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Abstract

We study global subalgebras of superconformal algebras in two dimensions
and their unitary representations. Global superconformal multiplets are de-
composed into conformal multiplets using Racah-Speiser algorithm, revealing
many essential aspects of superconformal theories such as stress-energy tensor,
conserved current, supersymmetric deformation and supersymmetry enhance-
ment. Character formulae for the representations are presented. We further
find a collection of conserved charges that are k-forms under the R-symmetry,
which must be part of the super Virasoro algebra with N ≥ 3 supersymmetries.
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1 Introduction and Conclusion

Conformal field theory(CFT) is one of the key ingredients of theoretical physics, with
its far-reaching applications from string theory to condensed matter theory. Power
of the conformal field theories lies on the abundance of symmetries, which constrain
the structure and contents of the theory to a large degree.

The power of symmetries becomes particularly pronounced with introduction of
supersymmetries. The superconformal symmetry, considered to be the most general
symmetry group in four spacetime dimensions [1], enables a plethora of progress based
on ‘kinematics’ of the theory alone, let aside the ‘dynamics’.

The conformal symmetry becomes significantly extended to have an infinite num-
ber of generators in two space-time dimensions, known as the Virasoro algebra [2].
In addition to the Virasoro algebra, many extensions of two-dimensional conformal
algebra such as Kač-Moody algebra [3, 4] or W-algebra [5] have been studied, see
also [6, 7].

However, the supersymmetric extension of the Virasoro algebra, namely super
Virasoro algebra, is increasingly complicated. It has been fully studied only for a
relatively fewer number of supersymmetries N ≤ 4 [8–16]. For N ≥ 5, the full super
Virasoro algebra has not been clearly constructed to the best of our knowledge.

Numerous authors have attempted to construct super Virasoro algebra with a
large number N of supercurrents. The results are yet incomplete and do have certain

2



unconventional features. For instances, see [17–25]. It is the existence of certain
generators, other than what are expected by a straightforward generalization of cases
with fewer N , that makes the construction nontrivial.

Under the circumstances, we first study in the present work the structure of
global subalgebra of the super Virasoro algebra in two dimensions and its unitary
representations. We find that the study of the global subalgebra provides certain
concrete implications on the poorly understood super Virasoro algebra.

Recently, the unitary representations of superconformal algebras with any number
of supersymmetries N in dimensions 3 ≤ d ≤ 6 were systematically organized in
[26]. The key was to decompose each representation of a superconformal algebra
into those of a conformal algebra, utilizing the Racah-Speiser algorithm to organize
the conformal primaries into representations of Lorentz and R-symmetry groups.
Since the global conformal algebra so(2, 2) in two dimensions is highly analogous
to its higher-dimensional counterpart so(d, 2), we can maximize utilization of the
methodology of [26].

The problem further simplifies in two dimensions because the two-dimensional
conformal algebra splits into two copies of Virasoro algebra. The two copies are often
referred to as left-moving and right-moving sectors, or also as holomorphic and anti-
holomorphic sectors. Each copy of Virasoro algebra can be extended to accommodate
any number N of supersymmetries that results in super Virasoro algebra. Therefore,
one can study multiplets of individual sectors, then simply take direct product of
multiplets in each sector to form a full conformal multiplet.

Despite our limitation to the global subalgebra, we find that it contains many
essential features of the larger super Virasoro algebra, particularly involving the
shortening, or unitary, conditions. Thus, much can be inferred about the full su-
perconformal theory in two dimensions by studying the global subalgebra.

We list some of the most notable results below.

• In two-dimensional global subalgebra of super Virasoro algebra with any number N
of supersymmetries, a multiplet that is constant on the conformal manifold, a.k.a.
absolutely protected multiplet does not exist. In other words, every short multiplet
that saturates the unitarity bound may recombine with another short multiplet to
form a long multiplet in the limit of its saturation of unitarity bound. See section
4.1.

• In all global superconformal theory with any numbers (N , N̄ ) of supersymmetries,
holomorphic and anti-holomorphic conserved currents that are supersymmetric, R-
neutral, and have spins s = 1, 3

2
, 2, · · · are allowed. In particular, a conserved current

with s = 2 identified as the stress-energy tensor and a supersymmetric higher-spin
current s = N

2
− 1 for N ≥ 7 are universal in all theories. See section 5.1.
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• In all global superconformal theory with (N 6= 4, N̄ 6= 4), or with large N = 4 or
N̄ = 4 with equal Kač level for two copies of su(2) ⊂ so(4), relevant supersym-
metric deformations with conformal dimension ∆ = 3

2
that are Lorentz scalars and

R-spinors are allowed. However, their existence is not guaranteed, and in two di-
mensions the universal mass as defined in [27] does not exist in any superconformal
theory. See section 5.2.

• In all global superconformal theory with any numbers (N , N̄ ) of supersymmetries,
a marginal supersymmetric deformation that is a Lorentz scalar and an R-singlet
is allowed. In particular, we rediscover that a universal marginal deformation is
guaranteed to exist in the large (4, 4) superconformal theory. See [28] and section
5.2.

• A global superconformal theory with N = 5 (or N̄ = 5) is automatically enhanced
to an N = 6 (or N̄ = 6) theory. See section 5.3.

• A super Virasoro algebra with number of supersymmetries N ≥ 5 must contain
conserved current operators that are k-forms under the R-symmetry group SO(N )
and have scaling dimensions (L0-eigenvalue) k

2
− 1, where k = 3, 4, · · · ,N . The

current is bosonic when k is even and fermionic when k is odd. (Anti-)commutation
relation between the supercurrent and the k-form current must yield, among others,
the (k + 1)-form current and the (k − 1)-form current. See section 6.1.

This article is organized as follows. We begin with preliminaries in section 2,
where the global subalgebra, and decomposition principle and unitarity condition for
its multiplets are explained. Presented in section 3 are lists of unitary multiplets,
for global subalgebras with every number of supersymmetries N . Then, we discuss
various implications of the results in order. First, we discuss more or less straightfor-
ward results in section 4, namely the recombination rules and character formulae for
the multiplets. Then, section 5 contains more physically significant applications such
as conserved currents, deformations, and supersymmetry enhancements, highlighted
by the stress-energy tensor. Finally in section 6, we take a step further to discuss
what we can infer about the super Virasoro algebra from our results on the global
subalgebra.

2 Preliminaries

2.1 Global Superconformal Algebras

We start with a brief review on the global superconformal algebra with an arbitrary
number of supercharges in two dimensions. Generic cases are first discussed, followed
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by a special case of the N = 4 superconformal algebra. We limit ourselves to the
left-moving sector, as the algebra of the right-moving sector is identical.

2.1.1 Generic Global Subalgebras

A superconformal algebra with N supercharges is an so(N ) Kač-Moody algebra [29,
30]. Its global subalgebra is generated by three Laurent modes L−1, L0, L1 of the
Virasoro operator, two modes Ga

− 1
2

, Ga
1
2

of N supercharges, and one mode T ab0 = −T ba0

of R-symmetry generators, where a, b are so(N ) vector indices. Let us present the
non-trivial (anti-)commutation relations below,

[Lm, Ln] = (m− n)Lm+n, (2.1a)

[Lm, G
a
r ] = (

m

2
− r)Ga

m+r, (2.1b)

[Lm, T
ab
0 ] = 0, (2.1c)

[T ab0 , T cd0 ] = i(δacT bd0 − δbcT ad0 − δadT bc0 + δbdT ac0 ), (2.1d)

[T cd0 , Ga
r ] = −(V cd)abG

b
r, (2.1e)

{Ga
r , G

b
s} = 2Lr+sδ

ab − (r − s)(V cd)abT
cd
0 , (2.1f)

where
(V cd)ab = −i(δcaδdb − δdaδcb) (2.2)

are so(N ) generators T cd0 in the vector representation. We work in Neveu-Schwarz
sector, so r, s = −1

2
, 1

2
and m,n = −1, 0, 1.

2.1.2 N = 4 Global Subalgebras

The case N = 4 where so(4) ' su(2) ⊕ su(2) calls for a special treatment. As
found in [12], there exists a one-parameter family of N = 4 superconformal algebra,
where we use α to parametrize relative levels of the two su(2)’s. Six so(4) generators
are arranged into two mutually commuting sets of su(2) generators T±i0 . For the
global subalgebra of the superconformal algebra, last three subequations of (2.1) are
modified as follows:

[T±i0 , T±j0 ] = iεijkT±k0 , [T±i0 , T∓j0 ] = 0, (i, j, k = 1, 2, 3) (2.3a)

[T±i0 , Ga
r ] = iη±iabG

b
r, (2.3b)

{Ga
r , G

b
s} = 2Lr+sδ

ab + 4(r − s)
( α

1 + α
iη+i
ab T

+i
0 +

1

1 + α
iη−iab T

−i
0

)
, (2.3c)
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where

η±iab = ±δi[aδ4
b] +

1

2
εiab, (2.4)

and the parameter α is related to the su(2) levels by

α =
k−
k+

. (2.5)

This global subalgebra is named D(2,1;α). When α = 1, D(2,1;α) is osp(4|2),
which is precisely what one obtains by putting in N = 4 in the generic algebra (2.1).
In doing so, one must be careful with a numerical factor in the relation between
generators of so(4) and su(2)⊕ su(2). That is, (T iSO(4))

2 = 2((T iSU(2)+
)2 + (T iSU(2)−

)2),

which accounts for the extra factor of 2 in the second term of (2.3c).

In subsequent sections, we will usually leave α as a free parameter and refer to
D(2,1;α) as large N = 4 global subalgebra, although we will frequently give it the
value 1.

Meanwhile, another subalgebra can be obtained from the above by, e.g., taking a
limit α→∞. This leaves us with only one su(2) generated by T i0, under which four
supercharges transform as two independent sets of spinors G±r , Ḡ

±
s where r, s = ±1

2

as before. The algebra is summarized by, in addition to the first three subequations
of (2.1), (see [13,14])

[T i0, T
j
0 ] = iεijkT k0 , (i, j, k = 1, 2, 3) (2.6a)

[T i0, G
a
r ] = −1

2
σiabG

b
r, (a, b = 1, 2) (2.6b)

[T i0, Ḡ
a
s ] =

1

2
(σiab)

∗Ḡb
s, (2.6c)

{Ga
r , G

b
s} = {Ḡa

r , Ḡ
b
s} = 0, (2.6d)

{Ga
r , Ḡ

b
s} = 2Lr+sδ

ab − 2(r − s)σiabT i0, (2.6e)

where σiab are the usual Pauli matrices. This global subalgebra is su(2|1, 1) (see [12]),
to which we refer as small N = 4 global subalgebra.

2.1.3 Comment on Super Virasoro Algebras

In two dimensions, super Virasoro algebras with N supercharges are constructed by
central charge extension from the corresponding global subalgebras [2]. As a result,
the full algebra contains an infinite number of Laurent modes for each of the operators
L, Ga, T ab, with non-trivial commutation relations such as[

Lm, Ln
]

= (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, (m,n ∈ Z) (2.7)
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However, the super Virasoro algebra in general is not completed by the infinite
modes of L, Ga, and T ab. For example, the super Virasoro algebra for the large N = 4
contains an additional u(1) generator among others [12], and higher-N algebras are
expected to contain more extra generators. See [21] for an example.

While the super Virasoro algebras for 2 ≤ N ≤ 4 have been thoroughly studied
[8–16], those for generic N ≥ 5 are not fully understood to the best of our knowledge.
It is one of the main goals of this article to find extra generators that must enter the
algebra by studying their global subalgebras, in particular their stress-energy tensor
multiplets. See section 6.1 for this account.

2.2 Superconformal Multiplets

We now turn to global superconformal multiplets allowed by each global subalgebra
with an arbitrary number N of supercharges. Let us first discuss the unitary mul-
tiplets of the left-movers Ga

1/2 below. Same argument applies to the right-movers as
well.

An irreducible superconformal multiplet is fully determined by its superconfor-
mal primary V that is annihilated by {Ga

1/2, L1}. A superconformal primary fur-
nishes an irreducible representation under the maximally compact bosonic subalgebra
sl(2) ⊕ so(N ).#1 The left-moving multiplet then consists of the primary V and its
superconformal descendants, obtained by consecutive actions of L−1 and Ga

−1/2 on
the primary.

Given any superconformal primary, it is straightforward to build a multiplet with
its descendants. However, unitarity conditions impose a bound on the allowed L0-
eigenvalue h0 of the superconformal primary. Let us examine this bound in any N
in two dimensions. This argument closely follows that of [31], and we shall thus be
brief.

Let us denote the state corresponding to the superconformal primary [R]h0 by
|[R]h0〉α, where [R] = [R1R2 · · · Rr] collectively denotes the highest weight so(N )
Dynkin labels with r = bN /2c and α is an index for the representation [R]. The uni-
tarity bound can be obtained by enforcing all first-level components in the multiplet
to have non-negative norms. To be more explicit, let us consider a matrix element#2

Abβ;aα = 〈[R]h0 |β G
b
1/2G

a
−1/2 |[R]h0〉α . (2.8)

Since (Ga
1/2)† = Ga

−1/2, all its eigenvalues are required to be non-negative.

#1There is an exception of small N = 4 superconformal algebra where so(4) reduces to su(2).
#2We actually need conjugate indices for the bra, but it is irrelevant as we are only interested in

the eigenvalues.
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We can proceed with the (anti-)commutation relation (2.1) since the primary ket
is annihilated by G1/2:

Abβ;aα = 〈[R]h0|β (2L0δba −
1

2
(V cd)baT

cd
0 ) |[R]h0〉α

= 2h0(I)bβ;aα −
1

2
(V cd)ba ⊗ (ρ(T0)cd)βα, (2.9)

where (V cd)ba = −i(δcbδda−δdb δca) as in (2.2) and (ρ(T0)cd)βα represents matrix elements
of so(N ) generators in the vector and [R] representations. Eigenvalues of the matrix
(2.9) can be obtained as in a well known quantum mechanics problem. The result is:

h0 ≥
1

4
(c2([R′])− c2([R])− c2(V )), (2.10)

where c2([R]) denotes the quadratic Casimir of the representation [R], V denotes the
vector representation, and [R′] is any irreducible representation that composes the
tensor product [R]⊗ V . For the generic case where the R-symmetry group is so(N ),
under which the primary has Dynkin labels [R1 · · ·Rr] and the vector has [1 0 · · · 0],
(2.10) becomes

2h0 ≥ h1 =

{
R1 + · · ·+Rr−2 + Rr−1+Rr

2
N is even,

R1 + · · ·+Rr−1 + Rr
2

N is odd,
(2.11)

where h1 is the first orthogonal weight. The orthogonal basis will be used exclusively
in section 4.2. For later convenience, we present the relation between the Dynkin
labels Ri and the orthogonal weights hi below:

When N is even,

hi = Ri + · · ·+Rr−2 +
Rr−1 +Rr

2
(i = 1, 2, · · · , r − 2) ,

hr−1 =
Rr−1 +Rr

2
, hr =

Rr−1 −Rr

2
. (2.12)

When N is odd,

hi = Ri + · · ·+Rr−1 +
Rr

2
(i = 1, 2, · · · , r − 1) , hr =

Rr

2
. (2.13)

When the BPS condition (2.11) is saturated, Abβ;aα acquires a zero eigenvalue.
Since (2.11) corresponds to (2.10) with [R′] that yields the strongest bound, this indi-
cates that among many states Ga

−1/2 |[R]h0〉α that transform in [R1 · · ·Rr]⊗ [1 0 · · · 0]
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representation of the R-symmetry group, those belonging to the irreducible represen-
tation [R1 +1R2 · · ·Rr] are null. Then, not only the component [R1 +1R2 · · ·Rr]h0+ 1

2

but also its conformal descendants must be removed from the superconformal multi-
plet. A systematic procedure of such a removal is discussed in [26]. Such supercon-
formal multiplets with null states are referred to as short multiplets, as opposed to
long multiplets. Following the convention of [26], a long multiplet will be denoted as

L[R]h h > h1(R),

where [R] and h are quantum numbers of its superconformal primary. Similarly a
short multiplet will be denoted as

A[R]h h = h1(R).

