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Foreword

This is a write-up of a course on Supersymmetry I have been giving for several

years to PhD students attending the curriculum in Theoretical Particle Physics at

SISSA, the International School for Advanced Studies of Trieste.

There are several excellent books on supersymmetry and many very good lecture

courses are available on the archive. The ambition of this set of notes is not to add

anything new in this respect, but to offer a set of hopefully complete and self-

consistent lectures, which start from the basics and arrive to some of the more

recent and advanced topics. The price to pay is that the material is pretty huge.

The advantage is to have all such material in a single, possibly coherent file, and

that no prior exposure to supersymmetry is required.

There are many topics I do not address and others I only briefly touch. In

particular, I discuss only rigid supersymmetry (mostly focusing on four space-time

dimensions), while no reference to supergravity is given. Moreover, this is a the-

oretical course and phenomenological aspects are only briefly sketched. One only

chapter is dedicated to present basic phenomenological ideas, including a bird eyes

view on models of gravity and gauge mediation and their properties, but a thorough

discussion of phenomenological implications of supersymmetry would require much

more.

There is no bibliography at the end of the file. However, each chapter contains its

own bibliography where the basic references I used to prepare the material (mainly

books and/or reviews available on-line) are reported – including explicit indication

of the corresponding pages and chapters, so to let the reader have access to the

original font (and to let me give proper credit to authors).

I hope this effort can be of some help to as many students as possible!
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1 Supersymmetry: a bird eyes view

Why should a theoretical particle physicist ever know about supersymmetry?

Why embark on reading a book as long as this? There are several reasons why it’s

worth it. Let me mention the ones I think are the most relevant.

The first such reasons, at least from a chronological point of view, is also the

more phenomenological in nature. Back in 2012 the missing building block of the

Standard Model, the Higgs particle, has been discovered at CERN’s Large Hadron

Collider (LHC). This has been an impressive achievement, one of the greatest suc-

cess of the way we think Nature works at short distances and of the tool we use

to describe it, i.e. Quantum Field Theory (QFT). On the other hand, there ex-

ist many reasons - some of which we will review in the following - which suggest

that this cannot be the end of the story: new physics should show-up at energy

scales higher than those we have been able to have access to, so far (but way lower

than, say, the Planck scale). It turns out that of all possible options, the most

compelling and motivated scenario for such beyond the Standard Model physics is

supersymmetry. So, when it comes to try and understand how particles behave at

high energy, equivalently at shorter and shorter distance, supersymmetry is a piece

of basic knowledge any particle physicist should have. It should be said that at

the time of writing no supersymmetric particles have been discovered yet, nor we

have any indirect evidence for their existence. While very few high energy physicists

doubt that supersymmetry is actually realized in Nature, this lack of experimental

signature is putting the very idea of low energy supersymmetry into question, sug-

gesting at least some twist in the way we think about it. Things might be slightly

more involved than we imagined, supersymmetric particles might not be around the

corner but actually a few more steps ahead, implying that the way supersymmetry

tackles the different phenomenological problems it is expected to solve, might be

more tricky than we thought. However, I do not think we are yet at a stage to

declare supersymmetry phenomenology dead, and I keep on thinking there is still

room for such a phenomenological motivation for supersymmetry.

An even more profound role supersymmetry is believed to play in the dynamics

and ultimate structure of space-time, in the way gravity behaves at very high energy,

as high as the Planck scale, via string theory. The latter is the more successful

framework to describe all interactions, including gravity, in a way consistent with

quantum mechanics. However, differently from an ordinary quantum field theory,

string theory is inherently supersymmetric. From this point of view, no matter the

7



scale at which it might show up, supersymmetry looks as a crucial ingredient in our

understanding of the ultimate laws of Nature.

Supersymmetry is also at the core of what is probably the more amazing and

far-reaching discovery in theoretical physics in the last few decades, the celebrated

AdS/CFT correspondence. In short, this correspondence predicts that a (non-

gravitational) QFT in d space-time dimensions can actually be dual to a theory

of quantum gravity in one dimension higher. This means that the two theories are

equivalent at the full quantum level and, upon using a proper dictionary, all ob-

servables agree. The best studied (and solid) examples of such remarkable duality

involve supersymmetric QFTs in d-dimensional Minkowski space and (super)string

theory in d+ 1-dimensional anti-de Sitter space. This is why supersymmetric quan-

tum field theories have now also become a tool to study quantum gravity.

