator A associated to an observable O, we would
have

A(t) = eitHA(0)e−itH (1.26)

In the case of a single particle for exemple, both the position operator X
and momentum operator P would have a dependance in time. At a �xed time
t1, making X(t1) act on |ψ⟩ would then return the position of the particle at t1.

We should emphasize that these two pictures describe the same dynamics.
When evaluating the expected value of the physical quantity O of a system
|ψ(t)⟩, physical quantity whose associated operator is A, we have

⟨ψ(t)|A|ψ(t)⟩ = ⟨e−itHψ|A|e−itHψ⟩
= ⟨ψ|eitHAe−itH |ψ⟩
= ⟨ψ|A(t)|ψ⟩

(1.27)

However, it will be more convenient to think in the Heisenberg picture for
quantum �eld theories.
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Chapter 2

Quantum �eld theory

Up until now, we have worked in a framework able to describe particles using
probability functions, as to give them wave behaviours. In quantum mechanics,
a "state" is the data of a vector in a complex con�guration space, describing
the probability of the system to be in each of the possible con�gurations at each
given time. But at this point, it might seem arti�cial to keep a strict notion of
particle, and we might as well describe the system by a non-normalized vector
giving the probability to �nd "something" in each of the possible con�gurations
at each given time. This is the idea behind quantum �eld theories.

2.1 Wightman's axioms

In practice, how does one de�ne quantum �eld theories (QFTs)? There are still
a few modi�cations to do from quantum mechanics to reach this new framework.

We still consider an Hilbert space H able to describe any con�guration of
the system. But now, the system won't have a probability of being in each of
the con�gurations given by H. Instead, there will be some probability to �nd a
part of the system in each of the con�gurations given by H. The key di�erence
is to interpret H as a space in which the system lives instead of as a space of
di�erent possible con�gurations.

Another di�erence is that we will always want QFTs to be consistent with
other areas of physics,and in particular special relativity. It is possible to make
quantum mechanics consistent with special relativity, but not straightforward.
In QFTs, we will enforce the notion of causality (nothing can travel faster than
light), and we will enforce the symmetries given by special relativity, that is the
Poincaré invariance. The Poincaré group is de�ned as the sum of the group of
translations and of the Lorentz group, made up of rotations and boosts.

But to enforce the Poincaré invariance, we will need to have a notion of
space, homogeneous with the notion of time. To have this, we stay close to the
Heisenberg picture from quantum mechanics. We consider states |∗⟩ describing
the state of the system across all of spacetime, and we give the operators a
dependance in time, and space. This therefore turn the operators in �elds of
operators, explaining the name "quantum �eld theory".

10



Moreover, to have a better de�ned framework, and to unify the data with
the probability densities on H, instead of giving the operators a straightforward
dependance on spacetime, we give them a dependance on test functions on
spacetime. In other words, we upgrade our operators from �elds of operators
on spacetime to distributions of operators to spacetime. Nethertheless, we still
call them �elds, as was done historically.

Finally, now that the focus has moved from states to operators, we should
still make sure we have a priviledged state to work on. We therefore require any
QFT to have a well de�ned vacuum state, representing the absence of anything,
the true vacuum, in H.

Now that we have seen most of the ideas of QFT, we should give a proper
mathematical de�nition. Wightman's axiom are the most common axioms for
mathematically rigourously de�ning quantum �eld theories.

De�nition 2.1.1. Let M be the spacetime of our theory, usually the d dimen-
sional Minkowski space. An Hilbert space H and a collection of operator-valued
distributions on M (φa) form a quantum �eld theory if

1. We have a unitary representation U : (q,Λ) → U(q,Λ) of the Poincaré
group such that for all q ∈ M,Λ ∈ L the Lorentz group, for all a, f , we
have

U(q,Λ)φa(f)U(q,Λ)−1 = φa((q,Λ)f) (2.1)

2. We have a vacuum vector |0⟩ �xed by U , and in the domain of any poly-
nomial having as indeterminates the (φa)

3. For q ∈ M , writing U(q, 1) = ei
∑d−1

k=0 qkPk , the joint spectrum of the Pk
lies in the forward cone

4. The linear subspace of the polynomials having as indeterminates the (φa)
applied to |0⟩ is dense in H. In other words, {P |0⟩/P ∈ P((φa))} is dense
in H

5. For any test function f, g whose support are spacelike separated (any two
point is spacelike separated), for any a, b, we have [φa(f), φb(g)] = 0

The �rst axiom ensures Poincaré invariance. Note how (2.1) is nothing but a
generalisation to the Poincaré group of the covariance through time translations,
given by (1.26). The second axiom gives the vacuum state, and ensures it is
stable through the symmetries (as it should be, since the vacuum state describes
a world devoid of anything). Moreover, it makes sure we can apply any �eld to
it. The third axiom is a kind on unitarity condition. It makes sure the light
cone in M corresponds to an idea of light cone in H. The fourth axiom makes
sure that all states described by H are physical, meaning we can reach almost
any of them using the �elds given by the theory, starting from the vacuum.
Sometimes, this axiom appear in an even stricter version, requiring all states in
H to be reachable using �elds from the vacuum. Finally, the last axiom makes
sure causality is transmitted fromM to H, and prevents operators coming from
spacelike separated tempered functions to interact which each other.

In QFT, we will more often consider �elds than states, as (almost) any state
can be found by applying a �eld on the vacuum. For this reason, we will often
consider a �eld φ, and write its corresponding state |φ⟩ ≡ φ|0⟩.
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2.2 Correlation functions

Now that we have understood the framework with which we will be working on,
we want to introduce the main object of study. In general, our main goal when
studying a QFT is to compute its correlation functions. To understand these
objects and their importance, let's �rst try to understand it in the classical case.

We place ourselves in classical mechanics. Let's consider a system made up
of a single particle, in presence of a potential V , vanishing at in�nity. In other
words, the particle is asymptotically free, but is a�ected by V non-asympotically.
To better understand such a system, we may imagine for exemple the case of
a meteorite moving near a planet. Far away from the planet, in the far past
and far future, the meteorite won't care about the planet. In such a system,
we want to know how the presence of a planet modi�es the trajectory of the
meteorite, meaning we want to know the position and direction the meteorite
will be having in the far future if it came from a certain position and direction
in the far past.

Let (x, v) be the position and velocity of a particle at time 0. Without
potential, this particle would be in (x− tv, v) at time −t. We write Ω−

0,t(x, v) =
(x−tv, v). Reciprocally, knowing the position and velocity of a particle (x, v) at
time 0, we can compute Ω+

t (x, v) the position and velocity of the same particle
under the potential V at time t. We then have limt→∞ Ω+

t Ω
−
0,t(x, v) the position

and velocity of the particle coming from the "direction (x, v)", under the action
of the potential V . But we can similarly compute the "direction" in which
will end a particle starting at (x, v), under the action of the potential V , with
limt→∞ Ω−

0,tΩ
+
t (x, v). Therefore, we can compute limt→∞ Ω−

0,tΩ
+
t Ω

+
t Ω

−
0,t(x, v),

the direction in which the particle ends when it came from the direction (x, v).
We call S = limt→∞ Ω−

t Ω
+
t Ω

+
t Ω

−
t the scattering operator. Using this operator,

we may compute the far future state of a particle knowing its far past state,
which is exactly what we would like to know.

By analogy, we can also use similar methods in quantum mechanics. With
H the Hamiltonian of a system and H0 the free Hamiltonian (the Hamiltonian
of the system without external forces), we can de�ne the evolution and free
evolution operators. We have Ω+

t = e−itH and Ω−
0,t = eitH0 . We can then de�ne

the scattering operator (under some conditions) and compute the probability of
a particle coming from a direction ending in another direction

P((x, v) → (x′, v′)) = ⟨x′, v′|S|x, v⟩ (2.2)

In the QFT framework, we may develop this even further. Using the creation
a† and annihilation a operator �elds, we can write

P((x, v) → (x′, v′)) = ⟨0|a(x′, v′)Sa†(x, v)|0⟩ (2.3)

More generally, given an operator a†0 creating a particle e0 and another operator
a1 destroying a particle e1, the quantity

⟨0|a1Sa†0|0⟩ (2.4)

computes the probability for a particle e0 entering the potential in a far past to
become the particle e1 in a far future.
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We may not always simply have a single potential, or may not always want to
compute asymptotic states. In a more general fashion, we will want to compute
expressions of the form

⟨0|φ1(x1)φ2(x2) . . . φn(xn)|0⟩ (2.5)

where (φk)k is a sequence of �elds. However, this expression only makes sense if
the operators are ordered according to time, meaning x1 is later than x2, which
is later than x3, etc. . . This leads to the de�nition of a correlation function.

De�nition 2.2.1. Given a sequence of n �elds (φk)k∈Nn , its n-point correlation
function, or simply correlation function, is the function in n variables

⟨0|T (φ1(x1)φ2(x2) . . . φn(xn))|0⟩ (2.6)

where T is the time-ordering operator, which reorders the �elds according to
the time they are taken at.

For a given sequence of n �elds (φk)k∈Nn
, we write its correlation function

⟨φ1(x1)φ2(x2) . . . φn(xn)⟩. Solving a QFT amounts, in general, to computing
all of its correlation functions.

Remark. Note that the correlation function is not a real correlation function,
in the sense of statistics or probability. In fact, the correlation function of two
�elds can be negative. However, it is the most correct generalisation of what we
could imagine as a correlation function between �elds.

Before ending this subsection, we will see our �rst tool to compute correlation
function, the acclaimed Wick theorem.

Wick's theorem links the time ordering seen in correlation functions, to the
normal ordering introduced in the remark following (1.24). As we began to
explain in this remark, the normal ordering is commonly used to prevent getting
values from the vacuum, and especially to prevent computing the vacuum's
energy expectation, which often diverges. We de�ne and write it as follow.

De�nition 2.2.2. The normal ordering of a sequence of operators φ1 . . . φn,
written : φ1 . . . φn :, is the product of these operators where any annihilation
operator has been put to the right, and any creation operator has been put to
the left.

For exemple, given a theory with a creation operator a† and a annihilation
operator a, : aa† := a†a.

We also need to introduce contractions, which is the combinatoric tool used
to express Wick's theorem.

De�nition 2.2.3. Given a normal-ordered product of operators : φ1 . . . φn :,
we de�ne the contraction of the 2 operators φi and φj as the normal-ordered
product : φ1 . . . φn : where we removed φi and φj , multiplied by their correlation
function ⟨φiφj⟩. We write it

: φ1 . . . φi . . . φj . . . φn :

13



For exemple,

: φ1φ2φ3φ4 : =: φ1φ3 : ⟨φ2φ4⟩

: φ1φ2φ3φ4 : = ⟨φ1φ3⟩⟨φ2φ4⟩
(2.7)

From these, Wick's theorem is pretty straightforward though very powerful.
Its demonstration is not too hard but really tedious. We will not go through it,
but it can be found in [FMS96].

Theorem (Wick's theorem). The time-ordered product is equal to the normal

ordered product, plus all possible ways of contracting pairs within it.

For exemple,

T (φ1φ2φ3φ4) = : φ1φ2φ3φ4 : +

: φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : +

: φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : +

: φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 :

(2.8)

This combinatoric theorem is elementary but very powerful. For exemple, it
implies that the correlation function of any odd number of �elds must always
vanish.

It also implies that the correlation function of any number of �elds can be re-
duced to propagators, that is 2-points correlation functions. For this reason, we
will often only compute 2-points correlation functions, as any higher correlation
function can be straightly found using them.

2.3 The path-integral formalism

Up until now, we have developped a framework using operator-valued distribu-
tions going from some space to another, which gives a very general but di�cult
to work with framework. We would like to reformulate everything in another
way, to turn the landscape into something more familiar and easier to work with.
To do so, we will inspire ourselves from Lagrangian mechanics and statistical
mechanics.