In particular, a vacuum multiplet will be denoted as

V [0]0,

although it is also a short multiplet. The vacuum multiplet is defined as a multiplet
whose primary is annihilated by all operators so there are no descendants. All of its
quantum numbers vanish.

So far we have discussed the unitarity condition of first-level states only. We
conjecture that it alone suffices, because the first-level states impose the strongest
bound.

A complication arises in higher dimensions where the Lorentz group is also non-
abelian. The strongest unitarity bound for a given primary arises from the descendant
whose Dynkin labels for the Lorentz group are small and that for the R-symmetry are
large. As a result, when the primary is a Lorentz singlet, second-level unitarity bound
can be stronger than that of the first-level, where the states are necessarily Lorentz
spinors rather than of smaller Dynkin labels that would have been present (and
given stronger bound) for generic primaries. This non-generic phenomenon leads to
a diversity of short multiplets, including those with higher-level null states and more
interestingly, isolated short multiplets. See [26] for more details. In contrast, all short
multiplets in two dimensions are limiting cases of long multiplets, which results in
the absence of absolutely protected multiplets. We will discuss these features further
in section 4.1.

A superconformal multiplet is decomposed into conformal multiplets [26] that con-
sist of conformal primaries (annihilated by L1) and their descendants (obtained by
consecutive actions of L−1 on the primaries). Thus it is useful to express the supercon-
formal multiplet as a collection of conformal primaries whose conformal multiplets
make up the superconformal multiplet. We refer to these conformal multiplets as

9



components of the superconformal multiplet. The collection consists of the supercon-
formal primary V and the operators that are obtained by (repeatedly) acting only
Ga
−1/2’s on V . Note that we can effectively set

{Ga
−1/2, G

b
−1/2} = 2L−1δ

ab ∼ 0, (2.14)

because the L−1 action does not generate a new conformal primary but generates a
descendant. Due to this Fermi-Dirac statistic, decomposition into conformal multi-
plets is finite.

Since conformal primaries are also in the representations of sl(2) × so(N ) [26],
it proves convenient to specify each conformal multiplet by the L0 eigenvalue h and
the highest weight so(N ) Dynkin label [R1 · · ·Rr] of the corresponding conformal
primary. Thus,

[R]h : a conformal multiplet with corresponding primary.

Note that we are using the same notation to refer to superconformal multiplets as to
conformal multiplets, except that a letter L, A, or V to indicate the presence of null
states is omitted for the latter.

Conformal multiplet decomposition of a superconformal multiplet can be per-
formed by consecutive actions of Ga

−1/2 on the superconformal primary, and organiz-

ing into irreducible representations of the bosonic subalgebra sl(2) ⊕ so(N ). This
process is best done via Racah-Speiser algorithm, inspired by [32] and thoroughly
explained in [26]. In our case of two dimensions this is particularly simple, because
Ga
−1/2 simply act as raising operators for the sl(2) and the only non-trivial part is the

R-symmetry so(N ).

Number of operations of Ga
−1/2 required on the superconformal primary to obtain

a particular conformal primary is referred to as level of the component. Thanks to the
Fermi-Dirac statistics, the level is bounded from above by N in any superconformal
multiplet. In fact, long multiplets are always terminated at the level N while short
multiplets are terminated earlier. In two dimensions where Ga

−1/2 simply raises the

L0-eigenvalue by 1
2
, any component at level l has an L0-eigenvalue h0 + l

2
where h0 is

that of the superconformal primary.

Note that in all of the discussions so far, and in most of the discussions that will
follow, conformal and superconformal multiplets refer to representations of the global
subalgebras. In general, multiplets of the full super Virasoro algebras include many
global multiplets, as they include the action of all negative modes such as Ln<−1,

Ga
r<−1/2, T

[ab]
n<0 on the primary. For example, the vacuum multiplet and the stress-

energy tensor multiplet for the global subalgebra belong to the same super Virasoro
multiplet.
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2.3 Supersymmetric Deformations and Conserved Currents

One of the applications of decomposition of superconformal multiplets is to look
for possible deformations of CFTs. Following [27], we seek possible deformations
of SCFTs in two dimensions in vicinity of RG fixed points by relevant or marginal
local operators O. That is, given a superconformal theory, we aim to find a local
operator that i) is a Lorentz singlet, ii) has scaling dimension less than or equal to
the dimension, which is 2 throughout this paper, iii) is not a total derivative, and iv)
is supersymmetric. Note that the operator must reside in an allowed superconformal
multiplet of the theory.

In two dimensions, superconformal algebras separate themselves into left- and
right-moving sectors. The L0- (in the left) and L̄0- (in the right) eigenvalues h0 and
h̄0 of an operator sum up to the scaling dimension, and their difference represents the
spin of the operator. Thus, to satisfy the condition i) we require h0 = h̄0, and further
for ii), it suffices to look for operators with h0 = h̄0 ≤ 1. The condition iii) suggests
to consider only the conformal primaries, as conformal descendants are obtained by
applying L−1 ∼ ∂z to another local operator.

The condition iv) is a little trickier to satisfy. One obvious way for a conformal
primary belonging to a superconformal multiplet to be supersymmetric (i.e. to be
annihilated by all supersymmetries G−1/2) is to be a generic top component of the
superconformal multiplet: to reside at the highest level of the multiplet since an
application of G−1/2 raises the level by unity. As discussed in the last subsection,
a long multiplet always has its generic top component at the level N while short
multiplets have them at lower levels, and possibly more than one of them. Every
superconformal multiplet possesses at least one generic top component.

Nevertheless, there are components of short superconformal multiplets at the
level lower than the generic top component, that however are annihilated by all
supersymmetries. Following [27], we refer to them as sporadic top components, and
they prove to be very fruitful in discussion of conserved currents in two dimensions.

A sporadic top component is easily identified when, as in [27], there exists a
conformal primary whose Dynkin labels match none of those at the next level when
added by any of supercharges. In such case, we infer that all conformal primaries at
the next level must be produced by acting on other components at the previous level
by supercharges. However, note that this is sufficient but not necessary a condition
to be a top component. We shall see counterexamples in sections 3.5, 3.7, and 3.9.

Also of our interest are conserved currents. When an operator satisfies the condi-
tions iii) and iv) above but has either h0 = 0 or h̄0 = 0, the supersymmetric operator
is annihilated by L0 ∼ ∂z or L̄0 ∼ ∂z̄, respectively. In other words, it is conserved.
In particular, if such an operator is an R-singlet and has (h0, h̄0) = (2, 0) it could be

11



Primary Unitarity bound Null component Sporadic top Generic top

L [0]h0 h0 > 0 - - [0]h0+ 1
2

V [0]0 - [0] 1
2

- [0]0

Table 1: List of N = 1 multiplets.

the holomorphic part of the stress-energy tensor and if it has (h0, h̄0) = (0, 2) it could
be the anti-holomorphic part, expected to exist in all physical theories. Further, to
the same multiplet as the stress-energy tensor but at the previous level must belong
the supercurrents (in the vector representation of the R-symmetry) and yet at the
level below the R-symmetry currents (in the adjoint representation). Meanwhile, a
supersymmetric and R-singlet operator with (h0, h̄0) = (0, 1) or (1, 0) would simi-
larly indicate a flavor current, and those with (h0, h̄0) = (0, s > 1) or (s > 1, 0) the
higher-spin currents.

Supersymmetric deformations and conserved currents will be discussed in sections
5.1 and 5.2, respectively.

3 List of Multiplets

We tabulate in this section all superconformal multiplets, long or short as explained
in section 2.2, for each number of supersymmetries. In this section, we restrict only to
the left-moving sector, as the right-moving sector may have a same list of multiplets
with its own N̄ . In doing so, we will explicitly list top components, generic or sporadic
as explained in section 2.3, to be discussed in detail in the following sections.

3.1 N = 1

Let us begin with the simplest case, N = 1 that contains no R-symmetry. Rep-
resentation with respect to the R-symmetry group is always trivial: [0]. For any
superconformal primary [0]h0 , the unitarity bound simply becomes

h0 ≥ 0. (3.1)

When the bound is saturated, the only superconformal descendant G−1/2 |[0]h0〉 =
|[0]h0+ 1

2
〉 is null and the superconformal multiplet consists of only one conformal mul-

tiplet. Then a complete list of superconformal multiplets and their top components
is as simple as Table 1.

12



Primary Unitarity bound Null component Sporadic top Generic top

L [j0]h0 h0 >
|j0|
2

- - [j0]h0+1

A [j0 > 0] j0
2

- [j0 + 1] j0
2

+ 1
2

- [j0 − 1] j0
2

+ 1
2

A [j0 < 0]− j0
2

- [j0 − 1]− j0
2

+ 1
2

- [j0 + 1]− j0
2

+ 1
2

V [0]0 - [±1] 1
2

- [0]0

Table 2: List of N = 2 multiplets.

3.2 N = 2

The N = 2 supersymmetry has an abelian R-symmetry SO(2) ∼ U(1) under which
the two supercharges G±−1/2 are charged by ±1. A superconformal primary [j0]h0 has
to satisfy the unitarity bound below:

h0 ≥
|j0|
2
, (3.2)

where j0 denotes a U(1) R-charge rather than a Dynkin label.

Note that this bound is weaker than the unitarity bounds put forward by the
super Virasoro case [33]. A list of superconformal multiplets, along with their top
components, is summarized in Table 2.

3.3 Small N = 4

Let us examine the N = 4 superconformal algebra before N = 3 for the reason
that will soon be clear. The small N = 4 superconformal algebra has two inde-
pendent sets of supercharges G±−1/2 and Ḡ±−1/2 in the fundamental representation of

SU(2) R-symmetry.#3 The superconformal primary is labelled by the SU(2) Dynkin
label as [R1]h0 , where R1 is a non-negative integer. For instance, the fundamental
representation is labelled by [1]. The small N = 4 superconformal unitarity bound is

h0 ≥
R1

2
, (3.3)

and as the bound is saturated, two copies of raising operators G+
−1/2 and Ḡ+

−1/2 simul-
taneously annihilate the primary. We summarize the list of small N = 4 multiplets in
Table 3. Here, A[1] 1

2
is an example where there exist two degenerate top components

[0]1.

#3One can think of an extra U(1) that distinguishes the two, which we choose not to because it
plays no role other than labelling the two and justifying some of (2.6).
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Primary Unitarity Null Sporadic Generic
bound component top top

L [R1]h0 h0 >
R1

2
- - [R1]h0+2

A [R1 ≥ 2]R1
2

- [R1 + 1]R1
2

+ 1
2
⊕ [R1 + 1]R1

2
+ 1

2
- [R1 − 2]R1

2
+1

A [1] 1
2

- [2]1 ⊕ [2]1 - [0]1 ⊕ [0]1
V [0]0 - [1] 1

2
⊕ [1] 1

2
- [0]0

Table 3: List of small N = 4 multiplets.

3.4 Large N = 4

The large global N = 4 superconformal algebra D(2, 1;α) contains two copies of
su(2) algebra. When the free parameter α is set to unity, the R-symmetry group
becomes SO(4).#4 The Dynkin labels R1 and R2 now correspond to those of two
su(2)’s such that the four supercharges are in the representation [1; 1]. Note that
[1; 1] is the highest weight of a vector representation when the R-symmetry group
becomes SO(4).

The unitarity bound on the conformal weight h of the large N = 4 superconformal
primary is given by

h0 ≥
h1

2
=
αR1 +R2

2(1 + α)
. (3.4)

One can find the list of superconformal multiplets in Table 4. Since the multiplet
A[1, 1] 1

2
is the first example where a sporadic top component appears, let us pause to

examine this. The superconformal multiplet A[1; 1] 1
2

can be decomposed into various
conformal multiplets as in Figure 1.

[1; 1] 1
2

[2; 0]1
[0; 2]1
[0; 0]1

[1; 1] 3
2

[0; 0]2

Figure 1: An N = 4 multiplet with a sporadic top component.

We see that the null state [2; 2]1 and the Racah-Speiser trial state constructed
by acting the supercharge of weight [1; 1] on the primary have the same quantum
numbers. As explained in [26], any RS states involving the supercharge of weight

#4The free parameter α is related to the levels k+ = c(1 + α)/(6α) and k− = c(1 + α)/6 of two
su(2) current algebras when the global superconformal algebra is promoted to the large N = 4 super
Virasoro algebra. See section 6.1 for more details.
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Primary Unitarity Null Sporadic Generic
bound component top top

L [R1;R2]h0 h0 >
h1
2

- - [R1;R2]h0+2

A
[R1 ≥ 1;R2 ≥ 1]h1/2

(but not R1 = R2 = 1)
- [R1 + 1;R2 + 1]h1

2
+ 1

2

- [R1 − 1;R2 − 1]h1
2

+ 3
2

A [1; 1] 1
2

- [2; 2]1 [0; 0]1 [0; 0]2
A [R1 ≥ 2; 0] αR1

2(1+α)
- [R1 + 1; 1] αR1

2(1+α)
+ 1

2
- [R1 − 2; 0] αR1

2(1+α)
+1

A [0;R2 ≥ 2] R2
2(1+α)

- [1;R2 + 1] R2
2(1+α)

+ 1
2

- [0;R2 − 2] R2
2(1+α)

+1

A [1; 0] α
2(1+α)

- [2; 1] α
2(1+α)

+ 1
2

- [0; 1] α
2(1+α)

+ 1
2

A [0; 1] 1
2(1+α)

- [1; 2] 1
2(1+α)

+ 1
2

- [1; 0] 1
2(1+α)

+ 1
2

V [0; 0]0 - [1; 1] 1
2

- [0; 0]0

Table 4: List of large N = 4 multiplets.

[1; 1] 1
2

have to be removed from the superconformal multiplet. Then, none of the

three other supercharges can act on [0; 0]1 at the first level to produce [1; 1] 3
2

at

the second level. In other words, the conformal primary [0; 0]1 is annihilated by all
supercharges and becomes a sporadic top component. As we will see in sections 5.2
and 6.1, the sporadic top component [0; 0]1 leads to two important features that any
large N = 4 superconformal theories share. One of them is related to the universal
marginal operator and the other to an extra U(1) symmetry.

3.5 N = 3

The N = 3 superconformal algebra is OSp(3|2) with R-symmetry SO(3). Three
supercharges transform as [2], namely the vector representation under SO(3). One
can label a superconformal primary as [R1]h0 where the Dynkin label R1 is a non-
negative integer. Note that we use the SO(3) Dynkin label rather than SU(2), which
differ by a factor of 2. The unitarity condition (2.11) is then

h0 ≥
R1

4
. (3.5)

For any short superconformal multiplet A[R1]
h=

R1
4

, the Q-descendant [R1+2]R1
4

+ 1
2

becomes null. However, since top components differ when R1 is small, we list them
separately in Table 5. In particular, for the primary [0]ε>0, [2] 1

2
+ε consists the first

level alone, and as ε → 0 it becomes null and the multiplet terminates already at
the level zero. This phenomenon is universal: for all N the superconformal multiplet
V [0]0 consists of a superconformal primary only, which corresponds to the identity
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Primary Unitarity bound Null component Sporadic top Generic top

L [R1]h0 h0 >
R1

4
- - [R1]h0+ 3

2

A [R1 ≥ 3]R1
4

- [R1 + 2]R1
4

+ 1
2

- [R1 − 2]R1
4

+1

A [2] 1
2

- [4]1 [0]1 [0] 3
2

A [1] 1
4

- [3] 3
4

- [1] 3
4

V [0]0 - [2] 1
2

- [0]0

Table 5: List of N = 3 multiplets.

operator 1. This is because [0]0 can be annihilated by all lowering operators of SO(3):
once the supercharge of the highest so(3) weight annihilates it, every supercharge
annihilates it. We refer to the multiplet V [0]0 as the vacuum multiplet.