One other thing we, theoretical physicists, want to understand is the behavior

of quantum field theories at strong coupling. This is a regime where usual pertur-

bative techniques fail and we lack analytical tools. However, many phenomena we

observe in Nature are described by the behavior of quantum field theories in such

a regime, the most notable example being the way phenomena like confinement,

dynamical mass generation and chiral symmetry breaking are realized in Nature.

One spectacular property of supersymmetry is that it makes these phenomena more

accessible: supersymmetric quantum field theories turn out to have a much more

constrained dynamics with respect to non-supersymmetric ones, so constrained that

it is often possible to understand their strong coupling regime analytically. In this

regard, supersymmetry is seen (and is being used) as a theoretical laboratory to

study quantum field theories at strong coupling and get some intuition on how phe-

nomena like those mentioned above are realized in non-supersymmetric field theories

(as QCD). Remarkably, several ideas that had been proposed to account for such

phenomena and which could only be conjectural as far as ordinary quantum field

theories, have been analytically proven in the supersymmetric context, notable ex-

amples being that confinement is due to monopole condensation, or that at strong

coupling fermion bilinears condense. From this point of view, even setting aside its

phenomenological or formal applications, supersymmetry is useful in that is a way in

which we can deepen our understanding of QFT in general, seeing all of its features

at work in a well-controlled setting.

I won’t be able to discuss all these aspects in detail. The aim of this course is

just to provide the minimum foundation you need to get into this fascinating subject

8



and to give you some taste of some advanced topics. What to do with it then... will

be your choice.

In this first lecture I will give a brief overview on what is supersymmetry and why

it is interesting to study it. In the rest of the course I will try to provide (much) more

detailed answers to these two basic questions. I hope you will enjoy the journey!

1.1 What is supersymmetry?

Supersymmetry (SUSY) is a space-time symmetry mapping particles and fields of

integer spin (bosons) into particles and fields of half integer spin (fermions), and

viceversa. The generators Q act as

Q |Fermion〉 = |Boson〉 and viceversa (1.1)

From its very definition, this operator has two obvious but far-reaching properties

that can be summarized as follows:

• It changes the spin of a particle (meaning that Q transforms as a spin-1/2

particle) and hence its space-time properties. This is why supersymmetry is

not an internal symmetry but a space-time symmetry.

• In a theory where supersymmetry is realized, each one-particle state has at

least a superpartner. Therefore, in a SUSY world, instead of single particle

states, one has to deal with (super)multiplets of particle states.

Supersymmetry generators have specific commutation properties with other gener-

ators. In particular:

• Q commutes with translations and internal quantum numbers (e.g. gauge and

global symmetries), but it does not commute with Lorentz generators

[Q,Pµ] = 0 , [Q,G] = 0 , [Q,Mµν ] 6= 0 . (1.2)

This implies that particles belonging to the same supermultiplet have different

spin but same mass and same quantum numbers.

A supersymmetric field theory is a set of fields and a Lagrangian which exhibit such a

symmetry. As ordinary field theories, supersymmetric theories describe particles and
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interactions between them: SUSY manifests itself in the specific particle spectrum

a theory enjoys and in the way particles interact between themselves.

A supersymmetric model which is covariant under general coordinate transfor-

mations is called supergravity (SUGRA) model. In this respect, a non-trivial fact,

which again comes from the algebra, in particular from the (anti)commutation re-

lation

{Q,Q} ∼ Pµ , (1.3)

is that having general coordinate transformations is equivalent to have local SUSY,

the gauge mediator being a spin 3/2 particle, the gravitino. Hence local supersym-

metry and General Relativity are intimately tied together.

One can have theories with different number of SUSY generators Q: QI I =

1, ..., N . The number of supersymmetry generators, however, cannot be arbitrarily

large. The reason is that any supermultiplet contains particles with spin at least as

large as 1
4
N . Therefore, N can be at most as large as 4 for theories with maximal

spin 1 (gauge theories) and as large as 8 for theories with maximal spin 2 (gravity).