We have multiple way to think about classical mechanics. In Newton's pic-
ture, one considers a system with some position, velocity and acceleration, on
which acts some external forces, as discussed in 1.1. We then use Newton's �rst
laws, which states that F⃗ = ma⃗. But another way to picture thing is to look at
the energy instead of the forces. In this case, we de�ne the Lagrangian L which
gives the energy of the system according to its state and derivatives, and we use
Lagrange's principle which states that nature always try to minimise the en-
ergy spent, meaning the Lagrangian is always minimal along a trajectory. This
statement results, more formally, in Euler-Lagrange equation, which is strictly
equivalent to Newton's �rst law

d

dt

(
∂L
∂q̇j

)
=
∂L
∂qj

(2.9)
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From the Lagrangian, one can derive the action as the integral of the Lagrangian
along the trajectory, corresponding to the energy needed for a system to go
through this trajectory

S =

∫ ∞

−∞
dt L (2.10)

Lagrange's principle then amounts to the fact that S should always be extremal,
or in other words

δS = 0 (2.11)

under any small perturbation of the trajectory.

On the other hand, in statistical mechanics, the energetic point of view is
particularly useful since the probability of �nding the system in a speci�c state
is linked to its energy. Let's imagine a system at temperature T , which can be in
N di�erents states, where state i has energy Ei. Then Boltzmann's distribution
says that the probability of �nding the system in state i is equal to

Pi =
1

Z
e−

Ei
kT (2.12)

where Z is the partition function used to normalise this probability law

Z =

N∑
i=1

e−
Ei
kT (2.13)

How can we use these theories to help us understand QFTs and compute
correlation functions? First starting with quantum mechanics, we recall that
we have de�ned an Hamiltonian, which should enable us to de�ne a correspond-
ing Lagrangian. But then, switching to Heisenberg's picture, recalling that a
state describes the system across all of spacetime and therefore across all of its
trajectory, we should be able to associate some sort of action to each state. This
would then give us an energy associated to the state, potentially allowing us to
�nd some equivalent to the Boltzmann distribution, linking correlation function
and exponentials of this energy. To summarize, we expect to �nd some function
S depending on the state such that we may link correlation functions to some
normalized exponential of this function S.

As suggested in the paragraph above, we start in the quantum mechanics
framework. We suppose H to be parametrized by some q, whose derivative
according to time is written p.1 Given a state ψ(t), we have

⟨q|ψ(T + t0)⟩ = ⟨q|e−iTH |ψ(t0)⟩ (2.14)

We may divide this expontential into small bits, and insert the identity in be-
tween each exponentials

⟨q|ψ(T + t0)⟩ = ⟨q|e−iTH/N11e
−iTH/N12 . . . 1N−1e

−iTH/N |ψ(t0)⟩ (2.15)

But we can replace the identities with complete basis, as

1k =

∫
dpk|pk⟩⟨pk|

∫
dqk|qk⟩⟨qk| =

∫
dpkdqk√

2π
e−ipkqk |pk⟩⟨qk| (2.16)

1These correspond to the canonical coordinates from Hamiltonian mechanics
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Rewriting qN ≡ q for convenience, we have

⟨q|ψ(T + t0)⟩ =
∫ N−1∏

k=1

dpkdqk√
2π

[
N−1∏
k=1

⟨qk+1|e−iHT/N |pk⟩e−ipkqk

]
⟨q1|ψ(t0)⟩

(2.17)
But as N → ∞, we may approximate

⟨qk+1|e−iHT/N |pk⟩ =
1√
2π
eipk(qk+1−qk)e−iH(pk,qk+1)T/N (2.18)

where H(p, q) corresponds to the Hamiltonian on the system, that is H|p, q⟩ =
H(p, q)|p, q⟩

Inserting this back into (2.17) and taking the continuum limit as N → ∞,
we get

⟨q|ψ(T + t0)⟩ =
∫
[DpDq]ei

∫
dt(pq̇−H(p,q)) (2.19)

where [DpDq] is the measure on the space of con�guration taking into account
all of the factors2, and where the integration is made from the state ψ(t0) to
the state q.

Someone used to Lagrangian mechanics and Hamiltonian mechanics would
immediatly see that pq̇ − H(p, q) exactly de�nes the usual Lagrangian L, and
therefore that

∫
dt(pq̇ −H(p, q)) corresponds to the action of the �eld S(p, q).

Further rewriting the canonical coordinates (p, q) as simply �elds belonging to
H, we have in a very general way for any 2 states |ψ1⟩, |ψ2⟩ taken at two times
t1, t2

⟨ψ1(t1)|ψ2(t2)⟩ =
∫

[dψ]eiS[ψ] (2.20)

where ψ interpolates between the states |ψ1⟩ and |ψ2⟩.
This can be easily adapted to QFTs, where we can �nd an action S and a

measure on the space of �elds [dφ] such that we have for any �elds φ1, φ2

⟨φ1|φ2⟩ =
∫

[dφ]eiS[φ] (2.21)

This formalism is often called the path-integral formalism, as we integrate
through the path taken by the state. Even though the way we introduced it
might have seemed a bit arti�cial, some consider it more intrinsic to the frame-
work than the operator formalism. Let's now try to reformulate correlation
functions using this relation.

Let ψ be an arbitrary �eld. Writing |n⟩ the energy eigenstates of the Hamil-
tonian with eigenvalue En, we have

eitH(1−iϵ)|ψ⟩ =
∑
n

eitH(1−iϵ)|n⟩⟨n|ψ⟩

=
∑
n

eitEn(1−iϵ)|n⟩⟨n|

→ϵ→0,t→∞ eitE0(1−iϵ)|0⟩⟨0|ψ⟩

(2.22)

2Someone interested in the exact expression of [DpDq] would �nd diverging factor. How-

ever, this exact expression won't matter to us in what follows, so we may forget about this

issue.
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Then for any two �elds ψ1, ψ2, for any two string of operators O1,O2, we have

⟨0|O1|0⟩
⟨0|O2|0⟩

= lim
t1,t2→∞,ϵ→0

⟨ψ1|e−it1H(1−iϵ)O1e
−it2H(1−iϵ)|ψ2⟩

⟨ψ1|e−it1H(1−iϵ)O2e−it2H(1−iϵ)|ψ2⟩
(2.23)

Thus, for a sequence of �elds (φk)k and a sequence of times (tk)k, recalling that
φk(tk) = eitkHφke

−itkH with φk = φk(0) (1.26), assuming that the (φk)k and
(tk)k are already time-ordered, we have

⟨φ1(t1) . . . φn(tn)⟩ =
⟨0|φ1e

iH(t2−t1)φ2e
iH(t3−t2) . . . eiH(tn−tn−1)φn|0⟩

⟨0|eiH(tn−t1)|0⟩

=
⟨ψ1|e−iT1H(1−iϵ)φ1e

iH(t2−t1) . . . φne
−iT2H(1−iϵ)|ψ2⟩

⟨ψ1|e−i(T1+T2+t1−tn)H(1−iϵ)|ψ2⟩
(2.24)

for T1, T2 → ∞, ϵ → 0. By inserting sums of |n⟩⟨n| between each operator and
by using extensively the path formalism, we obtain for the nominator

lim
T1,T2→∞,ϵ→0

∫ T2

T1

[dφ]ψ∗
1(T1)ψ2(T2)φ1(t1) . . . φn(tn)e

iSϵ[φ(t)] (2.25)

Remembering that the �elds ψ1, ψ2 where chosen arbitrarily, we can choose
them such that ψ1(T1) = ψ2(T2) = 1. This way, we have

⟨φ1(t1) . . . φn(tn)⟩ = lim
ϵ→0

∫
[dφ]φ1(t1) . . . φn(tn)e

iSϵ[φ(t)]∫
[dφ]eiSϵ[φ(t)]

(2.26)

With the change of coordinates t→ −iτ , rede�ning φk(−iτ) as φk(τ), we �nally
have

⟨φ1(τ1) . . . φn(τn)⟩ =
∫
[dφ]φ1(τ1) . . . φn(τn)e

−SE [φ(τ)]∫
[dφ]e−SE [φ(τ)]

(2.27)

with SE(φ(τ)) = −iS(φ(t)).
Remark. This last transformation leads to what is called the Euclidian formal-
ism. To do the transformation, we have to assume that the correlation functions
can be analytically continued from real time to imaginary time.

We call Z =
∫
[dφ]e−SE [φ(τ)] the action functional, or the partition function

in analogy with statistical mechanics. De�ning it allows us to rewrite (2.27) as

⟨φ1(x1) . . . φn(xn)⟩ =
1

Z

∫
[dφ]φ1(x1) . . . φn(xn)e

−SE [φ] (2.28)

As expected, we �nd a relation close to Boltzmann's distribution, show-
ing that the transitions requiring less energy are exponentially most probable to
happen. We have also managed to change our landscape from operators to anal-
ysis, which is much more familiar to us and which will allow us to do extensive
computations.

Finally, we should notice how the exact factors in the measure [dφ] cancel
out, since everything is normalised in the �nal expression.
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2.4 Symmetries and generators

Now that we have a good formulation of correlation functions, we would like to
see how we can constrain them, to have easier computations. But how can we
constrain them? What general constraints do we know on our theory? We know
that in physics, in general, symmetries may severely constrain the dynamics of
a system. Furthermore, due to the axioms of QFTs, we know that our theory
is invariant under the Poincaré group. We should thus be able to use this
symmetry at our advantage. In this subsection, we will see how this symmetry
acts on our theory in the operator formalism. In the next, we will how it acts
in the path-integral formalism. Finally, in a third subsection, we will see how
by linking the two, we can get strong contraints on correlation functions called
Ward identities.

Let's �rst see how a general symmetry manifests in a theory. We know that a
symmetry is represented in a theory by a class of transformations, under which
operators transform as (2.1). From the point of view of path-integrals, this
manifests by the invariance of the action. Indeed, if the system acts the same
way before and after a transformation, then the action should not change under
this transformation.

Let S be the action of the system in the Euclidian formalism. Let (φk)k
a sequence of �elds, and (xk)k a sequence of coordinates. Let xk → x′k a
coordinate transformation under which the action is invariant (meaning xk → x′k
represents a symmetry of the system). We write

φ′(x′) = F(φ(x)) (2.29)

Usually, we would consider a class of such transformations, corresponding
to the class of transformations representing a symmetry. We would then like to
categorize all transformations of the class, or in other words �nd a basis for this
class of transformations. We can in general parametrize the transformations by
a set of in�nitesimal parameters (ωa)a such that we have at �rst order

x′µ = xµ + ωa
δxµ

δωa

φ′(x′) = φ(x) + ωa
δF
δωa

(x)

(2.30)

From this, we can directly de�ne the basis for the transformations

De�nition 2.4.1. We de�ne the generator Ga of a transformation by the fol-
lowing expression

φ′(x)− φ(x) ≡ −iωaGaφ(x) (2.31)

These generators are very convenient as they will allow us to easily consider
the symmetries in computations.

Remark. Knowing that symmetries form in general a Lie group, the generators
of a symmetry may be seen as the Lie algebra associated to the Lie group of
the symmetry.

With (2.30), we can write

φ′(x′) = φ(x′)− ωa
δxµ

δωa
∂µφ(x

′) + ωa
δF
δωa

(x′) (2.32)
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But according to (2.31),

iGaφ(x
′) =

1

ωa
(φ(x′)− φ′(x′)) (2.33)

Which results in the explicit form for the generator

iGaφ =
δxµ

δωa
∂µφ− δF

δωa
(2.34)

Now that we have seen the theory, let's switch to the practice. Let's compute
the generators of the Poincaré group.