The A[2] 1
2

multiplet that contains a sporadic top component calls for special
attention. Its decomposition into conformal multiplets is given in Figure 2. It is not
obvious if the [0]1 at the first level is indeed a top component, because the supercharge
of weight [0] might produce the [0] 3

2
at the second level when acted on the [0]1 in the

sense of Racah-Speiser algorithm. However, this is not always the case because the
actual state represented by [0]1 is some linear combination of elements of [2] 1

2
acted

by an appropriate supercharge, and thus the null condition is highly non-trivial. For
details, see [26].

[2] 1
2

[2]1
[0]1

[0] 3
2

Figure 2: An N = 3 multiplet with a sporadic top component.

In order to argue that [0]1 is indeed a sporadic top component, let us consider the
large N = 4 superconformal theory that can be viewed as a special case of N = 3
superconformal theory. As will be explained in section 5.1, anyN = 4 superconformal
theory must have the stress tensor multiplet A[1; 1] 1

2
that we have analyzed in Figure

1. Decomposition of each conformal primary in A[1; 1] 1
2

into SO(3) representations,

summarized in Figure 3, shows how theN = 3 short multiplet A[2] 1
2

can be embedded

in the N = 4 short A[1; 1] 1
2
. In particular, we see that the sporadic top component

[0; 0]1 in A[1; 1] 1
2
, annihilated by four supercharges, can be identified as [0]1 in A[2] 1

2
.

Since three supercharges of N = 3 superconformal algebra are a subset of the four
supercharges of N = 4 one, this is sufficient to argue that [0]1 in Figure 2 is indeed
a sporadic top component as well.
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[2] 1
2

[0] 1
2

[2]1
[2]1
[0]1

[2] 3
2

[0] 3
2

[0]2

Figure 3: An N = 4 multiplet with a sporadic top component, decomposed
into SO(3) representations.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1R2R3]h0 h0 >
h1
2

- - [R1R2R3]h0+3

A [1 0 0] 1
2

- [2 0 0]1 [0 0 0]1 [0 0 0]3
A [0 1 1] 1

2
- [1 1 1]1 [0 0 0] 3

2
[0 0 0] 5

2

A [0 0 2] 1
2

- [1 0 2]1 - [0 0 0]2
A [0 2 0] 1

2
- [1 2 0]1 - [0 0 0]2

A [0 0 1] 1
4

- [1 0 1] 3
4

- [0 1 0] 3
4

A [0 1 0] 1
4

- [1 1 0] 3
4

- [0 0 1] 3
4

V [0 0 0]0 - [1 0 0] 1
2

- [0 0 0]0

Table 6: List of N = 6 multiplets.

3.6 N = 6

Let us examine the N = 6 superconformal algebra before the N = 5 superconformal
algebra for the same reason as for the N = 4 and N = 3 algebras. The R-symmetry
is now SO(6) ' SU(4)#5, under which supercharges transform as a vector [1 0 0]. We
label a superconformal primary as [R1R2R3]h0 . The unitarity bound for N ≥ 5 shall
always be given by (2.11). In this case, it is

h0 ≥
h1

2
=
R1

2
+
R2 +R3

4
. (3.6)

We tabulate the list in Table 6.

From this subsection, we do not attempt to give a complete list of short multiplets,
but skip many of those that are irrelevant to the subsequent sections. Those short
multiplets however can be easily reproduced from long multiplets via the procedure
described in [26].

It proves useful to examine the short multiplet A[0 1 1] 1
2

in detail. Its decompo-

sition into conformal multiplets is given by Figure 4. [0 0 0] 3
2

at the second level is

#5SO(6) and SU(4) Dynkin labels are related by exchange of the first two. We choose to use
SO(6) labels to be coherent with different values of N .
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Primary Unitarity bound Null component Sporadic top Generic top

L [R1R2]h0 h0 >
h1
2

- - [R1R2]h0+ 5
2

A [1 0] 1
2

- [2 0]1 [0 0]1 [0 0] 5
2

A [0 2] 1
2

- [1 2]1 [0 0] 3
2

[0 0]2
A [0 1] 1

4
- [1 1] 3

4
- [0 1] 3

4

V [0 0]0 - [1 0] 1
2

- [0 0]0

Table 7: List of N = 5 multiplets.

a sporadic top component because none of the supercharges, except the one of the
highest weight [1 0 0] that annihilates the primary in short multiplets, can act on the
R-singlet to produce the R-vector component at the next level.

[0 1 1] 1
2

[0 0 2]1
[0 2 0]1
[1 0 0]1

[0 1 1] 3
2

[0 0 0] 3
2

[1 0 0]2 [0 0 0] 5
2

Figure 4: An N = 6 multiplet with a sporadic top component.

3.7 N = 5

The N = 5 superconformal algebra has the SO(5) ' Sp(4) R-symmetry#6 of which
the supercharges are in the vector representation [1 0]. The unitarity provides a bound
on the conformal weight h0 of a superconformal primary [R1R2]h0 ,

h0 ≥
h1

2
=
R1

2
+
R2

4
. (3.7)

We tabulate a partial list of N = 5 superconformal multiplets in Table 7.

The A[0 2] 1
2

multiplet that contains a sporadic top component calls for special
attention. Its decomposition into conformal multiplets is given in Figure 5. It is
not obvious if the [0 0] 3

2
at the second level is indeed a top component, because the

supercharge of weight [0 0] might produce the [0 0]2 at the third level when acted
on the [0 0] 3

2
in the sense of Racah-Speiser algorithm. However, this is not always

the case because the actual state represented by [0 0] 3
2

is some linear combination of

elements of [0 2] 1
2

acted by an appropriate combination of two supercharges, and thus

the null condition is highly non-trivial. For details, see [26].

#6SO(5) and Sp(4) Dynkin labels are related by exchange of the two labels. We choose to use
SO(5) labels to be coherent with different values of N .
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[0 2] 1
2

[0 2]1
[1 0]1

[1 0] 3
2

[0 0] 3
2

[0 0]2

Figure 5: An N = 5 multiplet with a sporadic top component.

[0 2] 1
2

[1 0] 1
2

[0 2]1
[0 2]1
[1 0]1
[0 0]1

[0 2] 3
2

[1 0] 3
2

[0 0] 3
2

[1 0]2
[0 0]2

[0 0] 5
2

Figure 6: An N = 6 multiplet with a sporadic top component, decomposed
into SO(5) representations.

In order to argue that [0 0] 3
2

is indeed a sporadic top component, let us consider
the N = 6 superconformal theory that can be viewed as a special case of N = 5
superconformal theory. In this perspective, the A[0 2] 1

2
multiplet in the N = 5 theory

is a part of the A[0 1 1] 1
2

multiplet in the N = 6 theory described in Figure 4. As

shown in Figure 6, decomposition of each conformal primary in A[0 1 1] 1
2

into SO(5)

representations shows how the N = 5 short multiplet A[0 2] 1
2

can be embedded in

the N = 6 multiplet A[0 1 1] 1
2
. In particular, we see that the sporadic top component

[0 0 0] 3
2

in A[0 1 1] 1
2
, annihilated by N = 6 supercharges, can be identified as [0 0] 3

2
in

A[0 2] 1
2
. Since the N = 5 supercharges are a subset of the N = 6 supercharges, this

is sufficient to argue that [0 0] 3
2

in Figure 5 is indeed a sporadic top component as
well.

3.8 N = 8

Let us examine the case N = 8 before N = 7 for the same reason as before. The R-
symmetry is SO(8) under which supercharges transform in the vector representation
[1 0 0 0], and the superconformal primary is labelled by [R1R2R3R4]h0 . The unitarity
bound is

h0 ≥
h1

2
=
R1 +R2

2
+
R3 +R4

4
. (3.8)

We tabulate a partial list of N = 8 superconformal multiplets in Table 8.

It again proves useful to examine the stress-energy tensor multiplet A[0 0 1 1] 1
2

in

detail. Its decomposition into conformal multiplets is given in Figure 7. [0 0 0 0]2 at
the third level is a sporadic top component because none of the supercharges, except
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Primary Unitarity bound Null component Sporadic top Generic top

L [R1R2R3R4]h0 h0 >
h1
2

- - [R1R2R3R4]h0+4

A [1 0 0 0] 1
2

- [2 0 0 0]1 [0 0 0 0]1 [0 0 0 0]4
A [0 1 0 0] 1

2
- [1 1 0 0]1 [0 0 0 0] 3

2
[0 0 0 0] 7

2

A [0 0 1 1] 1
2

- [1 0 1 1]1 [0 0 0 0]2 [0 0 0 0]3
A [0 0 0 2] 1

2
- [1 0 0 2]1 - [0 0 0 0] 5

2

A [0 0 0 1] 1
4

- [1 0 0 1] 3
4

- [0 0 1 0] 3
4

V [0 0 0 0]0 - [1 0 0 0] 1
2

- [0 0 0 0]0

Table 8: List of N = 8 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1R2R3]h0 h0 >
h1
2

- - [R1R2R3]h0+ 7
2

A [1 0 0] 1
2

- [2 0 0]1 [0 0 0]1 [0 0 0] 7
2

A [0 1 0] 1
2

- [1 1 0]1 [0 0 0] 3
2

[0 0 0]3
A [0 0 2] 1

2
- [1 0 2]1 [0 0 0]2 [0 0 0] 5

2

A [0 0 1] 1
4

- [1 0 1] 3
4

- [0 0 1] 3
4

V [0 0 0]0 - [1 0 0] 1
2

- [0 0 0]0

Table 9: List of N = 7 multiplets.

the one of the highest weight [1 0 0 0] that annihilates the primary, can act on the
R-singlet [0 0 0 0]2 to generate an R-vector [1 0 0 0] 5

2
at the next level. This pattern

looks similar to other examples with sporadic top components we have examined in
Figure 1 and Figure 4. We will discuss this universal feature in section 3.10.

3.9 N = 7

For the N = 7 superconformal algebra, the R-symmetry is SO(7), under which
supercharges transform as a vector [1 0 0]. Labelling the superconformal primary by

[0 0 1 1] 1
2

[0 0 0 2]1
[0 0 2 0]1
[0 1 0 0]1

[0 0 1 1] 3
2

[1 0 0 0] 3
2

[0 1 0 0]2
[0 0 0 0]2

[1 0 0 0] 5
2

[0 0 0 0]3

Figure 7: An N = 8 multiplet with a sporadic top component.
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[R1R2R3]h0 , the unitarity bound on the conformal weight h0 is

h0 ≥
h1

2
=
R1 +R2

2
+
R3

4
. (3.9)

We tabulate a partial list of N = 7 superconformal multiplets in Table 9.

The component [0 0 0]2 in the short multiplet A[0 0 2] 1
2

is a sporadic top compo-
nent. To see this, we use an argument analogous to those in sections 3.5 and 3.7.
Comparing Figure 8 to Figure 9, we can identify [0 0 0]2 at the third level of A[0 0 2] 1

2

as the sporadic top component [0 0 0 0]2 of the N = 8 short multiplet A[0 0 1 1] 1
2
. This

implies that the component [0 0 0]2 has to be annihilated by all N = 7 supercharges.
This observation is crucial because this is the only supersymmetric [0 0 0]2 component
one can find in the N = 7 superconformal algebra, which however is required for the
existence of stress-energy tensor.

[0 0 2] 1
2

[0 0 2]1
[0 1 0]1

[0 1 0] 3
2

[1 0 0] 3
2

[1 0 0]2
[0 0 0]2

[0 0 0] 5
2

Figure 8: An N = 7 multiplet with a sporadic top component.

[0 1 0] 1
2

[0 0 2] 1
2

[0 0 2]1
[0 0 2]1
[1 0 0]1
[0 1 0]1

[0 1 0] 3
2

[0 0 2] 3
2

[1 0 0] 3
2

[0 0 0] 3
2

[1 0 0]2
[0 1 0]2
[0 0 0]2

[1 0 0] 5
2

[0 0 0] 5
2

[0 0 0 0]3

Figure 9: An N = 8 multiplet with a sporadic top component, decomposed
into SO(7) representations.

3.10 N ≥ 9

Having worked out up to N = 8, which was necessary to manifest existence of
stress-energy tensors in all N , we are ready to generalize the patterns into generic
values of N . Under the R-symmetry group SO(N ), N being even or odd, N super-
charges transform as the vector [1 0 · · · 0]. The superconformal primary is labelled as
[R1 · · ·Rr]h0 where r = [N

2
] is the rank of the R-symmetry group. Let us repeat the

unitarity condition (2.11) for completeness:

2h0 ≥ h1 =

{
R1 + · · ·+Rr−2 + Rr−1+Rr

2
N is even,

R1 + · · ·+Rr−1 + Rr
2

N is odd.
(3.10)
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We tabulate partial lists of superconformal multiplets in Tables 10 and 11, for
even and odd N . A generic pattern is apparent. Figure 10 shows a generic short
superconformal multiplet A[0 · · · 0 1 0 · · · 0] with 1 being the kth Dynkin label, decom-
posed into conformal primaries. This multiplet has two top components, one of which
is placed at the level k and the other at the level (N − k). Both top components are
R-singlets.

[∧kV ] 1
2
:

[0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · · 0] 1
2

[∧k+1V ]1:

[0 · · · 0︸ ︷︷ ︸
k

1 0 · · · 0]1
· · ·

[∧NV ]N−k+1
2

:

[0 · · · 0]N−k+1
2

[∧k−1V ]1:

[0 · · · 0︸ ︷︷ ︸
k−2

1 0 · · · 0]1
· · ·

[∧0V ] k+1
2

:

[0 · · · 0] k+1
2

Figure 10: A generic short multiplet with primary [∧kV ] 1
2

for genericN , written

in both Dynkin labels and anti-symmetric tensor product notation.

Structure of this decomposition is physically clearer if we interpret the R-representation
[0 · · · 0 1 0 · · · 0] as the kth anti-symmetric product of vector representations, denoted

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 · · ·Rr]h0 h0 >
h1
2

- - [R1 · · · Rr]h0+N
2

A [1 0 · · · 0] 1
2

- [2 0 · · · 0]1 [0 · · · 0]1 [0 · · · 0]N
2

A [0 1 0 · · · 0] 1
2

- [1 1 0 · · · 0]1 [0 · · · 0] 3
2

[0 · · · 0]N−1
2

...
...

...
...

...
...

A [0 · · · 0 1 1] 1
2

- [1 0 · · · 0 1 1]1 [0 · · · 0] r
2

[0 0 0 0] r+2
2

A [0 · · · 2] 1
2

- [1 0 · · · 0 2]1 - [0 · · · 0] r+1
2

A [0 · · · 1] 1
4

- [1 0 · · · 0 1] 3
4

- [0 · · · 0 1 0] 3
4

V [0 0 0 0]0 - [1 0 0 0] 1
2

- [0 0 0 0]0

Table 10: List of N = 10, 12, · · · multiplets.
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Primary Unitarity bound Null component Sporadic top Generic top

L [R1 · · ·Rr]h0 h0 >
h1
2

- - [R1 · · · Rr]h0+N
2

A [1 0 · · · 0] 1
2

- [2 0 · · · 0]1 [0 · · · 0]1 [0 · · · 0]N
2

A [0 1 0 · · · 0] 1
2

- [1 1 0 · · · 0]1 [0 · · · 0] 3
2

[0 · · · 0]N−1
2

...
...

...
...

...
...