Thus stated, this statement is true in four space-time dimensions. Equivalent state-

ments can be made in higher/lower dimensions, where the dimension of the spinor

representation of the Lorentz group is larger/smaller (for instance, in 10 dimen-

sions, which is the natural dimension where superstring theory lives, the maximum

allowed N is 2). What really matters is the number of single state supersymmetry

generators, which is a dimension-independent statement.

Finally, notice that since supersymmetric theories automatically accomodate

both bosons and fermions, SUSY looks like the most natural framework where to

formulate a theory able to describe matter and interactions in a unified way.

1.2 Why supersymmetry?

Let us briefly outline a number of reasons why it might be meaningful (and useful)

to have such a bizarre and unconventional symmetry actually realized in Nature.

i. Theoretical reasons.

• A central role in quantum field theory is played by the S-matrix, which encodes

the (exact) information about physical processes between asymptotic states. A

natural question one might ask is what are the more general allowed continuous

symmetries of the S-matrix for a theory defined, say, in Minkowski space. More
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precisely, what are the possible symmetry generators that commute with the

S-matrix, that take single-particle states into single-particle states, and whose

action on multiparticle states is the direct sum of their action on single-particle

states. In 1967 Coleman and Mandula proved a theorem which says that

in a generic quantum field theory, under a number of (very reasonable and

physical) assumptions, like locality, causality, positivity of energy and finiteness

of number of particles, the only possible continuous such symmetries are those

generated by Poincaré group generators, Pµ and Mµν , plus some internal

symmetry group generators G commuting with them

[G, Pµ] = [G,Mµν ] = 0 , (1.4)

where the group G is a semi-simple group times abelian factors.

In other words, the most general symmetry group enjoyed by the S-matrix is

Poincaré × Internal Symmetries

The Coleman-Mandula theorem can be evaded by weakening one or more of

its assumptions. One such assumptions is that the symmetry algebra only in-

volves commutators, all generators being bosonic generators. This assumption

does not have any particular physical reason not to be relaxed. Allowing for

fermionic generators, which satisfy anti-commutation relations, it turns out

that the set of allowed symmetries can be enlarged. More specifically, in 1975

Haag, Lopuszanski and Sohnius showed that supersymmetry (which, as we will

see, is a very specific way to add fermionic generators to a symmetry algebra)

is the only possible such option. This makes the Poincaré group becoming Su-

perPoincaré. Therefore, the most general symmetry group the S-matrix can

enjoy turns out to be

SuperPoincaré × Internal Symmetries

From a purely theoretical view point, one could then well expect that Nature

might have realized all possible kind of allowed symmetries, given that we

already know this is indeed the case for all known symmetries, but supersym-

metry, i.e. the Standard Model.

• The history of our understanding of physical laws is an history of unifica-

tion. A famous example is Newton’s law of universal gravitation, which says

that one and the same equation describes the attraction a planet exert on
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another planet and on... an apple! Maxwell equations unify electromagnetism

with special relativity. Quantumelectrodynamics unifies electrodynamics with

quantum mechanics. And so on and so forth, till the formulation of the Stan-

dard Model which describes in an unified way all known non-gravitational

interactions. Supersymmetry (and its local version, supergravity), is the most

natural candidate to complete this long journey. It is a way not just to de-

scribe in a unified way all known interactions, but in fact to describe matter

and radiation all together. This sounds compelling, and from this view point

it sounds natural studying supersymmetry and its consequences.

• There is one more reason as to why one could expect that supersymmetry is out

there, after all. As already emphasized, as of today string theory stands up as

the most satisfactory theory where to describe quantum gravity in a consistent

way and, also, to describe all known interactions in a unified framework. So,

it might very well be that Nature, at high enough energy, is described by

string theory. Unlike a theory of fields, a theory of strings can only be made

consistent if it is supersymmetric. So, in this sense, supersymmetry is predicted

to be realized in Nature, if string theory is correct. Supersymmetry is in fact

one of the two more striking predictions of string theory (the other being the

existence of extra-dimensions).

Note: all above arguments suggest that supersymmetry maybe realized in Nature.