The Poincaré group is made up of translations and Lorentz transformations.
Let's begin with translations. Let xµ → xµ + wµ = x′µ be an in�nitesimal
translation. Here, the index a is a spacetime index. We have

δxµ

δων
= δµν

δF
δων

= 0 (2.35)

So the generators of translations are equal to

Pν = −i∂ν (2.36)

Now, let's turn to Lorentz transformations. Let xµ → ωνµx
µ = ωρµη

ρνxµ = x′µ

be an in�nitesimal Lorentz transformation. ω must be antisymmetric, so we can
write

δxµ

δωρν
=

1

2
(ηρµxµ − ηνµxρ) (2.37)

It's e�ect on the �eld can be writen F(ψ) = Lωψ. At �rst order, we can write

Lω ≃ 1− 1

2
iωρνS

ρν (2.38)

with Sρν an hermitian matrix. Using (2.34), we then get the formula for the
generators of Lorentz transformations

Lρν = i(xρ∂ν − xν∂ρ) + Sρν (2.39)

2.5 Symmetries and currents

Now that we have looked at symmetries in the operator formalism, let's try to
see what can they tell us in the path integral formalism. As before, we should
begin by studying an in�nitesimal transformations, this time modifying the
action of the system in the path integral formalism. Let xµ → x′µ = xµ+ωa

δxµ

δωa

be an in�nitesimal transformation, transforming a �eld as φ(x) → φ′(x′) =
φ(x) + ωa

δF
δωa

(x) = F(φ(x)). We have

S′ =

∫
ddxL(φ′(x), ∂µφ

′(x))

=

∫
ddx′L(φ′(x′), ∂′µφ

′(x′))

=

∫
ddx′L(F(φ(x)), ∂′µF(φ(x)))

=

∫
ddx|∂x

′

∂x
|L(F(φ(x)),

∂xµ

∂x′ν
∂µF(φ(x)))

(2.40)
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But at �rst order, we have

∂x′ν

∂xµ
≃ δνµ + ∂µ

(
ωa
δxν

δωa

)
∂xν

∂x′µ
≃ δνµ − ∂µ

(
ωa
δxν

δωa

)
(2.41)

Moreover,
det(1 + E) ≃ 1 + Tr(E) (2.42)

So

|∂x
′

∂x
| ≃ 1 + ∂µ

(
ωa
δxµ

δωa

)
(2.43)

Injecting these in (2.40), we get:

S′ =

∫
ddx

(
1 + ∂µ

(
ωa
δxµ

δωa

))
×

L
(
φ(x) + ωa

δF
δωa

(x),

[
δνµ − ∂µ

(
ωa
δxν

δωa

)](
∂νφ(x) + ∂ν

[
ωa

δF
δωa

(x)

]))
(2.44)

We are interested in computing δS = S′ − S. Expanding the Lagrangian to
the �rst order, and de�ning the Noether current associated with the in�nitesimal
transformation as follows

jµa =

[
∂L

∂(∂µφ)
∂νφ− δµνL

]
δxν

δωa
− ∂L
∂(∂µφ)

δF
δωa

(2.45)

we have

δS = −
∫
ddxjµa ∂µωa (2.46)

but, after integrating by parts,

δS =

∫
ddx∂µj

µ
aωa (2.47)

This is very interesting, as according to the laws of motion, δS should vanish
for any choice of ωa(x) due to Lagrange's principle. In particular, the Noether
current is conserved with the motion

∂µj
µ
a = 0 (2.48)

In other words, this implies that for any continous symmetry in our theory, we
can associated a conserved current.

Remark. This is called Noether's theorem, and serves as a fundamental fact in
the modern study of symmetries. Some of Noether's currents are well-known in
classical theories. For exemple, the current associated to translations in time is
the energy, the current associated to translations in space is momentum, and
the current associated to rotations is angular momentum.

To any conserved current jµa , we can associate a conserved charge given by

Qa =

∫
dd−1xj0a (2.49)
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Now that we have understood how symmetries can be represented in the
path-integral formalism, let's try to compute the currents associated to our sym-
metries. We should begin with translations. Recalling (2.35), we can compute
the current assiociated with translations using the formula (2.45). Changing
the index a to ν and moving it up using the metric tensor, we have

jµν = −ηµνL+
∂L

∂(∂µφ)
∂νφ (2.50)

We usually name this tensor the canonical energy-momentum tensor, or stress-
energy tensor, and write it Tµνc ≡ jµν . The name of this tensor comes from
the fact that the associated conserved charge obtained with (2.49) is the four-
momentum, or energy-momentum

P ν =

∫
dxT 0ν

c (2.51)

We notice in particular that P 0 corresponds to the Hamiltonian. Intuitively,
this is natural as the charge classically associated to translations in space is the
momentum, and the charge classically associated to translations in time is the
energy

This tensor may be modi�ed, to make it more convenient to use. For exem-
ple, adding the divergence of a tensor Bµνρ antisymmetric in the �rst two indices
does not a�ect the conservation of the current. We can thus rede�ne our current
at will by adding the divergence of such a tensor and still verify the associated
ward identity. In particular, thanks to our theory having the Lorentz transfor-
mations as symmetry, we can �nd such a tensor such that the energy-momentum
becomes symmetric. We won't go into the details of the computation, which
are mostly technical. A demonstration can be found here [FMS96, p. 46]. We
usually call the newly de�ned current the Belinfante energy-momentum tensor.

Let's now look at Lorentz transformations. Putting (2.37) and (2.38) into
the formula for the current (2.45), we get the current associated with Lorentz
transformations

jµνρ = Tµνc xρ − Tµρc xν + i
∂L

∂(∂µφ)
Sνρφ (2.52)

But by rendering the energy-momentum tensor symmetric, we annihilated the
last term, such that

jµνρ = Tµνxρ − Tµρxν (2.53)

We recognize here something that looks like angular momentum. However, this
current is not reduced to angular momentum as it also contains the conserved
current associated to boosts.

2.6 Ward identities

We have seen the e�ects of an in�nitesimal transformation on the states of the
theory and on its action. Let's see how it a�ects a correlation function. Let
X = φ1(x1) . . . φn(xn) a string of �elds. We write δω its variation under the
transformation parameterized by ω. Supposing that the transformation is a
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symmetry of the theory, the correlation function of X is invariant under the
transformation. We can thus rewrite the correlation function formula in the
path integral formalism (2.27) after the transformation, and get

⟨X⟩ = 1

Z

∫
[dφ′](X + δX)e−S[φ]−

∫
dx∂µj

µ
aωa(x) (2.54)

We may suppose that the measure is invariant under the transformation, mean-
ing [dφ′] = [dφ]. Expanding the exponential at the �rst order, we can compute
the variation of the correlation function

⟨δX⟩ =
∫
dx∂µ⟨jµa (x)X⟩ωa(x) (2.55)

On the other hand, we can compute the variation of X explicitly using the
de�nition of the transformation generators:

δX = −i
n∑
k=1

(φ1(x1) . . . Gaφk(xk) . . . φn(xn))ωa(xk)

= −i
∫
dxωa(x)

n∑
k=1

(φ1(x1) . . . Gaφk(xk) . . . φn(xn)) δ(x− xk)

(2.56)

But (2.55) and (2.56) are true for any in�nitesimal transformation ωa. We can
thus go under the integral, and putting together the two ways to compute ⟨X⟩
we get

∂µ⟨jµa (x)φ1(x1) . . . φn(xn)⟩ = −i
n∑
k=1

δ(x− xk)⟨φ1(x1) . . . Gaφk(xk) . . . φn(xn)⟩

(2.57)
This equation is called the Ward identity associated to the current jµa . To any
symmetry a theory has, one can associated its Ward identity by replacing the
current and generator in the relation above.

Let's therefore do so for the symmetries of our theory. We start with trans-
lations, whose conserved current is the energy-momentum tensor. Injecting this
tensor and the translation generator (2.36) in the general Ward identity (2.57),
we immediatly get

∂µ⟨Tµν X⟩ =
n∑
k=1

δ(x− xk)
∂

∂xνk
⟨X⟩ (2.58)

which is the Ward identity associated to translations.

We can do the same for Lorentz transformations. Putting their conserved
current (2.53) along with the generator for Lorentz transformations (2.39) in
the general Ward identity, we get

∂µ⟨(Tµνxρ − Tµρxν)X⟩ =
n∑
k=1

δ(x− xk) [(x
ν
k∂

ρ
k − xρk∂

ν
k )⟨X⟩ − iSνρk ⟨X⟩] (2.59)

We can develop the divergence on the left hand side using Leibnitz rule. The
derivative either acts on the energy-momentum tensor, and can be removed
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using (2.58), or acts on xµ and diseappears in a δνµ. We can thus reduce the
expression above, to obtain

⟨(T ρν − T νρ)X⟩ = −i
n∑
k=1

δ(x− xk)S
νρ
k ⟨X⟩ (2.60)

This is the ward identity associated with Lorentz transformations.

2.7 The free boson, part 1

Now that we have accumulated some theory, we will end this section by looking
at our �rst true exemple of quantum �eld theory. We will consider the simplest
system possible, which is the free scalar �eld φ, a scalar �eld with action

S[φ] =

∫
dxdtL(φ, φ̇,∇φ) φ̇ ≡ ∂φ

∂t

L =
1

2

(
1

c2
φ̇2 − (∇φ)2 −m2φ2

) (2.61)

Let's �rst decompose this Lagrangian. It contains 3 terms. The last one is
the mass term m2φ2 quadratic with the �eld, as to control the amount of mass
(number of particles) in the system. The middle one is the classical kinetic term
(∇φ)2 quadratic with the spatial derivative of the �eld. Finally, the �rst one
is 1

c2 φ̇
2, a sort of momentum term quadratic in the time derivative of the �eld,

with sign opposite to the other two so as to allow the formation of particles at
a single level of energy.

For the rest of this section, we set c = 1. We consider this system in 2
dimensions, one temporal and one spatial dimension. This means that our
theory is de�ned going from the Minkowski space in 2 dimensions M2 to the
Hilbert space M2C of functions from the 2 dimensional Minkowski space to C,
that is the free Hilbert space generated from our base space. Intuitively, we are
considerig particles moving on a line, whose probability of existence are given
by the excitations of the �eld.

We can start to study the system by replacing the spatial dimension with
a discrete set of points. We consider N points, with a lattice spacing of a.
Moreover, we set a periodic boundary condition φN = φ0. The Lagrangian
(2.61) then becomes

L =

N−1∑
k=0

a

2

(
φ̇2
k −

1

a2
(φk+1 − φk)

2 −m2φ2
k

)
(2.62)

From there, we de�ne the canonical momentum conjugate to the variable
φn:

πn = aφ̇n (2.63)

Rewriting the Lagrangian (2.62) in terms of the position and momentum, we
get the Hamiltonian

H =
1

2

N−1∑
k=0

(
1

a
π2
k −

1

a
(φk+1 − φk)

2 − am2φ2
k

)
(2.64)
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We switch to the canonical quantization, by replacing the (φk) and (πk) by
operators, and by imposing at equal times canonical commutation relations3:

[φn, πm] = iδn,m

[πn, πm] = [φn, φm] = 0
(2.65)

The system is invariant under translations, and so is the Hamiltonian. This
motivates the use of Fourier transforms.

φ̃k =
1√
N

N−1∑
j=0

e−2πikj/Nφj

π̃k =
1√
N

N−1∑
j=0

e−2πikj/Nπj

(2.66)

φk and πk are real so φ̃†
k = φ̃−k and π̃†

k = π̃−k. We have [φ̃n, π̃
†
m] = iδn,m

With these, the Hamiltonian (2.64) becomes

H =
1

2

N−1∑
k=0

(
1

a
π̃kπ̃

†
k + aφ̃kφ̃

†
k

[
m2 +

2

a2

(
1− cos(

2πk

N
)

)])
(2.67)

This is exactly the Hamiltonian for a system of uncoupled harmonic oscillators,
with frequencies

ωk =

√
m2 +

2

a2

(
1− cos(

2πk

N
)

)
(2.68)

We can then de�ne the annihilation and creation operators

ak =
1√
2aωk

(aωkφ̃k + iπ̃k)

a†k =
1√
2aωk

(aωkφ̃
†
k − iπ̃†

k)

(2.69)

We do have
[an, a

†
m] = δn,m (2.70)

The Hamiltonian rewrites nicely as

H =

N−1∑
k=0

(a†kak +
1

2
)ωk (2.71)

We see there that ak and a†k indeed act as annihilation and creation opera-

tors, with a†kak the density operator. We de�ne the vacuum |0⟩ such that for
all k, ak|0⟩ = 0. From this, any state can be computed by repeatedly applying
creation operators on the vacuum.