A [0 · · · 0 2] 1
2

- [1 0 · · · 0 2]1 [0 · · · 0] r+1
2

[0 · · · 0] r+2
2

A [0 · · · 0 1] 1
4

- [1 0 · · · 0 1] 3
4

- [0 · · · 0 1] 3
4

V [0 0 0 0]0 - [1 0 0 0] 1
2

- [0 0 0 0]0

Table 11: List of N = 9, 11, · · · multiplets.

as ∧kV . This structure is further justified by the fact that the tensor product

∧k V ⊗ ∧1V ⊃ ∧k+1V ⊕ ∧k−1V, (3.11)

where the other parts vanish in short multiplets. Note that ∧1V here represents
the supersymmetry Ga

−1/2 that takes a component to the next level. This not only
simplifies the notation, but also manifests the fact that midway in the decomposition{

[∧NV ] : [0 · · · 0 2 0]⊕ [0 · · · 0 0 2] for SO(2N)

[∧NV ], [∧N+1V ] : [0 · · · 0 2] for SO(2N + 1)
(3.12)

appear, and also explains clearly why there are two ‘towers’ of components that both
terminate with an R-singlet: a scalar (∧0V ) or a pseudoscalar (∧NV ). However, the
most important role it plays will become clear in section 5.1.2.

4 Properties of the Multiplets

Given the lists of multiplets, many implications and applications are in order. In this
section, we discuss the recombination phenomenon that happens when the conformal
weight h of a long multiplet L[R]h hits the unitarity bound. We also present character
formulae for both long and short global superconformal multiplets.

4.1 Recombination Rules

Decomposition of superconformal multiplets into conformal multiplets makes the re-
combination rules extremely apparent. For instance, let us consider an example of
a long multiplet L[0 1]h of the N = 5 superconformal algebra, where h is bound by
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[0 1]h
[1 1]h+ 1

2

[0 1]h+ 1
2

[0 3]h+1

[1 1]h+1

[0 1]h+1

[0 3]h+ 3
2

[1 1]h+ 3
2

[0 1]h+ 3
2

[1 1]h+2

[0 1]h+2

[0 1]h+ 5
2

[0 1] 1
4

[0 1] 3
4

[1 1] 3
4

[0 3] 5
4

[1 1] 5
4

[0 1] 5
4

[0 3] 7
4

[1 1] 7
4

[0 1] 7
4

[1 1] 9
4

[0 1] 9
4

[0 1] 11
4

Figure 11: One long L[0 1]h and two short N = 5 multiplets A[0 1] 1
4

and A[1 1] 3
4
.

h ≥ 1
4

(3.7). As h approaches 1/4, the long multiplet L[0 1]h→ 1
4

splits into two short

multiplets, one of which is A[0 1] 1
4

with the same quantum numbers and the other is

A[1 1] 3
4

that contains the null states of A[0 1] 1
4
,

L[0 1]h
h→ 1

4−−−−−−→ A[0 1] 1
4
⊕ A[1 1] 3

4
. (4.1)

The above recombination rule is apparently demonstrated in Figure 11.

In fact, this recombination rule generalizes to any long multiplets with generic
N .#7 We present a rather wordy proof for this statement.

Consider an arbitrary long multiplet L[R1 · · ·Rr]h of a global subalgebra with
any value of N . As h approaches the unitarity bound h1

2
in accordance with (2.11),

its components are classified into two: they either belong to the short multiplet
A[R1 · · ·Rr]h1/2, or are null components of the short multiplet. According to Racah-
Speiser algorithm, any components at level l have R-symmetry Dynkin labels that
can be obtained by adding l different weights of the vector representation to that of
the primary. We refer to these l weights as a path from the primary. Then, the null
components can again be classified by whether the path includes the highest weight
[1 0 · · · 0], or [1; 1] for the large N = 4, or not:

1. Null components whose path from the primary does include the highest weight
[1 0 · · · 0], form a short multiplet A[R1 + 1 · · ·Rr]h1

2
+ 1

2

. Such components are always

#7The following argument holds for N ≥ 3, except for the small N = 4.
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included in the short multiplet, because they are obtained by adding l− 1 different
weights of the vector representation to [R1 + 1 · · ·Rr]. Also, it is obvious that every
component of the short multiplet A[R1 + 1 · · ·Rr]h1

2
+ 1

2

appears as a null component

in the original short multiplet A[R1 · · ·Rr]h1
2

.

2. Null components whose path from the primary does not include the highest weight
[1 0 · · · 0] arise only when first k ≥ 1 Dynkin labels R1, · · · , Rk are zero. In such
a case, some of the R-symmetry group’s lowering operators annihilate the primary,
thus not only the highest weight supercharge but also some lowered supercharges
annihilate the primary. See section 3.3.3. of [26].

Such components complicate the argument because they do not seem to be included
in the short multiplet A[R1 + 1 · · ·Rr]h1

2
+ 1

2

. However, these components are elim-

inated among themselves in the Racah-Speiser algorithm, and thus do not appear
in the long multiplet. In other words, all components of the long multiplet that
becomes null as it hits the unitarity bound fall into enumeration 1 above.

To see how, consider one of such components whose path from the primary includes
[0 · · · 0 − 1 1 0 · · · 0] but not [1 0 · · · 0], · · · , [0 · · · − 1 1 0 0 · · · 0]. R1 = · · · = Rk = 0
with sufficiently large k is required for this to be a null component of A[R1 · · ·Rr]h1

2

.

For this component to appear in the decomposition of long multiplet, that is, to
avoid a Dynkin label equal to −1, the path from the primary must also include
either [0 · · · 0 1 − 1 0 · · · 0] or [0 · · · 1 − 1 0 0 · · · 0] but not both. Therefore, there is
a one-to-one correspondence between components that belong to the enumeration
2: one whose path from the primary includes the former but not the latter and
vice versa. However, treatment of Dynkin label equal to −2 by the RS algorithm
precisely cancels the two.

Therefore, all components that appear in the long multiplet L[R1 · · ·Rr]h fall into
either the short A[R1 · · ·Rr]h1

2

or another short A[R1 + 1 · · ·Rr]h1
2

+ 1
2

, and we can

write the generic recombination rule as follows:

L[R1 · · ·Rr]h
h→h1

2−−−−−−−→ A[R1 · · ·Rr]h1
2

⊕ A[R1 + 1 · · ·Rr]h1
2

+ 1
2

. (4.2)

Non-generic cases are easy to examine because the decompositions only contain
few components. We simply state the result.
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{
L[0]h

h→0−−−−−−→ A[0]0 ⊕ L[0] 1
2

N = 1, (4.3)
L[j0 > 0]h

h→ j0
2−−−−−−−→ A[j0] j0

2
⊕ A[j0 + 1] j0

2
+ 1

2

L[j0 < 0]h
h→− j0

2−−−−−−−−→ A[j0]− j0
2
⊕ A[j0 − 1]− j0

2
+ 1

2

L[0]h
h→0−−−−−−→ A[1] 1

2
⊕ A[−1] 1

2

N = 2, (4.4)

L[j0]h
h→ j0

2−−−−−−−→ A[j0] j0
2
⊕ A[j0 + 1] j0

2
+ 1

2

⊕A[j0 + 1] j0
2

+ 1
2
⊕ A[j0 + 2] j0

2
+1

small N = 4. (4.5)

A consistency check is to compare the number of physical states on both sides
of the equations (4.2)-(4.5). This can be done by adding up dimensions of all R-
representations in the decomposition of each multiplet on both sides.

To count the number of physical states, we first combine a left-moving and a right-
moving multiplet into a two-sided superconformal multiplet. A two-sided multiplet
can be labeled by two letters with one unbarred and one barred to indicate the left-
moving and the right-moving null states. For instance, a multiplet

LĀ[Rl|Rr]h,h̄

can be understood as a tensor product of the left-moving multiplet L[Rl]h and the
right-moving multiplet A[Rr]h̄. Components of the two-sided multiplets are also given
by tensor products of components in respective sectors, which we denote as

[Rl]h ⊗ [Rr]h̄

with a bar over the right-moving component.

When the recombination phenomenon happens for the left-moving sector, the
number of states of each physical two-sided multiplet can be obtained by dimension of
the left-moving sector multiplet multiplied by a common factor, which is dimension of
the common right-moving sector multiplet. One exception is that the component [0]0
in the left-moving sector has to be counted as zero. This is because it combines with
the right-mover to lead to a conserved current. Conserved current will be discussed
in section 5.1, and comparing dimensions in recombination rules has been discussed
in detail in [26].

We can see that the number of physical states on both sides of the recombination
rules indeed agree level-by-level, with one exception: let us consider a recombination
phenomenon where the long multiplet has an R-singlet primary. This long multiplet

26



L[0]h splits into the vacuum multiplet V [0]0 and a short multiplet A[1 0 · · · 0] 1
2

as
h → 0. As discussed in the last paragraph, the vacuum multiplet has to be counted
as zero. On the other hand, the short multiplet contains a component [0]1 at the level
one that does not appear as a conformal primary in the long multiplet L[0]h→0, but
appears as a conformal descendant of the superconformal primary [0]h→0. This will
be further discussed in the next subsection. To summarize, the primary [0]h→0 and its
descendants of the long multiplet are split into the conserved current [0]0 which is the
vacuum multiplet, and [0]1 and its descendants which appear in the short multiplet.

We find that unlike in higher dimensions, absolutely protected multiplets do not
exist. A multiplet is absolutely protected when it does not appear in any of the
recombination rules, so its spectrum is constant on the supersymmetric conformal
manifold. Deformations of CFT are discussed in section 5.2, see also [27]. This is a
consequence of the absence of isolated short multiplets: every short multiplet in two
dimensions appears in the unitarity limit of the long multiplet with same quantum
numbers.

4.2 Character Formulae for the Global Multiplets

Let us present character formulae for unitary representations, both long and short,
of a superconformal algebra. A character of a superconformal representation can be
defined as

Ch
(g)
h,R(τ, {zi}) = TrV (h,R)

[
e2πiτ(L0− c

24
)
∏
i

e2πiziT
i
0

]
= TrV (h,R)

[
qL0− c

24

∏
i

(
yi
T i0
)]
,

(4.6)
where V (h,R) denotes a representation built on a primary of conformal weight h
and R-charge Dynkin label R. Here T i0 are the Cartan generators of the R-symmetry
group, and q = e2πiτ , y = e2πiz. Although the central charge c is irrelevant to the
global subalgebra, we include its contribution to make connection with super Virasoro
characters. See section 6.2.

To express superconformal characters, it is rather convenient to use orthogonal
basis for the special orthogonal Lie group SO(N ) than the fundamental basis chosen
in the previous section. We can find the linear relation between fundamental weights
[R1 · · ·Rr] and orthogonal weights [h1 · · ·hr] of the SO(N ) in (2.12) and (2.13).

Character formulae for long multiplets follow directly from the structure of the
multiplets. Given a superconformal primary, which is an irreducible representation of
the R-symmetry group SO(N ), superconformal descendants are obtained by applying
successively the supercharges G−1/2 and the Virasoro generator L−1 on the primary.
The supercharges are in the vector representation of the SO(N ) and their orthogonal
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weights are

Ga
−1/2 : [±1 0 · · · 0], [0 ± 1 · · · 0], · · · , [0 · · · 0 ± 1] , [0 · · · 0]︸ ︷︷ ︸

for odd N

.

The character formula for a long multiplet L[{hi}]h then becomes

Ch
(g)
h,{hi}(τ, {zj}) = qh−

c
24χo({hi}) ·

(1 + q1/2)

( r∏
i=1

∏
ε=±1

(1 + yεiq
1/2)

)
1− q

(4.7)

for odd N with rank r, and

Ch
(g)
h,{hi}(τ, {zj}) = qh−

c
24χe({hi}) ·

( r∏
i=1

∏
ε=±1

(1 + yεiq
1/2)

)
1− q

(4.8)

for even N with rank r. Here χo({hi}) and χe({hi}) denote the Weyl character
formula for so(N ) with odd and even N respectively [34],

χo({hi}) =

∣∣∣yhi+r−i+ 1
2

j − y−(hi+r−i+ 1
2

)

j

∣∣∣∣∣∣yr−i+ 1
2

j − y−(r−i+ 1
2

)

j

∣∣∣ , χe({hi}) =

∑
ε=±1

∣∣∣yhi+r−ij + εy
−(hi+r−i)
j

∣∣∣∣∣∣yr−ij + y
−(r−i)
j

∣∣∣ ,

(4.9)

where |aij| denotes determinant of the matrix with indices i, j = 1, 2, · · · , r. The
structure of these characters is straightforward. The primary contributes qh−

c
24 mul-

tiplied by Weyl character formula corresponding to its R weights. The other factors
in (4.7) and (4.8) account for the contribution from the superconformal descendants.

We need more elaborations to obtain the superconformal characters for short
multiplets A[{hi}]h due to the presence of null states. One might naively remove the
factor (1+y1q

1/2) that accounts for the highest weight supercharge that produces the
null states. However, although it is highly obscured in the Racah-Speiser algorithm,
it is not actually the highest weight supercharge that produces the null states, but
it is the highest weight representation obtained from the highest weight supercharge
acting on the highest weight of the primary.

The short multiplet character can be derived using the recombination rule from
section 4.1. We can rewrite the recombination rule (4.2) using the characters of global

long multiplets Ch
(g)
h,{hi}(τ, {zj}) and of global short multiplets χ

(g)
h1/2,{hi}(τ, {zj}),

lim
h→h1

2

Ch
(g)
h,{hi}(τ, {zj}) = χ

(g)
h1
2
,{hi}

(τ, {zj}) + χ
(g)
h1+1

2
,{hi+δi,1}

(τ, {zj}). (4.10)
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Note that the lowest exponent of q in the second short character on the RHS is larger
by 1

2
than that in the first. This allows us to write the character of a short multiplet

in terms of that of long multiplets perturbatively and to all orders. For simplicity,
we omit the arguments (τ, {zj}) of each character.

χ
(g)
h1
2
,{hi}

= Ch
(g)

h→h1
2
,{hi}
− χ(g)

h1+1
2

,{hi+δi,1}

= Ch
(g)

h→h1
2
,{hi}
− Ch

(g)

h→h1+1
2

,{hi+δi,1}
+ χ

(g)
h1+2

2
,{hi+2δi,1}

=
∞∑
n=0

(−1)nCh
(g)

h→h1+n
2

,{hi+nδi,1}
(4.11)

We can easily incorporate the series of long multiplet characters into the Weyl
determinant, using the fact that determinant of a matrix is linear in one particular
row. Different long multiplet characters that appear in the series all depend on
determinants of the same matrix except for the first row. Thus, we present the
character formulae for global short multiplets as follows,

χ
(g)
h1
2
,{hi}

(τ, {zj}) =qh−
c
24

|
y
hi+r−i+ 1

2
j

1 + δi,1yjq
1
2

−
y
−(hi+r−i+ 1

2
)

j

1 + δi,1y−1
j q

1
2

|

|yr−i+
1
2

j − y−(r−i+ 1
2

)

j |

×

(1 + q1/2)

( r∏
i=1

∏
ε=±1

(1 + yεiq
1/2)

)
1− q

(4.12)

for odd N with rank r, and

χ
(g)
h1
2
,{hi}

(τ, {zj}) =qh−
c
24

∑
ε=±1

|
yhi+r−ij

1 + δi,1yjq
1
2

+ ε
y
−(hi+r−i)
j

1 + δi,1y−1
j q

1
2

|

|yr−ij + y
−(r−i)
j |

×

( r∏
i=1

∏
ε=±1

(1 + yεiq
1/2)

)
1− q

(4.13)

for even N with rank r. Note that due to the Kronecker delta δi,1, the only modifi-
cation from (4.7) and (4.8) is the first row (i = 1) of the matrix in the determinant.
This form of short multiplet character resembles the known formula for short super
Virasoro multiplet of the small N = 4 algebra [14], see also (6.20) in particular.
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Let us work out a simple example of the character formula. Consider the short
multiplet A[1; 1] 1

2
of the large N = 4 algebra, which has been depicted in Fig. 1.