However, none of such arguments give any obvious indication on the energy scale at

which supersymmetry might show-up. In principle, this scale can be very high, as

high as the Planck scale. Below, we will present few arguments, more phenomeno-

logical in nature, which suggest that low energy supersymmetry (as low as TeV scale

or slightly higher) would be the preferred option.

ii. Phenomenological reasons.

• Naturalness and the hierarchy problem. Three out of four of the fundamental

interactions among elementary particles (strong, weak and electromagnetic)

are described by the Standard Model (SM). The typical scale of the SM, the

electroweak scale, is

Mew ∼ 250 GeV ⇐⇒ Lew ∼ 10−16 mm . (1.5)

The SM is very well tested up to such energies. This cannot be the end

of the story, though: for one thing, at high enough energies, as high as the

12



Planck scale Mpl, gravity becomes comparable with other forces and cannot

be neglected in elementary particle interactions. At some point, we need a

quantum theory of gravity. Actually, the fact that Mew/Mpl << 1 calls for

new physics at a much lower scale. One way to see this, is as follows. The

Higgs potential reads

V (H) ∼ µ2|H|2 + λ|H|4 where µ2 < 0 . (1.6)

Experimentally, the minimum of such potential, 〈H〉 =
√
−µ2/2λ, is at around

174GeV. This implies that the bare mass of the Higgs particle is roughly

around 100 GeV or so, m2
H = −µ2 ∼ (100GeV)2. What about radiative cor-

rections? Scalar masses are subject to quadratic divergences in perturbation

theory. The SM fermion coupling −λfHff induces a one-loop correction to

the Higgs mass as

∆m2
H ∼ − 2 λ2

f Λ2 (1.7)

due to diagrams as the one in Fig. 1.1. A natural physical UV cut-off Λ
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f̄

Figure 1.1: One-loop radiative correction to the Higgs mass due to fermion couplings.

should then be at around the TeV scale in order to protect the Higgs mass,

and the SM should then be seen as an effective theory valid up to energies

E ≤Meff ∼ TeV, well below the Planck scale.

What can be the new physics beyond such scale and how can such new physics

protect the otherwise perturbative divergent Higgs mass? New physics, if any,

may include new fermionic and bosonic fields, possibly coupling to the SM

Higgs. Each of these fields will give radiative contributions to the Higgs mass

of the kind above, hence, no matter what new physics will show-up at high

energy, the natural mass for the the Higgs field would always be of order the

UV cut-off of the theory, generically around ∼ Mpl. We would need a huge

fine-tuning to get it stabilized at ∼ 100GeV (we now know that the physical

Higgs mass is at 125 GeV, in fact)! This is known as the hierarchy problem: the
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experimental value of the Higgs mass is unnaturally smaller than its natural

theoretical value.

In principle, there is a very simple way out of this. This resides in the fact that

(as you should know from your QFT course!) scalar couplings provide one-loop

radiative contributions which are opposite in sign with respect to fermions.

Suppose there exist some new scalar, S, with Higgs coupling −λS|H|2|S|2.

Such coupling would also induce corrections to the Higgs mass via the one-

loop diagram in Figure 1.2.
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S

Figure 1.2: One-loop radiative correction to the Higgs mass due to scalar couplings.

Such corrections would have opposite sign with respect to those coming from

fermion couplings, that is

∆m2
H ∼ λS Λ2 . (1.8)

Therefore, if the new physics would be such that each quark and lepton of

the SM were accompanied by two complex scalars having the same Higgs

couplings of the quark and lepton, i.e. λS = |λf |2, then all Λ2 contributions

would automatically cancel, and the Higgs mass would be stabilized at its tree

level value! Such conspiracy, however, would be quite ad hoc, and not really

solving the fine-tuning problem mentioned above; rather, just rephrasing it.

A natural thing to invoke to have such magic cancellations would be to have a

symmetry protecting mH , right in the same way as gauge symmetry protects

the masslessness of spin-1 particles. A symmetry imposing to the theory the

correct matter content (and couplings) for such cancellations to occur. This is

exactly what supersymmetry is: in a supersymmetric theory there are fermions

and bosons (and couplings) just in the right way to provide exact cancellation

between diagrams like the ones above. In summary, supersymmetry is a very

natural and economic way (though not the only possible one) to solve the

hierarchy problem.