We can let a→ 0 and N → ∞ simultaneously, such that Na stays constant.
This way, we get back to the continuous system in 2 dimensions. φk becomes

3These commutation relations are induced by Schrödinger's equation, and are deemed as

common knowledge in quantum mechanics and QFTs
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φ(x), 1
aπn becomes π(x) = φ̇(x). a

∑N−1
k=0 becomes

∫
dx, and δn,m becomes

aδ(x− x′).
Similarly, the Fourier indices k are replaced by the momentum p = 2πk

V .∑N−1
k=0 becomes V

2π

∫
dp, and ak is replaced by 1

V a(p), with energy ω(p) =√
m2 + p2.

The simplest states are of the form a†(p)|0⟩, with energy ω(p) =
√
m2 + p2.

As this is the well-known dispersion relation typical of relativistic particles, we
can interpret these states as elementary particles. As expected, we are indeed
dealing with a system of particles where the particles correspond to excitations
of the �eld. Moreover, general states aren't a�ected by switching two particles

a†(p)a†(p′)|0⟩ = a†(p′)a†(p)|0⟩ (2.72)

We are thus considering bosons. As there are no interactions between these
bosons, we call this theory the free boson theory.

Now that we have understood what we are dealing with, we would like to
compute the propagator of the free boson �eld, or in other words its 2-points
correlation function. We de�ne

K(x, y) ≡ ⟨φ(x)φ(y)⟩ (2.73)

For the sake of simplicity and for reasons that will come later on, we suppose
that m = 0. We can rewrite (2.61) as

S =
1

2

∫
d2xd2yφ(x)A(x, y)φ(y) A(x, y) = −∂2δ(x, y) (2.74)

But (2.27) gives an expression of the correlation function according to the action.
In fact, this expression can be reduced to K(x, y) = A−1(x, y), or equivalently

−∂2xK(x, y) = δ(x, y) (2.75)

This is a consequence of the properties of Gaussian integrals, which we will not
go through but are discussed in [FMS96, p. 51].

Because of translation and rotation invariance, K(x, y) should only depend
on |x−y|. We thus writeK(x, y) = K(r). Integrating (2.75) over a disk centered
around y then results in

1 = −2πrK ′(r) (2.76)

whose solution is

K(r) = − 1

2π
ln(r) + C (2.77)

with C a constant. Returning to correlation functions, we have

⟨φ(x)φ(y)⟩ = − 1

4π
ln(x− y)2 + C (2.78)

Note how we didn't have to use any of the constraints we derived earlier to
compute this correlation function. However, we still had to use some sort of
constraints, as we used the symmetries of the system to constrain the form of
K.
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The energy-momentum tensor associated to this system is

Tµν = ∂µφ∂νφ− 1

2
ηµν∂ρφ∂

ρφ (2.79)

However, we won't study it nor apply the Ward identity to it now. We will get
better tools in the next section, which will allow us to derive the correlation
function of the energy-momentum tensor in a much more e�cient way.
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Chapter 3

2D CFTs

We should now introduce and study the basic properties of the main type of
theory of this paper, which is 2 dimensional conformal �eld theories (2D CFTs).

3.1 Conformal �eld theories

First of all, we need to introduce what is a conformal �eld theory (CFT). To
understand the motivation for it, let's �rst recall how we study QFTs. One of
the axioms (2.1) of QFT states that a QFT should always be invariant under
the Poincaré group. From this strong condition, we get a representation of the
symmetry on the theory, and are able to derive strong constraints such as the
Ward identities seen in subsection 2.6. But in most cases, these constraints
are not strong enough to help us completely determine the form of correlation
functions. In fact, most of the theories one could de�ne with a Lagrangian are
di�cult to study, if not impossible.

The idea of CFTs is to add a symmetry to the theory, to upgrade the Poincaré
invariance to a bigger one, such that this condition is strong enough to allow us
to compute correlation functions. This bigger group is the group of conformal
transformation, hence the name conformal �eld theory.

To formally de�ne CFTs, we �rst need to de�ne what is a conformal trans-
formation.

De�nition 3.1.1. A coordinate transformation is called conformal if it pre-
serves angle, or equivalently if it is a local rescaling of the metric. Mathemati-
cally speaking, g is a conformal transformation if under a coordinate transfor-
mation xµ → wµ(x) the spacetime metric transforms as

g′µν(w) = Λ(x)gµν(x) (3.1)

De�nition 3.1.2. A conformal transformation is said to be global if it is in-
vertible.

We call a conformal �eld theory (or a CFT) any quantum �eld theory invari-
ant through global conformal transformations. In term of axioms, it is equiva-
lent to extending the unitary representation of the Poincaré group to the global
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conformal group, and to ensure the �elds are covariant under global conformal
transformations. A 2D CFT is then a CFT whose base spacetime is (at least
locally) 2-dimensional.

The group of global conformal transformations mostly includes the Poincaré
group and dilatations (x → λx for λ ∈ R). Intuitively we can therefore expect
QFTs to be CFTs if they are invariant under dilatations (zooming or distancing),
or equivalently we can expect general systems to be invariant under conformal
transformations if they are invariant under translations, rotations, boosts, and
dilatations. However, this should remain a simple intuition as the conformal
group also includes other less intuitive transformations. In fact, it is precisely
generated by translations, boosts, dilatations, and special conformal transfor-
mations, given for bµ ∈ M by

xµ → ||xβ ||2

||xβ − bβxγxγ ||2
(xµ − bµxγxγ) (3.2)

Note how due to the invariance through dilatations, in a CFT, the notion of
distance diseappear. In particular, there is no notion of far and near. In fact,
the space underlying CFTs is often assumed to be compact, or is made compact.
We will return to this point in more details later on. Similarly, the notion of
mass must also diseappear.

Do CFTs exist in real life? Truth is, rarely. We have two main exemples of
CFTs that may be used to model our world. The �rst one is string theory, which
is a kind of CFT used to try to explain the standard model and to try to make
a quantum theory of gravity. The second exemple come from condensed matter
physics, and corresponds to condensed matter systems near phase transitions.
This kind of system is usually invariant under the conformal group because at
a mesoscopic scale, a system in transition with equal purcentage of each phases
is invariant under dilatations.

3.2 2D conformal transformations

Conformal transformations are especially interesting in 2 dimensions. The idea
behind CFTs is to enforce a large number of symmetries to put strong constraints
on our theory. And in 2 dimensions, the space of conformal transformations is
in�nite dimensional, allowing for very, very strong constraints. For this reason,
we will from now on focus on 2D CFTs.

Let's prove what we just said above, and compute the space of conformal
transformations in 2 dimensions. We take a 2 dimensional space with the
Euclidian metric. With Einstein's notations, for a coordinate transformation
xµ → wµ(x), the metric tensors transforms as

g′µν =

(
∂wµ

∂xα

)(
∂wν

∂xβ

)
gαβ (3.3)

For it to be a conformal transformation, for all µ, ν ∈ {0, 1}, we must have

g′µν = Λgµν (3.4)
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With Λ depending on the position. g is the Euclidian metric, so we have g01 =
g10 = 0 and g11 = g00 = 1. The condition for the transformation to be conformal
thus becomes

g′00 = g′11 = 0 (3.5)

g′01 = g′10 (3.6)

Adding (3.3) to the above equations, we get the following two conditions:

∂w0

∂x0
∂w1

∂x0
+
∂w0

∂x1
∂w1

∂x1
= 0 (3.7)

(
∂w0

∂x0

)2

+

(
∂w0

∂x1

)2

=

(
∂w1

∂x0

)2

+

(
∂w1

∂x1

)2

(3.8)

Writing ∂0 ≡ ∂
∂x0 and ∂1 ≡ ∂

∂x1 , the above conditions can be resumed to

∂0w1 = ±∂1w0 ∂0w0 = ∓∂1w1 (3.9)

These exactly corresponds to the holomorphic and anti-holomorphic Cauchy-
Riemann equations. Therefore, w is either an holomorphic or antiholomorphic
function.

To see things better, we use the Wick rotation on the plane. We de�ne

z ≡ x0 + ix1 ∂ ≡ 1

2
(∂0 − i∂1)

z̄ ≡ x0 − ix1 ∂̄ ≡ 1

2
(∂0 + i∂1)

(3.10)

Note that the metric tensor thus changes to

gµν =

(
0 1

2
1
2 0

)
(3.11)

With these coordinates, the holomorphic Cauchy-Riemman equation become

∂̄w(z, z̄) = 0 (3.12)

whose solutions are all (analytical) function z → w(z). On the other hand, the
antiholomorphic Cauchy-Riemman equation becomes

∂w(z, z) = 0 (3.13)

whose solutions are all (analytical) function z̄ → w(z̄).

Therefore, we see that both equations decouple and have solutions along their
own dimension. The holomorphic equation gives functions along the dimension
generated by z, whilst the antiholomorphic equation gives functions along the
dimension generated by z̄. For this reason, we call the dimension generated by z
the holomorphic dimension, and the other one the antiholomorphic dimension.
This decoupling is a deep fact about the nature of 2D CFTs, which holds true in
any 2D CFT. Its consequences will completely split the theory in 2 parts, as we
will see in 3.9. For this reason, we will sometimes call one part of it a "chiral"
part, and by name abuse we will sometimes call the holomorphic dimension the
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chiral dimension, and the antiholomorphic dimension the antichiral dimension.
The reason for this decoupling can be understood intuitively, but we will see the
reason later on when studying its e�ects on the space of states. To preserve this
decoupling, we will in the following almost always consider these coordinates
instead of the more natural ones.

We have seen the form of general conformal transformations. However, a
CFT is not invariant under any kind of conformal transformation: it is only
under global conformal transformation. Indeed, the transformation should at
least be invertible for it to be a symmetry of the system. In fact, every symmetry
should form a group. Let's see what is the group underlying global conformal
transformations.

Let f be a global conformal transformation on a two-dimensional space. f is
also a local conformal transformation, so according to our previous computations
it should either depend on z or z̄. We can suppose without loss of generality
that it depends on z. We can also assume f is analytical. Moreover, f must
be invertible so injective: f can't have essential singularities nor branch points.
Thus, there exist P,Q ∈ C[X] such that

f(z) =
P (z)

Q(z)
(3.14)

If P has multiple roots, f is not injective. The same goes if Q has multiple
roots. As such, there exist a, b, c, d ∈ C such that

f(z) =
az + b

cz + d
(3.15)

For f to be invertible, the determinant ad − bc must be di�erent than 0. As
the choice of a, b, c, d is not unique in (3.15), we can normalize and choose
ad−bc = 1. Reciprocally, we can easily verify that for any a, b, c, d, e, f, g, h ∈ C
such that ad − bc = 1, eh − fg = 1, the transformation z, z̄ → az+b

cz+d ,
ez̄+f
gz̄+h is a

global conformal transformation.

Therefore, the group of 2D global conformal transformation depending on z
is isomorphic to SL(2,C). As the exact same things happens to transformations
depending on z̄, we conclude that the complete conformal group is isomorphic
to twice that. To remember one depends on the holomorphic dimension and
one depends on the antiholomorphic one, we may write the conformal group
SL(2,C)× SL(2,C).

3.3 Primary and quasi-primary �elds

With this decoupling understood, we will now preemptively give some vocab-
ulary, which will prove useful in the study of conformal transformations and
CFTs. Moreover, we will also now derive a strong constraint from this confor-
mal invariance. But �rst, some vocabulary!

Let φ(z, z̄) be a �eld in a 2D CFT.