Note that the primary [1; 1] is equivalent to [1 0] in the orthogonal basis. We first
focus on the determinant part of (4.13), for which we expand the factor that includes
Kronecker delta:

∑
ε=±1

∣∣∣∣∣∣
y2

1

1 + y1q
1
2

+ ε
y−2

1

1 + y−1
1 q

1
2

y2
2

1 + y2q
1
2

+ ε
y−2

2

1 + y−1
2 q

1
2

y0
1 + εy0

1 y0
2 + εy0

2

∣∣∣∣∣∣
|y2−i
j + y

−(2−i)
j |

=

∣∣∣∣(y2
1 + y−2

1 )− q 1
2 (y3

1 + y−3
1 ) + · · · (y2

2 + y−2
2 )− q 1

2 (y3
2 + y−3

2 ) + · · ·
y0

1 + y0
1 y0

2 + y0
2

∣∣∣∣
|y2−i
j + y

−(2−i)
j |

=

∣∣∣∣y2
1 + y−2

1 y2
2 + y−2

2

y0
1 + y0

1 y0
2 + y0

2

∣∣∣∣
|y2−i
j + y

−(2−i)
j |

− q
1
2

∣∣∣∣y3
1 + y−3

1 y2
2 + y−2

2

y0
1 + y0

1 y0
2 + y0

2

∣∣∣∣
|y2−i
j + y

−(2−i)
j |

+ · · · . (4.14)

Identifying each term to Weyl character formula (4.9) and inserting back into (4.13),
we have(q 1

2
− c

24

1− q

)−1

χ
(g)
1
2
,{1,0}(τ, {zj}) =

(
χe({1, 0})− q

1
2χe({2, 0}) + qχe({3, 0})− · · ·

)
× (1 + y1q

1/2)(1 + y−1
1 q1/2)(1 + y2q

1/2)(1 + y−1
2 q1/2).

(4.15)

Let us examine the RHS order-by-order. In the order q0 we have the primary
representation, namely χe({1, 0}), or [1; 1] 1

2
in terms of fundamental weights. In the

next order q
1
2 are all states that can be obtained by operating one of four supercharges

on the primary, as would appear at the first level of the long multiplet. However,
the LHS is a short multiplet which has the null states corresponding to χe({2, 0}),
or [2; 2]1 in terms of fundamental weights. Thus it is subtracted. Then in the next
order q1, from all states that can be obtained by operating two of four supercharges
on the primary, as would appear at the second level of the long multiplet, those that
can be obtained by operating one supercharge on the first-level null states χe({2, 0})
are subtracted because they are the null states. However, those corresponding to
χe({3, 0}) do not exist in the long multiplet due to Fermi-Dirac statistics, yet have
been subtracted. Therefore, they are added back. Proceeding similarly, and recalling
the effect of Virasoro operator 1/(1 − q) that produces conformal descendants, one
can confirm that the character formula (4.15) is compatible with Figure 1.
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Recall from the end of section 4.1 that there is an exceptional case of recombina-
tion rule related to conserved currents,

L[0 · · · 0]h
h→0−−−−−−→ V [0 · · · 0]0 ⊕ A[1 · · · 0] 1

2
. (4.16)

When a long multiplet whose primary is an R-singlet approaches the unitarity bound,
the corresponding short multiplet V [0]0 counts as a zero degree of freedom, and an
extra component [0]1 appears in the other short multiplet. The character formulae
can shed light on this phenomenon.

Consider the vacuum multiplet V [0; 0]0 of the large N = 4 algebra. Its character,
by (4.13), turns out to be

χ
(g)
0,{0,0}(τ, {zj}) = q−

c
24

1− q
1− q

. (4.17)

The (1− q) factor in the numerator cancels the same factor in the denominator, nul-
lifying the effect of Virasoro operator L−1. In other words, in this vacuum multiplet,
not only are there no conformal primaries other than the superconformal primary
[0; 0]0, but also there are no conformal descendants that are derived from the confor-
mal primary by L−1 ∼ ∂. This is the manifestation of the conservation law

∂Jz = 0 or ∂̄J̄z̄ = 0, (4.18)

where the holomorphic conservation law holds when the vacuum multiplet belongs
to the holomorphic sector of full superconformal multiplet, and vice versa. A super-
conformal multiplet with the vacuum multiplet V [0]0 in its (anti-)holomorphic sector
is identified as the (anti-)holomorphic conserved current, as discussed in section 2.3
and will be discussed further in section 5.1.

On the LHS of (4.17), however, the primary component [0]h is not a conserved cur-
rent since its conformal weight is non-zero, and therefore the conformal descendants
(L−1)n |[0]h〉 exist. These descendants are precisely the extra [0]1 component, now
treated as a conformal primary |[0]1〉 and its descendants, that appears in the second
short multiplet A[1 · · · 0] 1

2
but not in the long multiplet L[0 · · · 0]h as a conformal

primary.

5 Applications

Continuing based on the results of section 3, we discuss various aspects of two-
dimensional superconformal field theories, including stress-energy tensor, conserved
currents, supersymmetric deformations, and supersymmetry enhancement.
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[∧3V ] 1
2

[0 0 1 0 · · · 0] 1
2

[∧4V ]1
[0 0 0 1 0 · · · 0]1

· · ·

[∧2V ]1
[0 1 0 · · · 0]1

R-symmetry
current

[∧1V ] 3
2

[1 0 · · · 0] 3
2

supercurrent

[∧0V ]2
[0 · · · 0]2

stress-energy
tensor

Figure 12: Generic stress tensor multiplet, non-vacuum sector only.

5.1 Stress-Energy Tensor and Conserved Currents

5.1.1 Stress-Energy Tensor

Any two-dimensional conformal field theories contain an identity operator and a
stress-energy tensor. We present in this subsection that there always exist super-
conformal multiplets that contain the corresponding states for all N including both
small and large N = 4 with any value of the parameter α.

It is obvious that the vacuum superconformal multiplet V V [0 · · · 0|0 · · · 0]0,0 is
present for any superconformal algebra.

The holomorphic stress-energy tensor T in two dimensions is a global conformal
primary of scaling dimension two and spin two. (2.1) also implies that T must
be neutral under the R-symmetry, and is a top component in its superconformal
multiplet. We can show that there is a unique multiplet that has the holomorphic
(anti-holomorphic) stress-energy tensor [0 · · · 0]2 ⊗ [0 · · · 0]0 ([0 · · · 0]0 ⊗ [0 · · · 0]2) as
a top component for each N except N = 6 (each N̄ except N̄ = 6). As will
be discussed further in section 5.1.2, the N = 6 superconformal algebra has two
candidate multiplets that have the stress-energy tensor.

For all N ≥ 3 except for the small N = 4, the holomorphic stress-energy tensor
resides in a short multiplet T ≡ AV [0 0 1 0 · · · 0|0 · · · 0] 1

2
,0, as depicted in Figure

12. Note that the primary of T transforms in the 3rd anti-symmetric representation
under the R-symmetry group SO(N ). In the present work, such a short multiplet T
is referred to as a stress-energy tensor multiplet.

We also observe from Figure 12 that the stress-energy tensor multiplet T has other
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[∧3V ] 1
2
:

[0 2 0] 1
2
⊕ [0 0 2] 1

2

[∧4V ]1:

[0 1 1]1

[∧5V ] 3
2
:

[1 0 0] 3
2

[∧6V ]2:

[0 0 0]2

[∧2V ]1:

[0 1 1]1

[∧1V ] 3
2
:

[1 0 0] 3
2

[∧0V ]2:

[0 0 0]2

Figure 13: holomorphic N = 6 stress tensor multiplet with left-moving sector
only. It is reducible into two parts conjugate to each other. We use both the
Dynkin label notation and the anti-symmetric tensor product notation.

components such as [R-adjoint]1⊗ [0 · · · 0]0 and [R-vector] 3
2
⊗ [0 · · · 0]0 at level one and

two. From (2.1) that {G,G} ∼ L and {G, T} ∼ G, one can identify the former as
the R-symmetry currents (T ab) while the latter as the supersymmetry currents (Ga).

The stress-energy tensor multiplet for small N = 4 superconformal algebra is a
short multiplet AV [2|0]1,0. On the other hand, the stress-energy tensor resides in a
long multiplet LV [0|0]2−N

2
,0 for N ≤ 3.

5.1.2 Remark on the N = 6 Stress-Energy Tensor and Anti-Symmetric
Vector Products

The N = 6 superconformal algebra has SO(6) R-symmetry where the third anti-
symmetric tensor ∧3V is no longer irreducible but decomposes into two irreducible
representations

∧3V = [0 2 0]⊕ [0 0 2], (5.1)

self-dual and anti-self-dual three-forms. Accordingly, the multiplet built on the
primary [∧3V ] 1

2
depicted in Figure 13 can reduce to two irreducible superconfor-

mal multiplets, each with the primary [0 2 0] 1
2

and [0 0 2] 1
2
. The short multiplets

T = AV [0 2 0|0 0 0] 1
2
,0 and T̃ = AV [0 0 2|0 0 0] 1

2
,0 are conjugate to each other.

Both T and T̃ contain the [0 0 0]2⊗ [0 0 0]0 component. In terms of Dynkin labels,

it is unclear which of the two [0 0 0]2 ⊗ [0 0 0]0 components should be interpreted
as the stress-energy tensor, or even whether both could be the stress-energy tensor
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or not. We can argue that only one of them should be identified as a true stress-
energy tensor. Otherwise any N ≥ 7 superconformal theories would have two stress-
energy tensors and thus become invalidated. This is because the N = 7 stress-energy
tensor multiplet AV [0 0 2|0 0 0] 1

2
,0 can reduce to such two N = 6 multiplets T and T̃

simultaneously. See section 5.3 for the detail.

The anti-symmetric tensor product makes this point clearer. In this language, it
is apparent that one of the two [0 0 0]2 in Figure 13 is a pseudoscalar with respect to
the R-symmetry group while the other is a genuine scalar. The former is produced
from an axial vector at the previous level, which in turn is produced from a 4-form at
its previous level. However, for a genuine stress-energy tensor, the algebra requires
that R-vector and R-adjoint components corresponding to the supercurrent and the
R-current exist at the previous two levels. This implies that, although the multiplet
with an anti-self-dual 3-form primary appears to contain a top component [0 0 0]2, it
cannot be identified as a stress-energy tensor, and the self-dual counterpart can.

Note that this argument applies to every short multiplet A[∧kV ] 1
2

for every N :
one of the top components is a scalar, and the other is a pseudoscalar of the R-
symmtry group. Therefore, it matters to distinguish two short multiplets A[∧kV ] 1

2

and A[∧N−kV ] 1
2
, although they appear to be identical in terms of Dynkin labels. The

case N = 6 was special only because the stress-energy tensor was involved.

An additional argument regarding supersymmetry enhancement and decomposi-
tion that supports the result here will be presented in section 5.3.

5.1.3 Conserved currents

From Table 1 through Table 11, one can see the presence of top component [0 · · · 0]1
for all N . It allows for a conserved current [0 · · · 0]1 ⊗ [0 · · · 0]0 with spin 1 in any
(N , N̄ ) theory. It is a Lorentz vector, has scaling dimension 1, and commutes with R-
symmetry and supersymmetry generators up to a total derivative. Thus, it qualifies
as a flavor current.

Furthermore, a top component [0 · · · 0]s, thus a spin-s conserved current [0 · · · 0]s⊗
[0 · · · 0]0 is allowed for every half value of s starting from s = 1.#8 When s = 3

2
,

[0 · · · 0] 3
2
⊗ [0 · · · 0]0 corresponds to an extra supercurrent, which will be discussed in

section 5.3. The case s = 2 corresponds to the stress-energy tensor which has been
just discussed, and s ≥ 5

2
corresponds to the higher-spin conserved currents.

In particular for each N ≥ 7, a supersymmetric higher-spin conserved current of

#8From s = 1 to s = N
2 they appear as top components of some short multiplets. For s > N

2 they
appear as generic top components of long multiplets L[0 · · · 0]s−N

2
. Note that in the latter case s

can be any real number. See Tables 10 and 11.
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spin s = N
2
− 1 appears in the stress tensor multiplet, and thus is universal in all

theories. In higher dimensions d ≥ 3, presence of the higher-spin currents indicates
a locally free theory [35–38], thus imposing an upper bound on the number of super-
symmetries N for interacting theories [26]. In two dimensions this is not necessarily
true. One simple example is the three-state Pott’s model which is an interacting CFT
with W3-algebra. We close this subsection with a remark that the above higher-spin
current in the stress-energy tensor multiplet may extend the superconformal algebra
to a non-linear (super W) algebra [5].

5.2 Deformations of CFT

5.2.1 Relevant and Marginal Deformations

We turn into operators leading to relevant or marginal deformations of a given su-
perconformal theory that preserve supersymmetry, as discussed briefly in section 2.3.
These operators have to be Lorentz scalars with scaling dimensions ∆ ≤ 2 and super-
symmetric. We thus look for top components from both left-moving and right-moving
sectors with h0 = h̄0 ≤ 1. The deformation is marginal when the equality holds, and
relevant when the inequality is strict.

From Table 1 through Table 11, we can conclude the followings.

1. Marginal deformations. For all N , including both small and large N = 4 with
any value of the parameter α, a top component [0 · · · 0]1 is allowed in some multiplet.
For N ≥ 3 it always appears as a sporadic top component in a short multiplet with
an R-vector primary.

Therefore, in all global superconformal theories with any (N , N̄ ) in two dimensions,
a supersymmetric marginal operator [0 · · · 0]1 ⊗ [0 · · · 0]1, which is a Lorentz scalar
and an R-singlet, is allowed. For instance, a marginal operator resides in an N = 5
short multiplet AA[1 0|1 0] 1

2
, 1
2
.

2. Relevant deformations. For allN 6= 4 and for largeN = 4 with α = 1, a top com-
ponent with h = 3

4
that is an R-spinor#9 is allowed in some multiplet. Particularly

for N even, there are two R-spinors conjugate to each other, and correspondingly
there are two allowed R-spinor top components with h = 3

4
. For N ≥ 3 they always

appear as a generic top component at level one in a short multiplet with an R-spinor
primary. For instance, a component [0 0 1]3/4 resides in an N = 6 short multiplet
A[0 1 0]1/4 at level one.

#9For N = 1 it is just the trivial representation [0]. For N = 2 it is the [ 12 ] and [− 1
2 ], which are

conjugate to each other.
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Therefore, a supersymmetric relevant deformation with ∆ = 3
2

is allowed for all
global superconformal theories with any (N , N̄ ), except that if any of these is 4 it
has to be the large N = 4 with α = 1. This relevant deformation however breaks
the R-symmetry because it transforms as spinors under both SO(N ) and SO(N̄ ).

In case of the largeN = 4 with α 6= 1, relevant deformations with scaling dimensions
∆ = 1 + α

1+α
and ∆ = 1 + 1

1+α
are similarly allowed, provided that both sectors have

large N = 4 symmetry and share the common value of α. In particular, note that
the small N = 4 superconformal algebra (, i.e., α → ∞) does not admit a relevant
deformation.

In particular, the marginal deformation [0; 0]1 ⊗ [0; 0]1 is guaranteed to exist in a
large (4, 4) superconformal theory. It is known that the stress-energy tensor is actually
a quasi-primary with respect to the Virasoro symmetry: it is a super Virasoro descen-
dant of the vacuum. Therefore, whenever the stress tensor multiplet AV [1; 1|0; 0] 1

2
,0

exists, there also exists in the same super Virasoro multiplet a global multiplet
AA[1; 1|1; 1] 1

2
, 1
2
, where the marginal deformation resides. Therefore, a large (4, 4) su-

perconformal field theory always contains a marginal deformation, and thus exhibits
a non-trivial moduli space. This marginal deformation is in fact exactly marginal,
and corresponds to moduli of the type IIB string theory on AdS3 × S3 × S3 × S1,
see [28, 39].