Known fermions and bosons cannot be partners of each other. For one thing,

we do not observe any degeneracy in mass in elementary particles that we
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know. Moreover, and this is possibly a stronger reason, quantum numbers do

not match: gauge bosons transform in the adjoint representations of the SM

gauge group while quarks and leptons in the fundamental or singlet representa-

tions. Hence, in a supersymmetric world, each SM particle should have a (yet

not observed!) supersymmetric partner, usually dubbed sparticle. Roughly,

the spectrum of such supersymmetric Standard Model (SSM) should be as

follows

SM particles SUSY partners

gauge bosons gauginos

quarks, leptons scalars

Higgs higgsino

Notice: the (down) Higgs has the same quantum numbers as the scalar part-

ner of neutrino and leptons, sneutrino and sleptons respectively, (H0
d , H

−
d )↔

(ν̃, ẽL). Hence, one can imagine that the Higgs is in fact a sparticle. This

cannot be. In such scenario, there would be phenomenological problems, e.g.

lepton number violation and (at least one) neutrino mass in gross violation of

experimental bounds.

In summary, the world we already had direct experimental access to, is not su-

persymmetric. If at all realized, supersymmetry should be a (spontaneously)

broken symmetry in the vacuum state chosen by Nature. However, in order to

solve the hierarchy problem without too much fine-tuning this scale should be

not much higher than 1 TeV. Including lower bounds from present day exper-

iments, it turns out that the SUSY breaking scale should be in the following

energy range

102 GeV ≤ SUSY breaking scale ≤ 103 − 104 GeV .

Let us emphasize that these bounds are just a crude and rough estimate, as

they depend very much on the specific SSM one is actually considering. In

particular, the upper bound can be made higher by enriching the structure

of the SSM in various ways, while keeping naturalness as a guiding principle.

In any event, these bounds are the basic reason why it was believed SUSY to

show-up at the LHC.

It is worth stressing that, as of today, no signal of supersymmetry has been

found at LHC or elsewhere and this has made the above upper bounds more
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and more in tension with experimental data, and in turn the very idea of

naturalness being reconsidered, at least in this context. There are ongoing

discussions on these aspects, including the idea that the resolution of the hi-

erarchy problem should not use naturalness as a guiding principle and that

it should be explained by something different, as for instance anthropic argu-

ments or something we do not yet fully understand.

• Gauge coupling unification. There is another reason to believe in (low energy)

supersymmetry; possibly stronger, from a phenomenological point of view,

than that provided by the hierarchy problem. Forget about supersymmetry for

a while, and consider the SU(3)×SU(2)L×U(1)Y SM as it stands. Interesting

enough, besides the EW scale, the SM contains in itself a new scale of order

1015 GeV. The three SM gauge couplings run according to RG equations like

4π

g2
i (µ)

=
bi
2π

ln
µ

Λi

i = 1, 2, 3 . (1.9)

At the EW scale, µ = MZ , there is a hierarchy between them, g1(MZ) <

g2(MZ) < g3(MZ). But RG equations make this hierarchy changing with the

energy scale. In fact, supposing there are no particles other than the SM

ones, at a much higher scale, MGUT ∼ 1015GeV, the three couplings tend to

meet! This naturally calls for a Grand Unified Theory (GUT), where the three

interactions are unified in a single one, two possible GUT gauge groups being

SU(5) and SO(10). The symmetry breaking pattern one should have in mind

would then be as follows

SU(5) → SU(3)× SU(2)L × U(1)Y → SU(3)× U(1)em

φ H

where φ is an heavy Higgs inducing spontaneous symmetry breaking at energies

MGUT ∼ 1015GeV, and H the SM light Higgs, inducing EW spontaneous

symmetry breaking around the TeV scale. This idea makes a lot of sense but

poses several problems. First, there is a new hierarchy problem (generically,

the SM Higgs mass is expected to get corrections from the heavy Higgs φ).