De�nition 3.3.1. We say φ is holomorphic (or chiral) if it only depends on z,
and we say it is anti-holomorphic (or anti-chiral) if it only depends on z̄
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A CFT is invariant through the conformal group, so through rescaling too.
In particular, under the rescalings z → λz and z̄ → λ̄z̄, a �eld changes as

φ(z, z̄) → λhλ̄h̄φ(λz, λ̄z̄) (3.16)

We call h its holomorphic (scaling) dimension, and h̄ its anti-holomorphic (scal-
ing) dimension. We also call the couple (h, h̄) the conformal dimensions of φ,
∆ = h+ h̄ its scaling dimension, and s = h− h̄ its spin. Note that ∆ and s are
given these names as they describe the behaviour of the �eld under dilatations
and rotations, respectively.

De�nition 3.3.2. A �eld φ is said to be quasi-primary if for any global con-
formal transformation z → f(z), the �eld transforms as

φ(z, z̄) →
(
∂f

∂z

)h(
∂f

∂z̄

)h̄
φ(f(z, z̄)) (3.17)

De�nition 3.3.3. A �eld φ is said to be primary if for any, possibly local, con-
formal transformation z → f(z), the �eld transforms as described by equation
(3.17).

Remark. We have considered transformations of the form z → f(z) in the de�-
nition of quasi-primary and primary �elds. Of course, the same should hold true
for transformations of the form z̄ → f(z̄). We have simply considered trans-
formations depending on the holomorphic dimension to lighten the notations,
without loss of generality.

Quasi-primary and primary �elds will prove useful when constructing the
states of a general CFT, in subsection 3.9.

Now that we have aquired some vocabulary, we can use the conformal in-
variance to determine a general constraint on correlation functions, as well as
the exact form of the 2-points correlation function of primary �elds. We may
also do the same for higher order correlation functions, but the computations
become very di�cult and the results are not so satisfactory nor intuitive. We
won't show it in this paper for these reasons, though it can be found in [FMS96].

We consider the system of a 2D CFT. Let S be the action of the system in
the Euclidian formalism. Let (φk)k a sequence of �elds, and (xk)k a sequence of
coordinates. Let xk → x′k a coordinate transformation under which the action
is invariant. We write as in 2.4

φ′(x′) = F(φ(x)) (3.18)

Assuming as in 2.4 that the measure is invariant through the transformation,
we have

⟨φ1(x
′
1) . . . φn(x

′
n)⟩ =

1

Z

∫
d[φ]φ1(x

′
1) . . . φn(x

′
n)e

−S[φ]

=
1

Z

∫
d[φ′]φ′

1(x
′
1) . . . φ

′
n(x

′
n)e

−S[φ′]

=
1

Z

∫
d[φ]F(φ1(x1)) . . .F(φn(xn))e

−S[φ]

= ⟨F(φ1(x1)) . . .F(φn(xn))⟩

(3.19)
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In particular, recalling (3.16), writing the scaling dimensions of the �elds
(∆k)k, for any λ ∈ R, we have

⟨φ1(λx1) . . . φn(λxn)⟩ = λ−∆1···−∆n⟨φ1(x1) . . . φn(xn)⟩ (3.20)

This is already a strong constraint imposed by the invariance under dilata-
tions, actually valid in CFTs of any dimension. But we can go even further
if we specialize this to 2 dimensions, and add the contribution of the other
symmetries.

First, let (φk)k be a sequence of primary �elds, with conformal dimensions
(hk)k and (h̄k)k. According to (3.17), for a conformal transformation of the
form z → w, z̄ → w̄,(3.19) becomes

⟨φ1(w1, w̄1) . . .φn(wn, w̄n)⟩

=

n∏
k=1

(
dw

dz

)−hk

w=wk

(
dw̄

dz̄

)−h̄k

w̄=w̄k

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)⟩

(3.21)
This general relation on the correlation function of primary �elds can prove
useful. Now look at the 2-points correlation function of primary �elds in a 2D
CFT. Due to rotation and translation invariance, we have in any dimension that

⟨φ1(x1)φ2(x2)⟩ = f(|x1 − x2|) (3.22)

Specializing this to 2 dimensions, |x1, x2| becomes ((z1−z2)(z̄1− z̄2))
1
2 with the

coordinates de�ned by (3.10). The above equation can therefore be rewritten

⟨φ1(z1, z̄1)φ2(z2, z̄2)⟩ = f((z1 − z2)(z̄1 − z̄2)) (3.23)

But with (3.20), this is constrained to

⟨φ1(z1, z̄1)φ2(z2, z̄2)⟩ =
C

(z1 − z2)h1+h2(z̄1 − z̄2)h̄1+h̄2
(3.24)

with C a constant depending on the 2 �elds. Finally, using the covariance of the
correlation function with special conformal transformations, we get an equation
implying that the conformal dimensions of the two �elds must be equal, as
shown in [FMS96, p. 105]. If the conformal dimensions of the two �elds are
di�erent, the correlation function necessarily vanishes. Else, we have

⟨φ1(z1, z̄1)φ2(z2, z̄2)⟩ =
C

(z1 − z2)2h(z̄1 − z̄2)2h̄
(3.25)

with h = h1 = h2, h̄ = h̄1 = h̄2. This super strong relation brings down
the computation of any 2-points correlation function of primary �elds to the
determination of a single constant, and only using conformal invariance. We
now see the power of this symmetry in action.

3.4 Radial quantization

We have now seen some elementary e�ects of the conformal symmetry, though
we haven't started a proper methodical study of its e�ects on the symmetry.
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This study will start next subsection but before, we would like to set up correctly
the space we are working on.

Let's consider the space of our theory. It is a 2 dimensional Euclidian space,
where one dimension corresponds to time whilst the other corresponds to space.
We have canonical coordinates on this space, along two orthogonal axis, usu-
ally denoted by (x, y). One of the coordinates usually corresponds to the time
dimension, whilst the other usually corresponds to the space dimension. Using
these, we have de�ned our complex coordinates with (3.10), which will prove
useful to distinguish the 2 chiral parts of our theory. In these coordinates, we
can classically express time as 1

2 (z + z̄), and space as i
2 (z̄ − z). However, the

space and time are arbitrarily chosen. One could in fact choose any basis of the
2 dimensional space, and attribute time to one axis and space to the other axis.
The only condition is that the basis must be orthogonal.

Moreover, as we are considering a conformal �eld theory, one can map 0
to ∞ and ∞ to 0 at will using the conformal symmetries. We can therefore
assume without too much danger that compactifying the space of the theory
won't a�ect the theory much. Compactifying the space dimension, one could
consider a cylinder S1×R of circumference L where S1 corresponds to the space
dimension, and R corresponds to the time dimension. In this space, we have
the canonical coordinates (x, t) where we identi�ed (x, t) and (x+ L, t) for any
x, t. Furthermore, adding a point at −∞ in the time dimension, we can map
this cylinder back to the complex plane through the map

(x, t) → e
2π
L (t+ix) (3.26)

This way, we have de�ned a new basis for our Euclidian space, and new space
and time dimensions. This choice of basis for time and space is called the radial
quantization.

We want to de�ne an Hermitian conjugation on this space, taking into ac-
count the newly de�ned time and space dimensions. To do so, let's consider
an interacting 2D CFT, in which there is a �eld φ. Just like we saw in 2.2, we
would like to compute the interactions happening in the theory by considering a
state φin "entering" the space at a time −∞, and by computing its probability
P = ⟨φout|φin⟩ to become a state φout "exiting" the system at a time +∞.

Remark. This should stay as a motivation for correlation functions in general,
as the scattering method doesn't work in CFTs. The basic assumption of the
scattering method is to say that states are asymptotically free. However, in
a CFT, due to the invariance under dilatations, states in an interacting �eld
theory are never free.

In the radial quantization, we can easily compute φin. We want

φin ∝ lim
t→−∞

φ(x, t) (3.27)

But in the complex plane, 0 corresponds to t = −∞. We have

|φin⟩ = lim
z,z̄→0

φ(z, z̄)|0⟩ (3.28)

And
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⟨φout| = |φin⟩† (3.29)

In the Euclidian formalism we have been using up until now, we considered
a complex time τ = it, such that under Hermitian conjugation time would
transform as τ → −τ , whilst space would be left unchanged. We would like
to keep this kind of transformation. With radial quantization, reversing time
while leaving space unchanged corresponds to the map z → 1

z∗ . One could be
tempted to de�ne Hermitian conjugation as follows

φ(z, z̄)† = φ(
1

z̄
,
1

z
) (3.30)

But if we did so, we would have

⟨φout|φin⟩ = lim
z,z̄,w,w̄→0

⟨0|φ(z, z̄)†φ(w, w̄)|0⟩

= lim
z,z̄,w,w̄→0

⟨0|φ(1
z̄
,
1

z
)φ(w, w̄)|0⟩

= lim
z,z̄→+∞

⟨0|φ(z̄, z)φ(0, 0)|0⟩

(3.31)

Supposing that φ is a primary �eld, recalling (3.25), we have

⟨0|φ(z̄, z)φ(0, 0)|0⟩ ∝ z−2h̄z̄−2h (3.32)

⟨φout|φin⟩ would thus always be equal to 0, which is not what we want. In order
to make sense of ⟨φout|φin⟩, we must de�ne the Hermitian conjugate of a �eld
as

φ(z, z̄)† = z̄−2hz−2h̄φ(
1

z̄
,
1

z
) (3.33)

The radial quantization allows us to do many things, one of them being the
operator-state correspondance. Let us consider a �eld φ. Up until now, we have
sometimes associated a state to the �eld by saying

φ(t) = eiTHφe−iTH , |φ⟩ = φ|0⟩ (3.34)

However, this attribution of �elds to states is very arbitrary and can only be
kept locally in a demonstration, as it obviously depends on an arbitrary point
x and time frame t0 such that φ(t) = φ(T + t0, x). In particular we do not
always know how to translate a state through space, and we must therefore
consider �elds at the same point in space when using this correspondance. But
these limitations change when in the radial quantization. Indeed, in the radial
quantization, time is compacti�ed at −∞ and at this point, all of the space
dimension merge into one point. Therefore, we may consider the �elds taken at
(z, z̄) = (0, 0), which corresponds to the far past for all of space. We set

|φ⟩ = lim
z→0,z̄→0

φ(z, z̄)|0⟩ (3.35)

which gives a correspondance between �elds and states. We can easily see that
this correspondance is injective (by rigidity of analytical functions) and surjec-
tive by the axioms of QFT. Therefore, it gives a bijection between local operators
at one point and states, or in other words between �elds and states.This bijec-
tion is called the state-operator correspondance. This fact is fundamental in
CFTs, and greatly simpli�es the study of the space of states H.

In what will follow, we will speak of states or operator equivalently. In
particular, the space of operators should be understood as H.
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3.5 Conformal generators

Now that the space we are working on is properly set, let's investigate properly
the e�ects of conformal symmetry on our theory. We would eventually like to
derive constraints on the correlation functions as we did in 2.4, 2.5 and 2.6. The
�rst step is thus to do as in 2.4, and to compute the generators of the symmetry.

Remark. Note that at the level of in�nitesimal transformations (as we con-
sider when computing the generators), any transformation is invertible. We will
therefore have generators generating all conformal transformations present in
our theory, instead of just the generators of SL(2,C)× SL(2,C).