This argument can be applied to higher N , but it results in the existence of an
irrelevant deformation, which is subject to less interest.

A relevant deformation that resides in the stress tensor multiplet is referred to as a
universal mass [27]. It is a deformation that is guaranteed to exist because it appears
in the stress tensor multiplet, which breaks the conformal symmetry and often the
R-symmetry as well. It results in a deformed super-Poincaré algebra with central or
non-central charge extension. Study of the universal mass in higher dimensions have
led to many interesting results, see [27] and references therein.

However, the universal mass does not exist in two dimensions. Every relevant
deformation in two dimensions resides in a global superconformal multiplet whose
primary has conformal weights h = h̄ = 1

4
. It is obvious that this global multiplet

itself is not a stress tensor multiplet nor a flavor current multiplet. One can further
argue that this multiplet cannot belong to the same super Virasoro multiplet as
the global stress tensor multiplet. This is because the stress tensor multiplet is the
lowest super Virasoro descendant of the vacuum, and the primary of h = h̄ = 1

4

cannot become another descendant of the vacuum. This implies that a non-central
charge extension of Poincaré supersymmetry cannot be smoothly connected to a
superconformal symmetry via relevant deformations.

Lists of allowed top components, conserved currents and deformations discussed
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Case Allowed top component Primary of the multiplet

All N

[0 · · · 0]0 [0 · · · 0]0
[0 · · · 0]1 [1 0 · · · 0] 1

2

[0 · · · 0]2 [0 0 1 0 · · · 0] 1
2

[0 · · · 0]Z≥5
2

[0 · · · 0 1 0 · · · 0] 1
2

All N 6= 4 and [spinor] 3
4

[conjugate spinor] 1
4

large N = 4 with α = 1 [0 · · · 0] 3
2

[0 1 0 · · · 0] 1
2

Table 12: List of allowed top components and multiplets in which they reside.

Supersymmetric operators Top component Multiplet in which it resides

Marginal deformation [0 · · · 0]1 ⊗ [0 · · · 0]1 [1 0 · · · 0] 1
2
⊗ [1 0 · · · 0] 1

2

Relevant deformation [spinor] 3
4
⊗ [spinor] 3

4
[dual spinor] 1

4
⊗ [dual spinor] 1

4

Unit operator [0 · · · 0]0 ⊗ [0 · · · 0]0 [0 · · · 0]0 ⊗ [0 · · · 0]0
Flavor current (left) [0 · · · 0]1 ⊗ [0 · · · 0]0 [1 0 · · · 0] 1

2
⊗ [0 · · · 0]0

Stress-energy tensor (left) [0 · · · 0]2 ⊗ [0 · · · 0]0 [0 0 1 0 · · · 0] 1
2
⊗ [0 · · · 0]0

Higher-spin currents (left) [0 · · · 0]Z=3,5,6,···
2

⊗ [0 · · · 0]0 [0 · · · 0 1 0 · · · 0] 1
2
⊗ [0 · · · 0]0

Table 13: List of marginal or relevant deformations and conserved currents,
and multiplets in which they reside. For conserved currents including stress
tensor, corresponding versions with left and right exchanged are also required.

in sections 5.1 and 5.2 can be found in Tables 12 and 13.

5.2.2 Recombination Rules Revisited

In section 4.1 we have discussed recombination rules: how long multiplets decompose
into short multiplets as they hit the unitarity bound. There, we considered only one
sector. That is, a long multiplet in the left-moving sector was decomposed into short
multiplets while the one in the right-moving sector remained unchanged.

Having discussed conserved currents and deformations of CFT, it is fruitful to
consider the case where multiplets in the left-moving and the right-moving sectors
approach the unitarity bound simultaneously. In particular, we are interested in
recombination rules where marginal deformations or flavor currents appear. We write
some of the recombination rules for multiplets that have non-generic R-symmetry
Dynkin labels but for any value of (N , N̄ ) below,
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LL[0 · · · 0|0 · · · 0]h,h̄
h,h̄→0−−−−−−−→ V V [0 · · · 0|0 · · · 0]0,0︸ ︷︷ ︸

unit operator

⊕AA[1 0 · · · 0|1 0 · · · 0] 1
2
, 1
2︸ ︷︷ ︸

marginal deformation

⊕AV [1 0 · · · 0|0 · · · 0] 1
2
,0 ⊕ V A[0 · · · 0|1 0 · · · 0]0, 1

2︸ ︷︷ ︸
flavor currents

,

(5.2)

LL[1 0 · · · 0|0 · · · 0]h,h̄
h→ 1

2
,h̄→0

−−−−−−−−−→ AV [1 0 · · · 0|0 · · · 0] 1
2
,0︸ ︷︷ ︸

flavor current (left)

⊕AA[1 0 · · · 0|1 0 · · · 0] 1
2
, 1
2︸ ︷︷ ︸

marginal deformation

⊕ · · · ,

(5.3)

LL[1 0 · · · 0|1 0 · · · 0]h,h̄
h,h̄→ 1

2−−−−−−−→ AA[1 0 · · · 0|1 0 · · · 0] 1
2
, 1
2︸ ︷︷ ︸

marginal deformation

⊕ · · · . (5.4)

When a marginal deformation cannot remain marginal beyond the leading order,
its scaling dimension should receive quantum corrections, and the corresponding short
multiplet, combined with other short multiplets, should be up-lifted to a long mul-
tiplet. In other words, a short multiplet that contains an exactly marginal operator
must not participate in any of the recombinations (5.2)-(5.4). It leads to a constraint
that all marginal deformations become exactly marginal only if they do not break
any flavor symmetry. Otherwise, one of (5.2) and (5.3) has to happen.

5.3 Supersymmetry Enhancement

It is useful to understand how an N -superconformal multiplet can decompose into
various multiplets of fewer superconformal symmetries N ′ < N . Note that, in the
language of N ′ superconformal algebra, N supercharges decompose into N ′ super-
charges and extra (N − N ′) fermionic conserved charges. The R-symmetry algebra
decomposes into the R′-symmetry algebra corresponding to the N ′-supersymmetry,
flavor symmetry algebra commuting with the R′-symmetry algebra, and the remain-
ing off-diagonal generators charged under both R′-symmetry and flavor symmetry.

Let us in particular consider the (holomorphic) stress-energy tensor multiplet
T (N+1) of the N + 1 superconformal algebra. T (N+1) can split into various N -
multiplets that must include the following multiplets of N superconformal algebra:

1. a stress-energy tensor multiplet T (N ) that has the holomorphic stress-energy tensor,
N supercurrents and R-currents.
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2. a short multiplet that has an extra R-neutral supercurrent as a top component.
In order that it be part of the enhanced N + 1 supercurrents, the N off-diagonal
R-currents [1 · · · 0]1 ⊗ [0 · · · 0]0 should be contained in the same short multiplet.

Conversely, if a theory with N -supersymmetry contains all the multiplets enu-
merated above with mentioned properties, the theory is enhanced to N + 1.

As an illustration, let us consider the stress tensor multiplet of large N = 4 alge-
bra with an arbitrary value of α, AV [1; 1|0; 0] 1

2
,0. The multiplet and its decomposition

to the N = 3 algebra are described in Figure 1 and 3, respectively. This decompo-
sition consists of two N = 3 multiplets, LV [0|0] 1

2
,0 which is the N = 3 stress tensor

multiplet, and AV [2|0] 1
2
,0 which is the extra supercurrent multiplet. The extra super-

current multiplet AV [2|0] 1
2
,0 has a top component [0] 3

2
⊗ [0]0 which can be identified

as the extra supercurrent, and [2]1 ⊗ [0]0 at the first level which corresponds to the
off-diagonal R-currents, as expected. Therefore, the N = 3 global superconformal
theory in two dimensions can have an enhanced large N = 4 theory if and only if
there exists the extra supercurrent multiplet AV [2|0] 1

2
,0.

This argument directly generalizes to generic values of N , as is clear from the fact
that

∧k V in SO(N + 1)→ ∧kV ⊕ ∧k−1V in SO(N ). (5.5)

For a generic N , the stress tensor multiplet of N + 1 superconformal algebra is
decomposed into the stress tensor multiplet of N superconformal algebra and an
extra supercurrent multiplet thereof:

T (N+1) = AV [∧3V |0] 1
2
,0 ↔ T (N ) = AV [∧3V |0] 1

2
,0 ⊕ AV [∧2V |0] 1

2
,0︸ ︷︷ ︸

extra supercurrent multiplet

, (5.6)

where the number of supersymmetries N̄ in the right-moving sector is arbitrary and
irrelevant.

Conversely, a global superconformal theory with a generic number N of super-
symmetries in two dimensions is enhanced to an N+1 theory if and only if it contains
the extra supercurrent multiplet AV [∧2V |0] 1

2
,0.

Note that for large N = 4 or N = 6, AV [∧2V |0] 1
2
,0 or AV [∧3V |0] 1

2
,0 on the RHS

of (5.6) is reducible to two irreducible parts. Although only one irreducible part
corresponds to a genuine extra supercurrent multiplet or stress tensor multiplet (see
section 5.1.2), both parts are required in order to enhance the theory into N + 1.

There are several types of non-generic cases of supersymmetry enhancement. Al-
though what happens in each case is highly analogous to the generic case, we make
remarks on the differences.
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5.3.1 N ≤ 2 to N + 1

For N ≤ 2 where the smaller R-symmetry is abelian, the representation ∧3V does
not have a sensible interpretation. However, similar relations to (5.6) hold:

T (3) = LV [0|0] 1
2
,0 ↔ T (2) = LV [0|0]1,0 ⊕ LV [0|0] 1

2
,0︸ ︷︷ ︸

e.s.m. for N=2

, (5.7)

T (2) = LV [0|0]1,0 ↔ T (1) = LV [0|0] 3
2
,0 ⊕ LV [0|0]1,0︸ ︷︷ ︸

e.s.m. for N=1

, (5.8)

where e.s.m. abbreviates the extra supercurrent multiplet.

5.3.2 N = 2 to small N = 4

N = 4 superconformal algebra that appears in the generic enhancement rule (5.6)
is the large one with SO(4) R-symmetry group. Meanwhile, the small N = 4 with
SU(2) R-symmetry group can be decomposed into or enhanced from the N = 2
theory, considering that SO(2) ⊂ SU(2). That is,

T (4s) = AV [2|0]1,0 ↔ T (2) = LV [0|0]1,0 ⊕ AV [2|0]1,0 ⊕ AV [−2|0]1,0︸ ︷︷ ︸
e.s.m. for N=2

. (5.9)

Therefore, the N = 2 global superconformal theory in two dimensions is enhanced
into a small N = 4 theory if and only if both extra supercurrent multiplets AV [2|0]1,0
and AV [−2|0]1,0 exist. Note that two extra supercurrents are required since there are
two more supercurrents in N = 4 than in N = 2.

As an application of (5.9), let us discuss new anomalies in (N , N̄ ) = (2, 2) su-
perconformal theories resolving a long-standing puzzle that, unlike generic (2, 2) su-
perconformal theories, the conformal manifold of a (4, 4) superconformal theory does
not factorize into a product of Kähler manifolds [40]. The authors of [40] have shown
that whenever the operator product expansion (OPE) between a chiral multiplet
AA[1|1] 1

2
, 1
2

and a twisted chiral multiplet AA[1| − 1] 1
2
, 1
2

develops a pole,

O(x1)Õ(x2) ∼ 1

x−−1 − x−−2

J++(x2) + regular terms, (5.10)

the aforementioned anomaly occurs and the factorization fails. Here O and Õ are
the primaries of chiral and twisted chiral multiplets while J++ is a conserved current
of spin one and U(1) R-charge two.

One can argue that any (2, 2) superconformal theories have enhanced (4, 4) su-
perconformal symmetry if and only if the OPE between O and Õ has a pole. We
present a sketch of the proof below.
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Let us start with a (2, 2) superconformal theory that has a chiral multiplet and a
twisted chiral multiplet. Suppose that the OPE (5.10) has a pole, which suggests that
the given (2, 2) superconformal theory has an extra supercurrent multiplet AV [2|0]1,0
and its complex conjugate AV [−2|0]1,0. This is because J±± is contained in the short
multiplet AV [±2|0]1,0 as a component. The existence of such extra supercurrent
multiplets leads to the enhancement from (2, 2) to (4, 4), as explained above.

On the other hand, let us assume that the (2, 2) superconformal theory has en-
hanced (4, 4) superconformal symmetry. Both chiral and twisted chiral multiplets as
well as their conjugates are then combined in a (4, 4) short multiplet AA[1|1] 1

2
, 1
2
,

AA[1|1] 1
2
, 1
2︸ ︷︷ ︸

in N=(4,4)

↔
⊕
±

AA[±1| ± 1] 1
2
, 1
2︸ ︷︷ ︸

in N=(2,2)

. (5.11)

Its OPE with itself must give rise to the small (4,4) super Virasoro vacuum multiplet
with an identity and the stress-energy tensor multiplet T (4s) = AV [2|0]1,0 included,
as described schematically below:

(4, 4)-theory : AA[1|1] 1
2
, 1
2
× AA[1|1] 1

2
, 1
2
∼ V V [0|0]0,0 ⊕ T (4s) ⊕ · · · . (5.12)

Decomposing back to the (2, 2) theory, the RHS of (5.12) must include the extra
supercurrent multiplets AV [±2|0]1,0. Meanwhile, among various OPEs that appear
in the LHS of (5.12), it is the OPE between the chiral multiplet AA[1|1] 1

2
, 1
2

and

the twisted chiral multiplet AA[1| − 1] 1
2
, 1
2

that accounts for the extra supercurrent
multiplet,

(2, 2)-theory : AA[1|1] 1
2
, 1
2
× AA[1| − 1] 1

2
, 1
2
⊃ AV [2|0]1,0. (5.13)

This completes the proof.

5.3.3 N = 5 to N = 6

The enhancement of N = 5 to N = 6 is the most interesting.

Consider the genuine irreducible N = 6 stress tensor multiplet denoted by T (6).
Its decomposition into conformal multiplets is depicted in the upper row of Figure 14.
Note that the primary is self-dual part of the representation ∧3V = [0 2 0]⊕ [0 0 2].

Decomposition of this multiplet into SO(5)R representations according to the
general rule (5.5) is depicted in the lower row of Figure 14. This is precisely the
stress tensor multiplet T (5) of N = 5: A[0 2] 1

2
with a [0 0]2 at the third level.

Therefore, the irreducible N = 6 stress tensor multiplet is identical to the N = 5
stress tensor multiplet. In other words, an N = 5 global superconformal theory is
automatically enhanced into an N = 6 theory.
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[0 2 0] 1
2

[0 1 1]1 [1 0 0] 3
2

[0 0 0]2 : T (6)

[0 2] 1
2

[1 0]1 ⊕ [0 2]1 [0 0] 3
2
⊕ [1 0] 3

2
[0 0]2 : T (5)

Figure 14: The N = 6 stress tensor multiplet decomposed into N = 5.

6 Relation to Super Virasoro Algebra

6.1 Implications to the Super Virasoro Algebra

Among deformations and conserved currents discussed in the last section, some are
guaranteed to exist because they belong to the same multiplet as the stress tensor,
which must exist in any superconformal field theories. In this subsection, we will sys-
tematically investigate such components and their implications to the super Virasoro
algebra, which is not fully understood for generic values of N .

Let us start with the case N = 3, which is the simplest among interesting cases.
For concreteness, consider an (N = 3, N̄ ) theory with any N̄ for the right-moving
sector. See the uppermost part of Figure 15, where structure of the stress-tensor
multiplet T (3) is depicted. Note that the product with V [0]0 in the right-moving
sector is implied for all multiplets.