Second, there is a proton decay problem: some of the additional gauge bosons

predicted by the GUT group mediate baryon number violating transitions,

allowing processes as p→ e+ +π0. This makes the proton not fully stable and

it turns out that its expected lifetime in such GUT framework is violated by
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present experimental bounds. Finally, on a more theoretical side, if we do not

allow for new particles besides the SM ones to be there at some intermediate

scale, the three gauge couplings only approximately meet and it turns out

that this cannot be taken care of just by experimental uncertainties. The

latter is an unpleasant feature: small numbers are unnatural from a theoretical

view point, unless there are specific reasons (as symmetries) justifying their

otherwise unnatural smallness.

Remarkably, making the GUT supersymmetric (SGUT) solves all of these

problems in a glance! As already emphasized, with supersymmetry, the Higgs

mass is automatically protected. Moreover, just allowing for the minimal su-

persymmetric extension of the SM spectrum, known as MSSM, the three gauge

couplings do meet (more precisely, they miss but now well within experimen-

tal uncertainties). Finally, the GUT scale is raised enough, up to around 1016

GeV, so to let proton decay rate being compatible with experimental bounds.

So, supersymmetry makes the very natural idea of gauge coupling unification

via a GUT free of any apparent drawbacks.

Standard Model

Couplings

GeV

SU(2)

SU(3)

U(1)

…+ Supersymmetry

Couplings

GeV

SU(2)

SU(3)

U(1)
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Figure 1.3: On the left a qualitative picture describing the running of the three SM

couplings, which approximately meet at a scale of order 1015 GeV. On the right, the

same picture in a minimal supersymmetric extension of the SM, where the couplings

exactly meet (within experimental uncertainties) at a scale of order 1016 GeV.

Disclaimer: the MSSM is not the only possible option for supersymmetry

beyond the SM, just the most economic one. In the MSSM one just adds a
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superpartner to each SM particle, therefore introducing the higgsino, the wino,

the zino, together with all squarks and sleptons, and no more. [There is in

fact an exception. To have a meaningful model one has to double the Higgs

sector, and have two Higgs doublets. One reason for that is gauge anomaly

cancellation: the higgsinos are fermions in the fundamental representation of

SU(2)L hence two of them are needed, with opposite hypercharge, not to spoil

the anomaly-free properties of the SM. A second reason is that in the SM

the field H gives mass to down quarks and charged leptons while its charge

conjugate, Hc(∼ H) gives mass to up quarks. As we will see, in a SUSY model

H cannot enter in the potential, which is a function of H, only. Therefore,

in a supersymmetric scenario, to give mass to up quarks one needs a second,

independent Higgs doublet.] There exist many non-minimal supersymmetric

extensions of the Standard Model (which, in fact, are in better shape against

experimental constraints with respect to the MSSM). One can in principle

construct any SSM one likes. In doing so, however, several constraints are

to be taken into account. For example, it is not so easy to make such non-

minimal extensions keeping the nice exact gauge coupling unification enjoyed

by the MSSM.

It is worth stressing that gauge coupling unification and the hierarchy problem

are independent issues. Indeed, for the former to hold one does not need a

full supersymmetric spectrum at low energy. Only light fermionic partners are

needed. Scalar partners of SM fermions sit in full GUT families so they do

not contribute to gauge coupling unification; they just shift all couplings by

one and the same constant. At the price of forgetting about naturalness, this

observation opened-up the idea that the SUSY spectrum can be split - with

light fermions and heavy scalars - with supersymmetry being realized only at

high energy. This scenario goes under the name of Split Supersymmetry.

• Supersymmetry and dark matter. Another context where supersymmetry might

play an important role is cosmology. There are various evidences which indi-

cate that around 26% of the energy density in the Universe should be made

of dark matter, i.e. non-luminous and non-baryonic matter. The only SM

candidates for dark matter are neutrinos, but they are disfavored by available

experimental data (basically, neutrinos are too light to account for such an

enormous energy density). Supersymmetry provides instead a valuable and

very natural dark matter candidate: the neutralino. Neutralinos are mass
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eigenstates of a linear superposition of the supersymmetric partners of the

neutral Higgs and of the SU(2) and U(1) neutral gauge bosons

χi = αi1B̃
0 + αi2W̃

0 + αi3H̃
0
u + αi4H̃

0
d . (1.10)

In most SUSY frameworks the neutralino is the lightest supersymmetric par-

ticle (LSP), and fully stable, as a dark matter candidate should be.

iii. Supersymmetry as a theoretical laboratory for strongly coupled gauge dynamics.