We consider an in�nitesimal conformal transformation ϵ. As we have shown,
conformal transformations either depend on the holomorphic or the antiholo-
morphic dimension. Without loss of generality, we will consider one depending
on the holomorphic dimension, ϵ = ϵ(z). We may assume as previously that ϵ
can be expanded in a serie. However, since it may not be invertible, we should
expand it in its Laurent serie

z′ = z + ϵ(z) = z −
∑
n∈Z

ϵnz
n+1 (3.36)

We have a natural basis for such transformations, indexed by n. Let's try
to �nd the generator of the transformation made by the nth term. Applying
the transformation on a dimensionless �eld ϕ(z) gives ϕ′(z) = ϕ(z) + δϕ(z) =
ϕ(z) + ϵ(z)∂ϕ(z). Thus, the generator associated to the nth term of the serie is

ln = −zn+1∂ (3.37)

The family (ln)n∈Z is the family of generators of conformal transformations
depending on the holomorphic dimension. We also have the same family in the
antiholomorphic dimension:

l̄n = −zn+1∂̄ (3.38)

We explicitely see how the space of conformal transformation in 2D is in�nite
dimensional, hinting at the strength of the constraints it will provide. If we try
to compute the conformal algebra, we have

[lm, ln] = −zm+1∂(−zn + 1)∂ + zn+1∂(−zm + 1)∂

= (n−m)zm+1+n∂

= (m− n)lm+n

(3.39)

These bracket relations de�ne what is called a Witt algebra. We also have as
expected

[l̄m, l̄n] = (m− n)l̄m+n (3.40)

[lm, l̄n] = 0 (3.41)

We could expect to have this algebra present in the space of operators of
any CFT, as a CFT is invariant under the conformal group. However, the
algebra every CFT has is a slightly modi�ed version of it, modi�ed by a central
extension, called the Virasoro algebra. We will proceed to proving this and get
an explanation of the reason why in the next 2 subsections.
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3.6 Conformal Ward identities

Now that we have derived the general generators of conformal transformations,
we may specialize these to get the generator and current associated to dilatation,
from which we should be able to derive a Ward identity.

First, what precisely is the generator of dilatations? Let xµ → (1 +ω)xµ be
a dilatation. According to 3.16, F(ϕ) = (1 + ω)−∆ϕ ≃ (1 − ω∆)ϕ with ∆ the
scaling dimension of the �eld. We thus have

δxµ

δων
= xµδµν

δF
δων

= −∆ (3.42)

So the generator of dilatations is equal to

D = −ixν∂ν − i∆ (3.43)

Now, what is its current? Injecting (3.42) into the formula for the current
(2.45), we have

jµ = −Lxµ +
∂L

∂(∂µϕ)
xν∂νϕ+

∂L
∂(∂µϕ)

∆ϕ

= Tµν x
ν +

∂L
∂(∂µϕ)

∆ϕ

(3.44)

This result can be improved. In particular, it can be shown that one may
modify (once again) the energy-momentum tensor to make it traceless, thanks
to the conformal symmetry of the system. We won't prove it here as the proof
is rather technical, but a complete demonstration in 2 dimensions can be found
in [FMS96, p. 107]. Using this and the fact that by de�nition of the current,
∂µj

µ = 0, we have

∂µT
µ
ν x

ν + ∂µ
∂L

∂(∂µϕ)
∆ϕ = 0 (3.45)

which implies

∂µ
∂L

∂(∂µϕ)
∆ϕ = 0 (3.46)

Therefore, we have
jµ = Tµν x

ν (3.47)

With these tools, we may compute the Ward identity associated to dilata-
tions. Inserting (3.43) and (3.47) in the general Ward identity (2.57), we get

∂µ⟨Tµν xνX⟩ = −
n∑
k=i

δ(x− xk)

[
xνk

∂

∂xνk
⟨X⟩+∆k⟨X⟩

]
(3.48)

Once again, we can simplify using Leibnitz rule

⟨TµµX⟩ = −
n∑
k=i

δ(x− xk)∆k⟨X⟩ (3.49)

which results in the ward identity associated with dilatations.
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Up until now, we have only derived the Ward identities for a system in any
dimension. But we know that the conformal symmetry is especially strong in 2
dimensions, and we have seen that a lot of things look better in 2 dimensions
in the coordinates given by (3.10). Let's therefore rewrite the Ward identities
we know of in these coordinates.

To do so, we need to have a few computational tools in these coordinates.
First, we should recall that the metric is given by (3.11). Moreover, in these
coordinates, the antisymmetric tensor takes the form

ϵµν =

(
0 1

2 i
− 1

2 i 0

)
(3.50)

We will also use the identity

δ(x) =
1

π
∂z̄

1

z
=

1

π
∂z

1

z̄
(3.51)

We will not prove this indentity, which can be derived from contour integrals.
A detailed justi�cation is given here [FMS96, p. 119]. With these, we can
rewrite the Ward identities associated to translations, dilatations and Lorentz
transforms as

2π∂z⟨Tz̄zX⟩+ 2π∂z̄⟨TzzX⟩ = −
n∑
k=1

∂z̄
1

z − wk
∂wk

⟨X⟩

2π∂z⟨Tz̄z̄X⟩+ 2π∂z̄⟨Tzz̄X⟩ = −
n∑
k=1

∂z
1

z̄ − w̄k
∂w̄k

⟨X⟩

2⟨Tzz̄X⟩+ 2⟨Tz̄zX⟩ = −
n∑
k=1

δ(x− xk)∆k⟨X⟩

− 2⟨Tzz̄X⟩+ 2⟨Tz̄zX⟩ = −
n∑
k=1

δ(x− xk)sk⟨X⟩

(3.52)

Adding and substracting the 2 last equations of (3.52) and using (3.51), we have

2π⟨Tz̄zX⟩ = −
n∑
k=1

∂z̄
1

z − wk
hk⟨X⟩

2π⟨Tzz̄X⟩ = −
n∑
k=1

∂z
1

z̄ − w̄k
h̄k⟨X⟩

(3.53)

Notice how in 2 dimensions, we naturally got back the possibility of having 2 dif-
ferent decoupled scaling dimensions due to the spin, as we saw in the paragraph
following (3.16).

We renormalize the energy-momentum tensor and de�ne the holomorphic
and antiholomorphic energy-momentum �elds as follows

T = −2πTzz T̄ = −2πTz̄z̄ (3.54)
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Introducing this in the �rst 2 equations of (3.52), we have

⟨T (z)X⟩ =
n∑
i=1

(
1

z − wk
∂wk

⟨X⟩+ hi
(z − wk)2

⟨X⟩
)
+ reg.

⟨T̄ (z)X⟩ =
n∑
i=1

(
1

z̄ − w̄k
∂w̄k

⟨X⟩+ h̄i
(z̄ − w̄k)2

⟨X⟩
)
+ reg.

(3.55)

where reg. stands for an holomorphic function of z or z̄, regular when z →
wk or z̄ → w̄k. Notice how the two newly de�ned energy-momentum �elds
decouple, with one depending only on the holomorphic dimension and the other
depending only on the antiholomorphic dimension, thus explaining the name
given to these �elds. This shows once again the deep nature of the holomorphic
and antiholomorphic parts of a CFT.

To end this subsection, we would like to bring the Ward identities associated
to translations, Lorentz transformations and dilatations into a single Ward iden-
tity. We will not go into the details of the computation, but only go through the
main idea of the proof. More details of this proof can be found here [FMS96,
p. 121]. Let xν → xν + ϵν(x) be an arbitrary conformal coordinate variation.
We can write

∂µ(ϵνT
µν) = ϵν∂µT

µν +
1

2
(∂νϵµ + ∂µϵν)T

µν +
1

2
(∂µϵν − ∂νϵµ)T

µν

= ϵν∂µT
µν +

1

2
(∂ρϵ

ρ)ηµνT
µν +

1

2
εαβ∂αϵβεµνT

µν
(3.56)

with εµν the antisymmetric tensor. Using the 3 Ward identities on both sides,
we have

δϵ⟨X⟩ =
∫

dnwd2x ∂µ⟨Tµν(x)ϵν(x)X⟩ (3.57)

where the integral goes through all possible positions for the �elds in the se-
quence X. Applying Gauss's theorem and using the notations introduced by
(3.54), we �nally get what is known as the conformal Ward identity :

δϵ,ϵ̄⟨X⟩ = − 1

2πi

∮
C

dz ϵ(z)⟨T (z)X⟩+ 1

2πi

∮
C

dz̄ ϵ̄(z̄)⟨T̄ (z̄)X⟩ (3.58)

This single identity summarize the constraints of global conformal transfor-
mations1. From this, we will derive once again the generators of the conformal
transformations, and get as announced earlier the Virasoro algebra.

3.7 Operator product and mode expansions

In this subsection, we will introduce some notations to have a better way to
deal with correlation functions, states and operators.

Keen eyes might have noticed that in the correlation function of the free
boson (2.78) as well as in the Ward identities (3.55), the correlation function
diverges when z → wk or z̄ → w̄k. It is very typical of correlation functions to

1the constraints associated to the special conformal transformation is taken into account

by making the energy-momentum traceless
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diverge when the position of two �elds coincide. To understand this, recall that
for 2 �elds φ1, φ2, the correlation function ⟨φ1(x1)φ2(x2)⟩ represents some kind

of probability of the state φ2(x2)|0⟩ ending as the state φ†
1(x1)|0⟩. More pre-

cisely, using the translation and rotation invariance, we see that ⟨φ1(x1)φ2(x2)⟩
is a function of |x1−x2|, and can be seen as a probability density depending on
the distance of the two local operators. But then, we can expect the probability
density to be concentrated around 0, as two events closer in spacetime have
more chance to be correlated. We therefore expect the function ⟨φ1(x1)φ2(x2)⟩
to diverge as |x1 − x2| tends to 0, as a Dirac function would.

We should therefore always expect correlation functions to diverge like that.
More speci�cally, it is always this divergence that interests us. Taking the
notations from the paragraph above, most of the density of the probability is
located near |x1 − x2| ∼ 0. We are not interested in the small residues of
the probability for medium distances of |x1 − x2|, but in the main correlation
near |x1 − x2| ∼ 0. For this reason, we will almost always study correlation
functions depending on |x1 − x2|, and expand the function in its Laurent serie
for |x1 − x2| ∼ 0, as to get the exact speed and factors of the divergence.
Moreover, we will usually not be interested in the regular terms, but only in
the diverging terms, which come in �nite numbers. In general, we can write
each of these terms as an operators well de�ned when z → w, multiplied by
a function diverging when z → w. We call this representation the operator
product expansion, or OPE. We usually write it by removing the brackets ⟨. . . ⟩,
without forgetting that it only makes sens inside of correlation functions.

For exemple, the Ward identities (3.55) can be rewritten for a primary �eld
of conformal dimensions h, h̄ in term of OPE as

T (z)φ(w, w̄) ∼ h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄)

T̄ (z̄)φ(w, w̄) ∼ h

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄)

(3.59)

We immediatly see that this way of writing correlation functions is way more
convenient and allow us to quickly see what is important.

Remark. The OPE equips the space of operators with a sort of algebraic struc-
ture. This is exactly the structure we will de�ne and study on the mathemati-
cal side. Understanding the mathematical structure behind a CFT allows us to
know the OPE of every �elds, and therefore to compute any correlation function,
e�ectively solving the theory. This explains the huge importance the algebra of
operators has in the study of CFTs.

Now that we have seen how to conveniently write correlation functions, we
would like to conveniently write �elds in general. After that, we will be able to
link the 2 to obtain a nice relation which will later enable us to �nally �nd the
generators of conformal transformations present in the space of operators.

The idea to have a better formulation of �elds is to expand �elds of the
form φ(z, z̄) with conformal dimensions (h, h̄) in terms of a family of operators
independant of the position. Thus, let φ(z, z̄) be a �eld of our theory. As the
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�eld is holomorphic in z and in z̄, it may be written

φ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz̄−n−h̄φm,n

with φm,n =
1

2πi

∮
dz zm+h−1 1

2πi

∮
dz̄ z̄n+h̄−1φ(z, z̄)

(3.60)

In this de�nition, we shift the powers of z and z̄ by h and h̄ respectively, such
that if we compare the straightforward Hermitian conjugation of this expression
with the Hermitian conjugation de�ned by (3.33), we get

φ†
m,n = φ−m,−n (3.61)

We will now drop the antiholomorphic coordinate to simplify the notations. We

must though not forget that it is always here, and can easily be restored. We
have

φ(z) =
∑
m∈Z

z−m−hφm

φm =
1

2πi

∮
dz zm+h−1φ(z)

(3.62)

With this, let's relate contour integrals to commutators in the operator prod-
uct expansions. Let a(z) and b(z) be two holomorphic �elds. We consider the
integral ∮

w

dz a(z)b(w) (3.63)

where the integral goes around w without getting around 0. This expression as
a meaning inside of correlation functions, as long as it is time ordered. We can
write ∮

w

dz a(z)b(w) =

∮
C1

dz a(z)b(w)−
∮
C2

dz b(w)a(z) (3.64)

where the two integrals on the right hand side are integrals at �xed time, mean-
ing C1 and C2 are 2 circles centered around 0, and where C1 wraps around w
and C2 doesn't.