In addition to the components [2]1⊗ [0]0, [2] 3
2
⊗ [0]0, and [0]2⊗ [0]0 that we have al-

ready identified as holomorphic R-currents T
[ab]
0 , supercurrents Ga

r , and stress-energy
tensor L0, respectively, we find another component [0] 1

2
⊗ [0]0 in the multiplet. This

implies that a spin-1
2

conserved current [0] 1
2
⊗ [0]0 exists in any N = 3 superconformal

theories.

Furthermore, the multiplet structure contains additional information about the
current. Not only does the current possess conformal weight h = 1

2
and transform

as an R-singlet, but its anti-commutation relation with the supercurrents Ga
r must

also yield the R-currents T
[ab]
m . Denoting the current as Γr (r ∈ Z + 1

2
) and matching

dimensions and R-indices, one can predict that for all modes r, s ∈ Z+ 1
2

and n ∈ Z,

[Ln,Γr] = (−n
2
− r)Γn+r, (6.1a)

[Γr, T
[ab]
n ] = 0, (6.1b)

{Γr, Ga
s} ∼ εabcT

[bc]
r+s, (6.1c)
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N = 3 [0] 1
2

[2]1 [2] 3
2

[0]∗2

Small
N = 4

[2]1
[1] 3

2

[1] 3
2

[0]∗2

Large
N = 4

[1; 1] 1
2

[2; 0]1
[0; 2]1
[0; 0]∗1

[1; 1] 3
2

[0; 0]∗2

N = 5 [0 2] 1
2

[0 2]1
[1 0]1

[1 0] 3
2

[0 0]∗3
2

[0 0]∗2

N = 6 [0 2 0] 1
2

[0 1 1]1 [1 0 0] 3
2

[0 0 0]∗2

N = 7 [0 0 2] 1
2

[0 1 0]1
[0 0 2]1

[1 0 0] 3
2

[0 1 0] 3
2

[0 0 0]∗2
[1 0 0]2

[0 0 0]∗5
2

Figure 15: Stress tensor multiplets for 3 ≤ N ≤ 7, where N denotes number of
supercharges in the left-moving sector. Product with V [0]0 in the right-moving
sector is implied. Top components are marked with an asterisk.

must be part of the N = 3 super Virasoro algebra. This is precisely what was found
in [8].

Let us proceed to large N = 4. Small N = 4 is not interesting in this respect,
as the stress tensor multiplet therein does not contain any extra component other
than {L,G, T}, see the second part of Figure 15. For the rest of this subsection, we
no longer mention explicitly the right-moving sector, but assume that tensor product
with the vacuum multiplet V [0]0 in the right-moving sector with any number of
supercharges N̄ is always implied.
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In addition to the components [2; 0]1, [1; 1] 3
2
, and [0; 0]2 that we have already

identified as R-currents T±i0 , supercurrents Ga
r , and stress-energy tensor L0, we find a

sporadic top component [0; 0]1 and a primary component [1; 1] 1
2
. Therefore, conserved

currents [0; 0]1 and [1; 1] 1
2

are guaranteed to exist in any large N = 4 superconformal
theories.

Following [12], we denote the respective currents by U0 and Qa
r , where r = 1

2

and −1
2

correspond to each other’s conjugate. We can see, not to mention their
transformation properties under the R-symmetry and their scaling dimensions 1 and
1
2
, that U0 commutes with supercurrents Ga

r , and that {Ga
r , Q

b
s} leads to T±i0 and U0.

These currents with the respective properties are precisely what are present in the
full N = 4 super Virasoro algebra [12].

Some of the relevant (anti-)commutation relations are presented below,

[T+i
n , Ga

r ] = η+i
ab (Gb

n+r − 2
1

1 + α
nQb

n+r), (6.2a)

[T−in , Ga
r ] = η−iab (Gb

n+r + 2
α

1 + α
nQb

n+r), (6.2b)

{Qa
r , G

b
s} = 2(η+i

ab T
+i
r+s − η−iab T

−i
r+s) + δabUr+s, (6.2c)

[Un, Q
a
r ] = 0, [Un, G

a
r ] = nQa

n+r, (6.2d)

{Qa
r , Q

b
s} = −δabδr+s,0

c(1 + α)2

12α
, (6.2e)

{Um, Un} = −mδm+n,0
c(1 + α)2

12α
. (6.2f)

As in the global subalgebra (2.3), α parametrizes the su(2) levels:

k+ = c(1 + α)/(6α), k− = c(1 + α)/6, (6.3)

where c is the central charge. Note that c does not enter the global subalgebra while
α does.

Therefore, although the global subalgebra is complete with {L,G, T} alone, we
can find by physical reasoning what additional operators must exist, which actu-
ally appear in the Virasoro algebra. Admittedly, this approach may not exhaust all
operators that appear in the Virasoro algebra.

Let us turn to the next example: N = 5. We can see that, in addition to the
familiar operators T

[ab]
0 , Ga

r , and L0, there are conserved currents of dimensions 1
2
, 1, 3

2

that are 3-form, 4-form, and 5-form, respectively, under the R-symmetry group. The
5-form is also supersymmetric. Note that for odd SO(N ), k-form and (N − k)-
form are identical. Thus, an additional R-singlet current with dimension 3

2
that is

supersymmetric, an R-vector current with dimension 1, and an R-adjoint current
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with dimension 1
2

are guaranteed to exist. The first two are identified as an extra
supercurrent and extra R-currents that enhance the supersymmetry intoN = 6. This
has been the topic of section 5.3.3.

Due to peculiarity discussed in section 5.1.2 and 5.3.3, the N = 6 stress tensor
multiplet contains no non-trivial components except for the primary, which is a self-
dual 3-form under the R-symmetry with dimension 1

2
. Thus, implications to N = 6

super Virasoro algebra are more or less contained in the last paragraph.

Proceeding further, we can conclude that for all N ≥ 7, conserved currents
U

[a1a2···ak]
m(r) (k = 3, 4, · · · ,N ) that are k-forms under the R-symmetry with dimen-

sions k
2
− 1 are guaranteed to exist. The mode number is m ∈ Z for k even, thus

bosonic currents, and r ∈ Z + 1
2

for k odd, thus fermionic currents. Extending the
mode numbers, commutation relations with the supercurrent is schematically written
as

{Ga0
r , U

[a1a2···ak]
s } ∼ U

[a0a1···ak]
r+s + δa0,aiU

[a1a2···ak]\ai
r+s + · · · . (6.4)

Note that the conserved currents discussed in this subsection are to be distin-
guished from those discussed in section 5.1.3, which were supersymmetric and allowed
for every half-integer value of spin, but not guaranteed to exist. Only the N -form
coincides.

6.2 Relation to Super Virasoro Characters in N = 2 and
Small N = 4

Recall that the superconformal multiplets analyzed in section 3 are representations
of global subalgebras of the larger super Virasoro algebras. In this sense, super
Virasoro multiplets can be decomposed into the global superconformal multiplets. In
this subsection, we discuss how the super Virasoro multiplets are decomposed, and
compare recombination rules of super Virasoro multiplets and global superconformal
multiplets for N = 2 and small N = 4, for which the super Virasoro multiplets have
been thoroughly studied.

6.2.1 N = 2

Super Virasoro multiplets inN = 2 have been classified in [33]. A multiplet is long, or
massive, if its primary [j]h lies above the unitarity bound, and it is short, or massless,
if the primary lies on the unitarity bound. The unitarity bound is described by a set
of line segments (see [33,41])

2h− 2rj + (
c

3
− 1)(r2 − 1

4
) = 0 (r ∈ 1

2
+ Z) (6.5)
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defined in the range

(
c

3
− 1)(|r| − 1

2
) ≤ sign(r) · j ≤ (

c

3
− 1)(|r|+ 1

2
) + 1. (6.6)

The line segment labelled by r describes a set of primaries [j]h that would be an-

nihilated by the supercharge G
sign(r)
−|r| . Note that the global unitarity bound (2.10)

corresponds to the line segments r = ±1
2

extended to infinity.

It is known that the N = 2 super Virasoro algebra has an outer automorphism
referred to as spectral flow [42]. Although the extended N = 2 algebra that incorpo-
rates the spectral flow by one unit has many applications (see e.g. [43]), we do not
impose such an invariance here.

Character of an N = 2 super Viasoro multiplet with primary [j]h, massive or
massless, is written as (see [44–46])

Massive: Chh,j(τ, z) = qh−
c
24yj

∞∏
n=1

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2
, (6.7)

Massless: χh(j,r),j(τ, z) = qh−
c
24yj

∞∏
n=1

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2

1

1 + q|r|ysign(r)
, (6.8)

where q = e2πiτ and y = e2πiz as in section 4.2. Note that h(j, r) in the massless
character ensures that h be on the unitarity bound, where r labels which line segment
(h, j) locates on. These multiplets satisfy a recombination rule as h in the massive
multiplet approaches the unitarity bound given j:

Chh,j(τ, z)
h→h(j,r)−−−−−−−−→ χh(j,r),j(τ, z) + χh(j,r)+|r|,j+sign(r)(τ, z) (6.9)

Structure of the character can be analyzed as follows. Starting from the primary
which contributes qh−

c
24yj, two factors in the numerator take negative-mode fermionic

supercharges G±−n+ 1
2

into effect while those in the denominator take negative-mode

bosonic operators L−n, T−n into effect. The extra factor for the massless case simply

cancels the operation by G
sign(r)

− 1
2

, which produces the null states.

Meanwhile, we can write characters of global N = 2 superconformal multiplets
enlisted in Table 2 using more general formula (4.8) and (4.13),

Massive: Ch
(g)
h,j(τ, z) = qh−

c
24yj

(1 + q
1
2y)(1 + q

1
2y−1)

(1− q)
, (6.10)

Massless: χ
(g)
|j|
2
,j

(τ, z) = qh−
c
24yj

(1 + q
1
2y)(1 + q

1
2y−1)

(1− q)
1

1 + q
1
2ysign(j)

. (6.11)
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These multiplets also satisfy a recombination rule that has been already written down
in (4.4) using different notation:

Ch
(g)
h,j(τ, z)

h→ |j|
2−−−−−−−→ χ

(g)
|j|
2
,j

(τ, z) + χ
(g)
|j|+1

2
,j+sign(j)

(τ, z) (6.12)

For simplicity and without loss of generality, let us assume r > 0. Decomposition
of super Virasoro multiplets into global multiplets is now straightforward. We first
write for massive multiplets and massless multiplets with r ≥ 3

2
:

Chh,j(τ, z) = Ch
(g)
h,j(τ, z)

1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2︸ ︷︷ ︸
(∗)

, (6.13)

χh(j,r≥ 3
2

),j(τ, z) = Ch
(g)
h,j(τ, z)

1

(1− q)(1 + qry)

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2︸ ︷︷ ︸
(∗∗)

. (6.14)

An important point to note from (6.13) and (6.14) is that only long global mul-
tiplets appear on the RHS. This is because i) the unitarity bound for r ≥ 3

2
is higher

than the global bound h = |j|
2

, so the global bound is never saturated by primaries
of the super Virasoro multiplets, and ii) every monomial qayb that appears in (∗) or

(∗∗), except for 1, satisfies a > |b|
2

, so the corresponding global multiplet

Ch
(g)
h,j(τ, z)× qayb = Ch

(g)
h+a,j+b(τ, z) (6.15)

remains long: h+ a > |j+b|
2
, provided that h > |j|

2
.

However, the massless character with r = 1
2

requires a special treatment because
it no longer satisfies i) in the last paragraph. Therefore, we need to single out a global

short multiplet χ
(g)

h= j
2
,j

(τ, z):

χh= j
2
,j(τ, z) = χ

(g)
j
2
,j

(τ, z)+Ch
(g)
j
2
,j

(τ, z)
1

1 + q
1
2y

(
1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2
− 1

)
︸ ︷︷ ︸

(#)

.

(6.16)

Every monomial qayb in (#) satisfies a > |b|
2

, and appears with a positive coefficient.
Therefore, a massless super Virasoro multiplet on the segment r = ±1

2
is decomposed

into exactly one short global multiplet with the same primary, and infinitely many
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long global multiplets.#10

The decomposition of super Virasoro multiplets can be applied to their recombi-
nation rule (6.9). Again, cases r ≥ 3

2
and r = 1

2
need to be treated separately.

First, for r ≥ 3
2
, super Virasoro multiplet recombination, or branching if we are

looking at it in the opposite direction, occurs at h higher than the global unitarity
bound, so the same constituent long global multiplets are simply regrouped to form
different sets of super Virasoro multiplets:

Chh,j(τ, z) = Ch
(g)
h,j(τ, z)

1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2

= (Ch
(g)
h,j(τ, z) + Ch

(g)
h+r,j+1(τ, z))

1

(1− q)(1 + qry)

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2

h→h(j,r)−−−−−→ (Ch
(g)
h(j,r),j(τ, z) + Ch

(g)
h(j,r)+r,j+1(τ, z))

1

(1− q)(1 + qry)

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2

=χh(j,r),j(τ, z) + χh(j,r)+r,j+1(τ, z). (6.17)

On the other hand, for r = 1
2

where super Virasoro and global unitarity bounds
coincide, the super Virasoro multiplet recombination occurs simultaneously as one of
its constituent global multiplet also experiences the recombination.

Chh,j(τ, z) = Ch
(g)
h,j(τ, z)

1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2

= Ch
(g)
h,j(τ, z) + Ch

(g)
h,j(τ, z)

(
1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2
− 1

)
h→ j

2−−−→
(
χ

(g)
j
2
,j

(τ, z) + χ
(g)
j+1
2
,j+1

(τ, z)
)

+ Ch
(g)
j
2
,j

(τ, z)

(
1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2
− 1

)
=χ

(g)
j
2
,j

(τ, z) + Ch
(g)
j
2
,j

(τ, z)
1

1 + q
1
2y

(
1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2
− 1

)
+ χ

(g)
j+1
2
,j+1

(τ, z) + Ch
(g)
j+1
2
,j+1

(τ, z)
1

1 + q
1
2y

(
1

1− q

∞∏
n=2

(1 + qn−
1
2y)(1 + qn−

1
2y−1)

(1− qn)2
− 1

)
=χ j

2
,j(τ, z) + χ j+1

2
,j+1(τ, z) (6.18)

#10Note that the global long multiplet Ch
(g)
j
2 ,j

(τ, z) only works as a proxy for producing other long

multiplets by multiplication with qayb’s. It itself does not make sense because the unitarity bound
has been reached.
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6.2.2 Small N = 4

The small N = 4 super Virasoro multiplets are classified similarly to their global
counterparts: a multiplet with primary [R]h is bounded by h ≥ R

2
, and is massless,

or short, if the bound is saturated and massive, or long, otherwise. Their characters
are similar to the case N = 2 except that now each R-representation may contain
many states, graded by z. The central charge needs to be discretized by c = 6k
(k = 1, 2, · · · ).

Using the orthogonal basis, we define l = R
2

so that the orthogonal weight l can
take half-integer values and represents conventional SU(2) spin T 3

0 . The unitarity
bound becomes h ≥ l in the NS sector we are working on. Then, the characters are
given by#11 (see [13, 14])

Chh,l(τ, z) =qh−
k
4

( ∞∏
n=1

(1 + y
1
2 qn−

1
2 )2(1 + y−

1
2 qn−

1
2 )2

(1− yqn)(1− qn)2(1− y−1qn)

)
×

∞∑
m=−∞

y(k+1)m+l − y−(k+1)m−l−1

1− y−1
q(k+1)m2+(2l+1)m, (6.19)

where 2l + 1 = 1, 2, · · · , k, and

χh=l,l(τ, z) =ql−
k
4

( ∞∏
n=1

(1 + y
1
2 qn−

1
2 )2(1 + y−

1
2 qn−

1
2 )2

(1− yqn)(1− qn)2(1− y−1qn)

)
1

1− y−1

×
∞∑

m=−∞

(
y(k+1)m+l

(1 + y
1
2 qm+ 1

2 )2
− y−(k+1)m−l−1

(1 + y−
1
2 qm+ 1

2 )2

)
q(k+1)m2+(2l+1)m, (6.20)

where 2l + 1 = 1, 2, · · · , k + 1. The factor 1
1−y−1 is often absorbed into the product

in the literature, but we choose to write it separately to manifest the appearance of
Weyl character formula.