Remark. Inside a correlation function, there are usually more �elds than these
two. This relation is true if the only �eld having a singularity inside of C1 and
not C2 is b(w). We should thus choose C1 and C2 as close as possible.

De�ning the operator

A ≡
∮
a(z)dz (3.65)

we then have ∮
w

dz a(z)b(w) = [A, b(w)] (3.66)

Note that with the notations of (3.62), we have A = a1−h, where h is the
holomorphic dimension of a.

De�ning the operator B similarly to A, we can once again integrate to obtain

[A,B] =

∮
0

dw

∮
w

dz a(z)b(w) (3.67)
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This relation is strong, as it allows one to explicitely compute commuta-
tors as integrals, changing the landscape from unknown algebras to well-known
analysis.

3.8 The Virasoro algebra

We will now showcase an application of the relation (3.67) we just computed,
to the energy-momentum tensor.

The energy-momentum �eld is a �eld inside of our theory, conveying some
sort of data about the conformal symmetry of our theory. Indeed, it is origi-
nally de�ned as a 2-tensor giving the conserved current for translations. But it
is made symmetric thanks to the Lorentz invariance, and made traceless thanks
to the scale invariance and special conformal transformation invariance. There-
fore, using all of the conformal symmetries, we obtained 2 �elds, one depending
only on the holomorphic dimension and the other depending only on the anti-
holomorphic dimension. We may expect that the modes of both �elds contain
information on the symmetry. More explicitely, knowing from section 3.5 that
the representation of the conformal transformations decouples into an holomor-
phic and an antiholomorphic part, knowing that integrating a current leads to
some sort of generator and that the energy-momentum �elds act as some sort
of currents for the conformal symmetry, we can hope that the modes of the
energy-momentum �elds will generate the conformal transformations. We will
now proceed to proving it.

We should �rst concentrate on the holomorphic dimension, knowing we can
do the other side similarly. As was done to get the conformal Ward identity
(3.58), we let ϵ(z) be the holomorphic component of an in�nitesimal conformal
transformation. De�ning the conformal charge

Qϵ ≡
1

2πi

∮
dzϵ(z)T (z) (3.68)

we can rewrite the conformal Ward identity using (3.66) as follows

δϵφ(w) = −[Qϵ, φ(w)] (3.69)

We see here that the conformal charge acts as a generator for conformal
transformations, in a similar way to generators de�ned by (2.31).

Using the mode expansion de�ned by (3.62), we can write

T (z) =
∑
n∈Z

z−n−2Ln (3.70)

Also writing

ϵ(z) =
∑
n∈Z

z−n−2ϵn (3.71)

we can rewrite (3.68) as

Qϵ =
∑
n∈Z

ϵnLn (3.72)
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Remark. We have the exact same equations in the antiholomorphic dimension,
de�ning the operators (L̄n)n.

This shows that the mode operators (Ln)n and (L̄n)n generate the conformal
transformations on the Hilbert space. In particular, we see that L0 and L̄0

generate the dilatations. But in radial quantization, dilatations correspond to
time translations. As such, we see that the Hamiltonian H of our system veri�es

H ∝ L0 + L̄0 (3.73)

It is possible to compute the commutation relation of the mode operators
(Ln)n and (L̄n)n, though it is highly non-trivial and almost nowhere to be found
in popular physics books. We will only give the idea of the proof. First, we
need to consider a primary �eld φ(z, z̄). We then want to expand the identity

[[Qϵ2 , Qϵ1 ], φ(z, z̄)] = [Qϵ2 , [Qϵ1 , φ(z, z̄)]]− [Qϵ1 , [Qϵ2 , φ(z, z̄)]] (3.74)

In this, we can compute the right-hand side using (3.59), as to get the expres-
sion of the OPE of the energy-momentum �eld with itself. When deriving the
expression, we have the freedom to add or not a term, up to a constant. We
should �x this constant to be C. We get

T (z)T (w) ∼ C

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(3.75)

Classically, we de�ne c = 2C the central charge of the theory. The OPE of the
energy-momentum �eld with itself rewrites

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(3.76)

Similarly, in the antiholomorphic dimension, we have

T̄ (z̄)T̄ (w̄) ∼
c
2

(z̄ − w̄)4
+

2T̄ (w̄)

(z̄ − w̄)2
+
∂̄T̄ (w̄)

z̄ − w̄
(3.77)

Remark. From this OPE, recalling 3.59, we see that the energy-momentum
�elds are not primary �elds. However, we see that the holomorphic energy-
momentum �eld has conformal dimensions (2, 0), while the antiholomorphic one
has conformal dimensions (0, 2). This justi�es the shift by 2 in the de�nition of
the modes (3.70).

From this, using the relation between commutators in OPEs and contour
integrals (3.67) and the de�nition of the families (Ln)n and (L̄n)n (3.70), we
can �nally compute the commutation relation of the (Ln)n and (L̄n)n:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm=−n

[L̄m, Ln] = 0

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
(m3 −m)δm=−n

(3.78)

The non-linear Lie algebra composed of (Ln)n, or equivalently (L̄n)n, is called
the Virasoro algebra, and depends on the central charge c. We write it Vir(c).
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The complete (non-chiral) Hilbert space thus possess a representation of Vir(c)×
Vir(c).

The Virasoro algebra is the unique central extension of the Witt algebra de-
rived in 3.5, which shows that the energy-momentum tensor indeed generates a
representation of the conformal transformations in 2 dimensions. In particular,
recalling from 3.2 that the conformal group in 2 dimensions is isomorphic to
SL(2,C)×SL(2,C), we see that we indeed have a representation of the confor-
mal group inside Vir(c)×Vir(c), generated by L−1, L0, L1, L̄−1, L̄0, and L̄1. In
particular, L0+L̄0 generates dilatations (explaining the nomenclature of scaling
dimension), L0 − L̄0 generates rotations (explaining the nomenclature of spin),
and L−1 and L̄−1 both generate translations.

Remark. It is important to remember that the Virasoro algebra we derived
generate the (local) conformal transformations, which are not symmetries of the
system. In particular, they do not commute with the Hamiltonian (L0 + L̄0).

Now, what is the central charge c, apparently totally arbitrary? Some theo-
ries are well de�ned for any value of c, while some others are well de�ned only
for discrete values of c. We call the �rst class of CFT classical CFTs, while we
call the second class exotic CFTs.

We should interpret c as a default in the conformal symmetry. Indeed, we
have shown that the true algebra corresponding to conformal transformations
is the Witt algebra, that is the Virasoro algebra for c = 0. But in reality, the
conformal symmetry is rarely a real symmetry of the system. In the exemple
of condensed matter physics and phase transitions for exemple, the conformal
symmetry is only valid at a mesoscopic term. Thus, if we continue to renor-
malize the system, we will hit a wall at some point. c is some sort of quantity
representing this anomaly in the theory, and reminding us that conformal �eld
theories (and quantum �eld theories in general) are never anything more than
a framework, working only at a certain scale, used to describe reality only up
to some point.

3.9 The Hilbert space

Now that we have derived the Virasoro algebra, the actual algebra of operators
present inside our space of operators and representing the conformal transfor-
mations, we can try to understand the form of the space of states H.

Let's consider a 2D conformal �eld theory. We will assume that the theory
is unitary (only allowing states with positive norms) since this is the case of
most of the 2D CFTs appearing in nature. As we have just seen, the energy-
momentum tensor decouples into two currents T and T̄ whose modes form two
Virasoro algebras (Ln)n and (L̄n)n. These operators are therefore part of the
set of operators in the CFT, and form representations of the Virasoro algebra on
the Hilbert space. Let's concentrate on representations of the Virasoro algebra
in the holomorphic dimension, coming from the modes of T .

Let (|∗⟩n)n ⊂ H a representation of the Virasoro algebra which is a part of
the Hilbert space. As we are dealing with physical states, we can expect their
energy to be bounded from below. Indeed, for any set of states included in the
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Hilbert space, there should always be a state with minimal energy, corresponding
to some sort of "vacuum" state2. But the energy of a state is given by the
Hamiltonian L0 + L̄0, and the spin given by L0 − L̄0 should also be bounded,
resulting in the fact that the eigenvalues of L0 should be bounded from below.
There should therefore be a primary state |h⟩ in the representation such that
this state has the lowest eigenvalue for L0, which we will call its conformal
(holomorphic) dimension and write h. Let's try to see how the Virasoro algebra
act on this state.

We know that [L0, Lm] = −mLm. Therefore, for a general state |e⟩ such
that

L0|e⟩ = e|e⟩ (3.79)

for e ∈ R, we have for m ∈ Z

L0Lm|e⟩ = ([L0, Lm] + LmL0)|e⟩
= (e−m)Lm|e⟩

(3.80)

As such, Lm lowers the energy of |e⟩ if m > 0, and raises its energy if m < 0.
As an immediate corollary,

Lm|h⟩ = 0 ∀m > 0 (3.81)

Remark. This equation precisely de�nes what is called a primary state. As the
name imply, the �eld corresponding to a primary state is a primary �eld, and
conversely the state corresponding to a primary �eld is a primary state. This
explains the importance of primary �elds, as any representation of the Virasoro
algebra has for lowest energy state a primary state.

We can then recognize (|∗⟩n)n as a highest weight representation of the
Virasoro algebra with primary state |h⟩, where the (L−m)m>0 act as raising
operators whilst the (Lm)m>0 act as lowering operators. The representation is
spanned by states of the form

(L−n1)
r1(L−n2)

r2 . . . |h⟩ (3.82)

where n1 > n2 > . . . and r1, r2, . . . are integers. Such a representation is
determined up to an isomorphism by the couple (h, c), where c is the central
charge of the Virasoro algebra. We usually write it V (h, c).

We know that the Hilbert space of the conformal �eld theory is made up of
representation(s) of the Virasoro algebra. But we have just seen that the rep-
resentations appearing in the Hilbert space are highest weight representations,
which are determined up to isomorphism by the central charge of the theory
and by the conformal dimension of the highest weight vector. Therefore, we
may write the Hilbert space as

H =
⊕
a,b

V (ha, c)⊗ V (h̄b, c) (3.83)

where a indexes the holomorphic dimensions of primary �elds, and b indexes
the antiholomorphic dimensions.

2We quote the word "vacuum" as it may not be the actual vacuum state, especially in

sectors with non-trivial monodromy
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Remark. We have written ⊗ as the operator linking the holomorphic and anti-
holomorphic Verma modules. This symbol should be taken as a symbol more
than anything, as in general all of the product states won't be present in H. In
particular, some CFTs are diagonal, meaning they take the form

H =
⊕
a

V (ha, c)⊗ V (h̄a, c) (3.84)

From these, we see that as announced in 3.2, the entire space of states itself
splits into the product of holomorphic and antiholomorphic states. What is the
reason for this splitting? One might �nd an explanation when considering the
relativistic behaviour of particles. A CFT usually models some kind of particles,
seen as the excitations of the �elds. But as mentionned in 3.1, the notion of
mass cannot exist in a CFT. Therefore, the modelled particles should always be
massless. But we know that in general, for a particle,

E2 = m2c4 + p2c2 (3.85)

So for a massless particle, we have E = pc, but the velocity of the particle is
given by v = E/P such that we have

v = c (3.86)

meaning the particles modelled by a CFT should always travel at the speed of
light through the space dimension.