Meanwhile, characters of the global multiplets read

Ch
(g)
h,l (τ, z) =qh−

k
4

(1 + y
1
2 q

1
2 )2(1 + y−

1
2 q

1
2 )2

1− q
yl − y−l−1

1− y−1
, (6.21)

χ
(g)
h=l,l(τ, z) =ql−

k
4

(1 + y
1
2 q

1
2 )2(1 + y−

1
2 q

1
2 )2

1− q
1

1− y−1

(
yl

(1 + y
1
2 q

1
2 )2
− y−l−1

(1 + y−
1
2 q

1
2 )2

)
.

(6.22)

#11Another fugacity for the U(1) charge that distinguishes two copies of SU(2) ⊂ SO(4) may be
introduced, as has been in [14]. However, we simply set the fugacity to unity because it plays no
role in our argument.
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From (6.19)-(6.22) we can infer the recombination rule of (4.5), common to the super
Virasoro and global multiplets.

Chh,l
h→l−−→ χl,l + 2χl+ 1

2
,l+ 1

2
+ χl+1,l+1, (6.23)

Ch
(g)
h,l

h→l−−→ χ
(g)
l,l + 2χ

(g)

l+ 1
2
,l+ 1

2

+ χ
(g)
l+1,l+1. (6.24)

Note that this formulae are not directly derived from (4.8) and (4.13), because
in the small N = 4 algebra the R-symmetry is SU(2) rather than SO(4), and the
supercharges do not form a vector representation thereof. However, essential proper-
ties appear in common. In particular, note how the (1 + y±

1
2 q

1
2 )2 factors nullify the

action of two supercharges simultaneously.

Decomposition of super Virasoro multiplets into global multiplets is done in a
similar manner to N = 2. Massive super Virasoro multiplets are decomposed into
long global multiplets only, while massless super Virasoro multiplets are decomposed
into short and long global multiplets.

One thing we would like to check is when a massive super Virasoro multiplet hits
the unitarity bound to branch into massless multiplets (6.23), if its global constituents
also branch into the global constituents of the massless multiplets via (6.24). For this
purpose, we only need to consider global constituents of massive multiplets that
also saturate the global unitarity bound as the massive multiplet saturates its super
Virasoro unitarity bound, and also short global multiplets in the decomposition of
massless super Virasoro multiplets. It seems reasonable to believe that the other
parts, which remain manifestly long throughout the recombination/branching, would
simply regroup among themselves to belong to appropriate super Virasoro multiplets.

Consider the infinite sum in (6.19) and (6.20). As we are only interested in global
constituents that hit the unitarity bound as h→ l (h = l is automatic for (6.20)), we

look for monomials qa−
k
4 yb such that a ≤ b. Apart from the product term that only

contains monomials qayb with a ≥ b, we require

0 ≥ (k + 1)m2 + (2l + 1)m+ l − (k + 1)m− l

= (k + 1)m
(
m− (1− 2l + 1

k + 1
)
)
. (6.25)

However, since 0 < 1
k+1
≤ 2l+1

k+1
≤ 1, the only way to satisfy (6.25) is by m = 0,

which saturates the inequality. Therefore, m 6= 0 in the infinite sum always leads
to global multiplets that are manifestly long even when the super Virasoro multiplet
hits the unitarity bound, and m = 0 may contribute to global multiplets that hit
their unitarity bound simultaneously with the super Virasoro multiplet.
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Finally, we can write down the decomposition of small N = 4 multiplets as

Chh,l(τ, z) =Ch
(g)
h,l (τ, z)

( ∞∏
n=2

(1 + y
1
2 qn−

1
2 )2(1 + y−

1
2 qn−

1
2 )2

(1− yqn−1)(1− qn)(1− qn−1)(1− y−1qn−1)

)
+ (Ch

(g)
h′,l′(τ, z) such that h′ − l′ > h− l), (6.26)

χh=l,l(τ, z) =χ
(g)
h=l,l(τ, z)

( ∞∏
n=2

(1 + y
1
2 qn−

1
2 )2(1 + y−

1
2 qn−

1
2 )2

(1− yqn−1)(1− qn)(1− qn−1)(1− y−1qn−1)

)
+ (Ch

(g)
h′,l′(τ, z) such that h′ > l′). (6.27)

Then, from the fact that a common multiplicative factor appears on the right-hand-
sides of (6.26) and (6.27), it can be inferred that the global multiplet decomposition
of (6.23) is indeed compatible with (6.24).

6.2.3 Large N = 4

For completeness, we conclude by relating characters of the large N = 4 global
multiplets to their analogues in super Virasoro algebra that are studied in [47,48]. In
particular, we consider representations of Ãγ, which is a subalgebra of the full large
N = 4 superconformal algebra Aγ. It is obtained from the latter by decoupling four
dimension-1

2
operators and one dimension-1 current, denoted by Qa

r and Um in (6.2),
see [29, 49]. It is straightforward to obtain characters of representations of Aγ from
that of Ãγ, see [47].

We first present the character formulae for the large N = 4 global subalgebra,
massive or massless, which are special cases of (4.8), (4.9), and (4.13).

Ch
(g)
h,{h1,h2}(τ, {z1, z2}) = qh−

c
24 ·

( r∏
i=1

∏
ε=±1

(1 + yεiq
1
2 )

)
1− q

×

∑
ε=±1

∣∣∣∣yh1+1
1 + εy−h1−1

1 yh1+1
2 + εy−h1−1

2

yh21 + εy−h21 yh22 + εy−h22

∣∣∣∣∣∣∣∣y1 + y−1
1 y2 + y−1

2

2 2

∣∣∣∣ , (6.28)
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χ
(g)

h=
h1
2
,{h1,h2}

(τ, {z1, z2}) = q
h1
2
− c

24 ·

( r∏
i=1

∏
ε=±1

(1 + yεiq
1
2 )

)
1− q

×

∑
ε=±1

∣∣∣∣∣∣
yh1+1

1

1 + y1q
1
2

+ ε
y−h1−1

1

1 + y−1
1 q

1
2

yh1+1
2

1 + y2q
1
2

+ ε
y−h1−1

2

1 + y−1
2 q

1
2

yh21 + εy−h21 yh22 + εy−h22

∣∣∣∣∣∣∣∣∣∣y1 + y−1
1 y2 + y−1

2

2 2

∣∣∣∣ .

(6.29)

We then present the character formulae for the massive and massless representa-
tions of Ãγ [47, 48] in our convention below. In particular, we move from the SU(2)
isospins, related to the fundamental Dynkin labels by l+ = R1

2
and l− = R2

2
, with

fugacities {z+, z−} into the orthogonal basis h1 = l+ + l−, h2 = l+− l− with fugacities
{y1 = z+z−, y2 = z+z

−1
− }.

Ch
Ãγ
h,{h1,h2}(τ,{z1, z2})

= qh−
c
24
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n=1

2∏
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∏
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(1 + yεiq
n− 1

2 )

(1− qn)3 ·
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(1− yε11 y
ε2
2 q

n)

)
×
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(
qk+a
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×

∑
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1 y
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2

y
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1 y
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2
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2

2 2
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)
,

(6.30)
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χ
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(6.31)

where k± are the su(2) levels defined in (6.3). Note the recombination rules,

Ch
Ãγ
h,{h1,h2}

h→h1
2−−−→ χ

Ãγ
h1
2
,{h1,h2}

+ χ
Ãγ
h1+1

2
,{h1+1,h2}

, (6.32)

Ch
(g)
h,{h1,h2}

h→h1
2−−−→ χ

(g)
h1
2
,{h1,h2}

+ χ
(g)
h1+1

2
,{h1+1,h2}

. (6.33)

Comparing (6.28) through (6.31), it is clear that the Ãγ characters can be written
in terms of the global multiplet characters. Specifically, the summands over a and b
in (6.30) and (6.31) are precisely the second lines of (6.28) and (6.29) for a = b = 0.
More generally, the summand in (6.30) is the second line of (6.28) with

h→ h+ k+a2 + (h1 + h2 + 1)a+ k−b2 + (h1 − h2 + 1)b,

h1 → h1 + k+a+ k−b, and h2 → h2 + k+a− k−b. (6.34)

The summand in (6.31) is more involved, but after expanding the denominators in
the first row of the determinant, it can be expressed as a sum of a massless global
character and an infinite series of massive global characters.

However, it is not very illuminating to write the Ãγ characters entirely in terms of
the global characters. Instead, we write analogues of (6.26) and (6.27) to illuminate
how the saturation of unitarity bound occurs in terms of the global constituents.

To do so, the following inequality is crucial:

k+a
2 + (h1 + h2 + 1)a+ k−b

2 + (h1 − h2 + 1)b− 1

2
k+a−

1

2
k−b

=k+a(a+
h1 + h2 + 1− 1

2
k+

k+

) + k−b(b+
h1 − h2 + 1− 1

2
k−

k−
)

≥0 (for a, b ∈ Z). (6.35)
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Equality holds if and only if a = b = 0. It is valid because the spectral flow constrains
isospins of Ãγ multiplets by{

1 ≤ h1 ± h2 + 1 = 2l± + 1 ≤ k±, (massive)

1 ≤ h1 ± h2 + 1 = 2l± + 1 ≤ k± + 1. (massless)
(6.36)

The inequality implies that only the contribution from a = b = 0 in (6.30) may
saturate the unitarity bound h ≥ h1

2
as the LHS does, and that only the contribution

from a = b = 0 in (6.31) may be massless global multiplets. Therefore, we can
generalize (6.26) and (6.27) into the large N = 4 characters as follows,

Ch
Ãγ
h,{h1,h2} =Ch

(g),N=4
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n=2

2∏
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(1− yε11 y
ε2
2 q
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)

+ (Ch
(g),N=4
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such that h′ − h′1

2
> h− h1

2
), (6.37)
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2
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=χ
(g),N=4
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2
,{h1,h2}

( ∞∏
n=2

2∏
i=1

∏
ε=±1

(1 + yεiq
n− 1

2 )

(1− qn)(1− qn−1)2 ·
∏

ε1,ε2=±1

(1− yε11 y
ε2
2 q

n−1)

)

+ (Ch
(g),N=4

h′,{h′1,h′2}
such that h′ >

h′1
2

). (6.38)

Again, from the fact that a common multiplicative factor appears on the right-hand-
sides of (6.37) and (6.38), it can be inferred that the global multiplet decomposition
of (6.32) is indeed compatible with (6.33).
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A Racah-Speiser Algorithm

In this appendix, we review the Racah-Speiser Algorithm that has been used through-
out this article. Similarly to [26], our focus will primarily be on how to use the
algorithm rather than its construction, and we refer the readers to [50] for the lat-
ter. Moreover, we are particularly interested in its application to special orthogonal
groups SO(N ).

Racah-Speiser Algorithm, in short, is an efficient algorithm that yields a tensor
product of two irreducible representations of a Lie group as a direct sum of irreducible
representations, while avoiding overly detailed relations between the weights best
described by Clebsch-Gordan coefficients.

Consider two irreducible representations of a Lie group Gr with rank r, denoted
by their highest weights λ1 and λ2. Our objective is to find irreducible representations
Λa with corresponding multiplicities mi, such that

λ1 ⊗ λ2 =
⊕
a

maΛa, (A.1)

where maΛa indicates that Λa appears ma times in the sum.

Let us denote by {µa2} (a = 1, · · · , dimλ2) the complete set of weights of the
irreducible representation λ2. Then, consider the set of weights {λ1 + µa2} (a =
1, · · · , dimλ2). Each weight belongs to one of three categories, and contributes to
the RHS of (A.1), after appropriate treatments:

• Some of the weights live in the Weyl chamber, that is, all of their Dynkin labels are
non-negative. These weights do not require any special treatment, and each of them
contributes to the RHS of (A.1) as a highest weight of an irreducible representation
Λa with multiplicity 1.

• Some of the weights do not live in the Weyl chamber, however, can be brought into
one by a series of reflections. Here, the reflection is defined as a shift by the Weyl
vector ρ, followed by a Weyl reflection and then a negative shift by the same Weyl
vector ρ. Using fundamental Dynkin labels, the ith Weyl reflection σi of a weight
[R1 · · ·Rr] can be written as

σi([R1 · · ·Rr]) = [R1 · · ·Rr]−Ri[Ai1 · · ·Air], (A.2)

where Aij denotes the Cartan matrix of gr. Incorporating the shifts by the Weyl
vector ρ = [1 · · · 1], the ith reflection is summarized as

ri([R1 · · ·Rr]) = [R1 · · ·Rr]− (Ri + 1)[Ai1 · · ·Air]. (A.3)
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Note that there are r different reflections, where r is the rank of the Lie group.
Number of reflections required to bring a weight into the Weyl chamber is defined
modulo 2. Then, each of the weights that belongs to this category contributes to
the RHS of (A.1) after being brought into the Weyl chamber via W reflections, with
multiplicity (−1)W .

• Finally, some multiplets are reflected into itself. By inspection of (A.3), one can see
that a weight belongs to this category if and only if at least one of its fundamental
Dynkin labels equals −1. Considering the −1 factor that entails each reflection,
these weights naturally have vanishing contribution to the RHS of (A.1).

To summarize, each weight in the set {λ1 + µa2} whose Dynkin labels do not
include −1, contributes to the RHS of (A.1) by an irreducible representation whose
highest weight equals itself, or a reflection of itself. If an odd number of reflection is
required in the process, it contributes negatively, cancelling a positive but identical
contribution from another weight. At the end, the cancellation is always complete and
there is no remaining contribution with a negative multiplicity. Note that exchanging
the role of two representations l1 and l2 gives the same result.

Throughout this article, the Racah-Speiser Algorithm is always performed in a
special orthogonal group SO(N ), with one of the two multiplicands being the vector
representation that represents the supercharges. In such cases, the minimum Dynkin
label that can appear in any of the weights in the set {λ1 + µa2} is −2, and the clas-
sification and treatment of the weights become extremely simple. That is, whenever
there is a Dynkin label equal to −1 we dispose the weight, and else if the kth label is
−2, we add the kth row of the Cartan matrix to the weight in accordance with (A.3)
to bring the kth label to 0 then to cancel with an identical weight. Of course, if the
reflection produces a −1 for another label, we dispose the weight.

Let us take the product [0 1 0]⊗ [1 0 0] in SO(7) as an example. The weight system
of the highest weight representation [1 0 0] is given by

[1 0 0], [−1 1 0], [0 − 1 2], [0 0 0], [0 1 − 2], [1 − 1 0], [−1 0 0], (A.4)

and thus the set of weights {λ1 + µa2} is

[1 1 0], [−1 2 0], [0 0 2], [0 1 0], [0 2 − 2], [1 0 0], [−1 1 0]. (A.5)

The second and seventh weights are disposed because of the Dynkin label −1. To
bring the fifth weight [0 2 − 2] into the Weyl chamber, we add the third row of the
Cartan matrix [0 − 1 2] to get [0 1 0], which cancels the fourth weight. Therefore,

[0 1 0]⊗ [1 0 0] = [1 1 0]⊕ [0 0 2]⊕ [1 0 0]. (A.6)
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When [0 1 0] is the primary of a multiplet, the product with vector [1 0 0] represents
states at the first level of the multiplet. The first piece [1 1 0] represents null states
when the unitarity bound is saturated, then we can identify the remaining parts as

∧2 V ⊗ ∧1V = ∧3V ⊕ ∧1V, (A.7)

in agreement with (3.11) and the discussion followed.
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