However, the space only has dimension 1. Obviously, a particle cannot con-
tinuously do a U-turn and keep its speed of light in 1 dimension. Therefore, a
particles should either always and forever move left, or move right. This leads
to the decomposition in the left and right moving sectors, or in the holomorphic
and antiholomorphic sectors.

The fact that the Hilbert space splits in 2 then makes sense. A general state
should be composed of particles moving left, and particles moving right, both
non-interacting. This also explains the decomposition of the energy-momentum
tensor in two energy-momentum �elds, corresponding to the total momentum
of the particles moving left, and total momentum of the particles moving right.

3.10 The free boson, part 2

Now that we have the basic tools to study a CFT, we can return to the exemple
of the free boson, de�ned in 2.7. Indeed, we can easily verify that the action of
the free boson (2.61) is invariant under conformal transformations. In particular,
we now have the tools to prove that the energy-momentum de�ned by (2.79) is
really the energy-momentum tensor. But �rst, let's return to the �eld φ.

We have previously compute the correlation function of φ with itself 2.78.
In the chiral coordinates, using the notations of OPEs, this rewrites

φ(z, z̄)φ(w, w̄) ∼ 1

4π
(ln(z − w) + ln(z̄ − w̄)) (3.87)

This OPE does not look very natural. However, it should be expected as φ itself
is not so natural, and in particular is not a primary �eld, as we will see later on.
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However, taking the derivatives ∂zφ and ∂z̄φ, we can separate the holomorphic
and antiholomorphic coordinates

∂zφ(z, z̄)∂wφ(w, w̄) ∼
1

4π

1

(z − w)2

∂z̄φ(z, z̄)∂w̄φ(w, w̄) ∼
1

4π

1

(z̄ − w̄)2

(3.88)

Here, the fact that the two variables z and w are interchangeable show the inter-
changeability of the �elds, and thus the bosonic nature of the �elds. The decou-
pling of the holomorphic and antiholomorphic dimension in the �rst derivative
of φ should be expected, as it computes some sort of momentum of the left and
right moving particles.

Now, let's go back to the energy-momentum tensor. We want to prove that
the tensor Tµν de�ned by

Tµν = ∂µφ∂νφ− 1

2
ηµν∂ρφ∂

ρφ (3.89)

is the energy-momentum tensor of the free boson theory. Intuitively, this can
be more or less expected. Indeed, the momentum-energy tensor is supposed to
give the energy of the �eld. But the �eld describes free particles, and the energy
of a free particle is given solely by its kinetic energy as it is free. The kinetic
energy of a particle is classically

Ek =
p2

2m
∝ (∂tx)

2 (3.90)

which looks like (3.89). This is even more evident in complex coordinates, where
the two o�-diagonal terms vanish, leaving the 2 decoupled �elds

T (z) = −2π : ∂φ(z)∂φ(z) :

T (z̄) = −2π : ∂̄φ(z̄)∂̄φ(z̄) :
(3.91)

Here, we clearly see the expression of the kinetic energy of left moving and right
moving particles, as discussed in the previous subsection. Note that the normal
ordering naturally appear here, showing the quantum nature of the theory.

We concentrate on the holomorphic dimension, knowing the same happens
in the antiholomorphic one. We can calculate the OPE of T (z) with ∂φ using
Wick's theorem, knowing the OPE of ∂φ with itself:

T (z)∂φ(w) = −2π : ∂φ(z)∂φ(z) : ∂φ(w)

∼ −2π : ∂φ(z)∂φ(z) : ∂φ(w)− 2π : ∂φ(z)∂φ(z) : ∂φ(w) : ∂φ(w)

∼ ∂φ(z)

(z − w)2

∼ ∂φ(w)

(z − w)2
+
∂2wφ(w)

z − w
(3.92)

Recalling (3.59), this is already a good indication of the fact that T νµ indeed
is the energy-momentum of the theory. Moreover, if it really is the energy-
momentum tensor of the theory, this shows that ∂φ is a primary �eld of confor-
mal dimension h = 1.
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Following the same methods, we can also compute the OPE of the energy-
momentum tensor with itself:

T (z)T (w) ∼ 1

2(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(3.93)

This OPE exactly corresponds to the one we derived in (3.76), from which one
shows that the modes of this �eld form the Virasoro algebra. Therefore, the
modes of T (z) and T (z̄) both form a Virasoro algebra, de�nitely proving that
they are the energy-momentum �elds of the theory.

Note that from this OPE, we also �nd that the central charge of the free
boson theory is equal to 1.

3.11 Radial quantization for the free boson

Now we would like to use radial quantization to our advantage to compute even
more things on the theory of the free boson. In particular, since we have set
the exact dimensions associated to time and space, we should be able to derive
explicit expressions for a lot of things.

To do so, we should �rst study the theory on a cylinder, as we compactify
the space. We write L the circumference of the cylinder. The theory stays the
same, except the fact that we add a periodicity condition on the �eld

φ(x+ L, t) = φ(x, t) (3.94)

As the �eld is periodic, we can expand it using the Fourier transform

φ(x, t) =
∑
n

e2πinx/Lφn(t)

with φn(t) =
1

L

∫
dx e−2πinx/Lφ(x, t)

(3.95)

Introducing the Fourier modes into the Lagrangian (2.61), we get

L =
1

2
L
∑
n

(
φ̇nφ̇−n −

(
2πn

L

)2

φnφ−n

)
(3.96)

Now, the momentum associated to ϕn is

πn = Lφ̇−n (3.97)

We do still have [φn, πm] = iδn,m. We can write the Hamiltonian

H =
1

2L

∑
n

(πnπ−n + (2πn)2φnφ−n) (3.98)

We should highlight that

φ†
n = φ−n π†

n = π−n (3.99)

The Hamiltonian still corresponds to a sum of decoupled harmonic oscillators, of

frequencies ωn = 2π|n|
L . This is expected, since we haven't modi�ed the theory.
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We see that the term n = 0 vanishes. This is due to the absence of mass of the
system, and is the cause of its conformal invariance. With a mass, the system
wouldn't be invariant through conformal transformations.

Let's now de�ne the creation ã†n and annihilation ãn operators. Usually, one
would de�ne them as follows

ãn =
1√
4π|n|

(2π|n|φn + iπ−n) (3.100)

so that we can have the usual [ãn, ãm] = 0, [ãnã
†
m] = δn,m. However, this

de�nition does not work with the zero mode.
Instead, we will treat the zero mode separately, and de�ne the following

operators
for n > 0, an = −i

√
nãn and ān = −i

√
nã−n

for n < 0, an = −i
√
nã†−n and ān = −i

√
nã†n

(3.101)

These operators have the following commutation relations

[an, am] = nδn,m [an, ām] = 0 [ān, ām] = nδn,m (3.102)

Writing the Hamiltonian in term of these operators, we have

H =
1

2L
π2
0 +

2π

L

∑
n≥0

(a−nan + ā−nān) (3.103)

Note how this Hamiltonian takes a quite explicit form, as it is a sum on each
kind of excitation (particle) of their density operator. (3.102) leads to

[H, a−n] =
2π

L
na−n (3.104)

which means that for |E⟩ an eigenstate of H of energy E, a−n|E⟩ is still an
eigenstate of H with energy E + 2nπ

L
Expressing the Fourier modes according to these operators, we have

φn =
i

n
√
4π

(an − ā−n) (3.105)

We can thus write at t = 0

φ(x) = φ0 +
i√
4π

∑
n̸=0

1

n
(an − ā−n)e

2πinx/L (3.106)

But then, thanks to the explicit expression of the Hamiltonian (3.103), we have

φ(x, t) = φ0 +
1

L
π0t+

i√
4π

∑
n ̸=0

1

n

(
ane

2πin(x−t)/L − ā−ne
2πin(x+t)/L

)
(3.107)

Going to the Euclidian spacetime by replacing t with −iτ and using the complex
coordinates

z = e2π(τ−ix)/L z̄ = e2π(τ+ix)/L (3.108)
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we �nally have

φ(z, z̄) = ϕ0 −
i

4π
π0 ln(zz̄) +

i√
4π

∑
n ̸=0

1

n
(anz

−n + ānz̄
−n) (3.109)

We can explicitely see this time that φ is not a primary �eld. But we know
from (3.92) that its derivatives ∂φ and ∂̄φ̄ are. We may therefore also compute
them explicitely. Let's concentrate on the holomorphic derivative.

Derivating the expansion of φ found just above, we have

i∂φ(z) =
π0
4πz

+
1√
4π

∑
n ̸=0

anz
−n−1 (3.110)

Introducing

a0 ≡ ā0 ≡ π0√
4π

(3.111)

we can include the zero term in our sum, and write

i∂φ(z) =
1√
4π

∑
n

anz
−n−1 (3.112)

Now that we have an explicit expression of ∂φ we can also explicitely express
T (z). Recalling (3.91), we have

T (z) =
1

2

∑
n,m∈Z

z−n−m−2 : anam : (3.113)

which implies

Ln =
1

2

∑
m∈Z

an−mam for n ̸= 0

L0 =
∑
n≥0

a−nan +
1

2
a20

(3.114)

We can then rewrite (3.103) as

H =
2π

L
(L0 + L̄0) (3.115)

which is the result predicted in 3.4.

Now, let's look at the rest of our theory. Are there other primary �elds
in the theory, which could generate more Verma modules in H? The energy
momentum tensor and the partial derivatives of the �eld φ currently make an
algebra closed under the OPE, thus making a consistent theory. However, we
may be able to extend it using other primary �elds.

The key observation is to see that since ∂φ has a scaling dimension of 1, φ
has a vanishing scaling dimension. Making use of this, we can de�ne a family of
�elds (Vα)α∈R without introducing any notion of scale, which we call the vertex
operators:

Vα(z, z̄) ≡ : eiαϕ(z,z̄) :

= e
iαφ0+

α√
4π

∑
n≥0

1
n (a−nz

n+ā−nz̄
n)
e

α
4ππ0 ln(zz̄)− α√

4π

∑
n≥0

1
n (anz

−n+ānz̄
−n)

(3.116)
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We want to see how these newly de�ned �elds act. Let's �rst calculate the
OPE of ∂φ with Vα, using the de�nition of the exponential and Wick's theorem,
as was done to compute (3.92):

∂φ(z)Vα(w, w̄) =
+∞∑
n=0

(iα)n

n!
∂φ(z) : φ(w, w̄)n :

∼ −1

4π(z − w)

+∞∑
n=1

(iα)n

(n− 1)!
: φ(w, w̄)n−1 :

∼ iα

4π

Vα(w, w̄)
z − w

(3.117)

Using this, we compute its OPE with the energy-momentum tensor

T (z)Vα(w, w̄) = −2π

+∞∑
n=0

(iα)n

n!
: ∂φ(z)∂φ(z) :: φ(w, w̄)n :

∼ 1

8π(z − w)2

+∞∑
n=2

(iα)n

(n− 2)!
: φ(w, w̄)n−2 :

+
1

z − w

+∞∑
n=1

(iα)n

n!
n : ∂φ(z)φ(w, w̄)n−1 :

∼ α2

8π

Vα(w, w̄)
(z − w)2

+
∂wVα(w, w̄)
z − w

(3.118)

The 2 terms here comes from the single and double contractions in the appli-
cation of Wick's theorem. Thanks to this OPE, we see that the �elds Vα are
primary �elds, of holomorphic dimension

h(α) =
α2

8π
(3.119)

Knowing that the OPE of Vα with the antiholomorphic energy-momentum ten-
sor is of the same form, we also get

h̄(α) = h(α) =
α2

8π
(3.120)

In conclusion, we end up with a theory whose central charge is 1, and whose
Hilbert space consists of the primary �elds ∂φ, ∂̄φ,Vα for α ∈ R, and of the
identity, together with their descendants under the Virasoro algebra.
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