• What if supersymmetry will turn out not to be the correct theory to describe

beyond the Standard Model physics? Or, worse, what if supersymmetry will

turn out not to be realized at all, in Nature (something we could hardly ever

being able to prove, in fact)? Interestingly, there is yet another reason which

makes it worth studying supersymmetric theories, independently from the role

supersymmetry might or might not play as a theory describing high energy

physics.

Let us consider non-abelian gauge theories, which strong interactions are an

example of. Every time a non-abelian gauge group remains unbroken at low

energy, we have to deal with strong coupling. The typical questions one should

try and answer (in QCD or similar theories) are:

– The bare Lagrangian is described in terms of quark and gluons, which

are UV degrees of freedom. Which are the IR (light) degrees of freedom

of QCD? What is the effective Lagrangian in terms of such degrees of

freedom?

– Strong coupling physics is very rich. Typically, one has to deal with

phenomena like confinement, charge screening, the generation of a mass

gap, etc.... Is there any theoretical understanding of such phenomena?

– It is believed that the QCD vacuum is populated by vacuum conden-

sates of fermion bilinears, 〈Ω|ψψ|Ω〉 6= 0, which induce chiral symmetry

breaking. What is the microscopic mechanism behind this phenomenon?

Most of the IR properties of QCD have eluded so far a clear understanding,

since we lack analytical tools to deal with strong coupling dynamics. Most

results come from lattice computations, but these do not furnish a first prin-

ciple understanding of the above phenomena. Moreover, they are formulated

in Euclidean space and are not suited to discuss, e.g. transport properties.
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Because of their nice renormalization properties, supersymmetric theories are

more constrained than ordinary field theories and let one have a better control

on strong coupling regimes, sometime. Therefore, one might hope to use them

as toy models where to study properties of more realistic theories, such as

QCD, in a more controlled way. Indeed, as we shall see, supersymmetric

theories do provide examples where some of the above strong coupling effects

can be studied exactly! This is possible due to powerful non-renormalizations

theorems supersymmetric theories enjoy, and because of a very special property

of supersymmetry, known as holomorphy, which in certain circumstances lets

one compute several non-perturbative contributions to the Lagrangian exactly.

We will spend a sizeable amount of time discussing these issues in the second

part of this course.

This is all we wanted to say in this introductory chapter, which should be re-

garded just as an invitation to supersymmetry and its fascinating world. Let us

end by just adding a curious historical remark. Supersymmetry did not first ap-

pear in ordinary four-dimensional quantum field theories but in string theory, at

the very beginning of the seventies. Only later it was shown to be possible to have

supersymmetry in ordinary quantum field theories.

1.3 Some useful references

The list of references in the literature is endless. Below I list some old and more

recent books plus some reviews which are available on the Archive dialing at

https://arxiv.org/multi?group=grp

Some of these references may be better than others, depending on the specific topic

one is interested in (and on personal taste). In preparing these lectures I have used

most of them, some more, some less. A collection of references is also given at

the end of each chapter, where I refer to some original papers, review articles or

textbooks that I found useful for preparing the material presented there. This will

help the reader to be guided if she/he wants to deepen any specific topics and have

access to the original font... and it also let me give proper credit to authors.

1. Historical references
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Oxford University Press (2006) 324 p.

• M. Dine
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• S. Cecotti

Supersymmetric field theories
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2 The supersymmetry algebra

In this lecture we will introduce the supersymmetry algebra, which is the al-

gebra encoding the set of symmetries a supersymmetric theory should enjoy. The

supersymmetry algebra is an extension of the Poincaré algebra so in the first two

sections we will start recalling a few facts about Lorentz and Poincaré algebras, the

corresponding groups and their representations. In particular, we will emphasize

the relation of the Lorentz algebra with the SU(2) and SL(2,C) algebras and define

(two component) spinors as the basic representation of the Lorentz group. In the

last section we will introduce the concept of graded Lie algebra and, finally, the

supersymmetry algebra, which is a specific instance of a graded Lie algebra.

2.1 Lorentz and Poincaré groups

The Lorentz group SO(1, 3) is the subgroup of matrices Λ of GL(4, R) with unit

determinant, detΛ = 1, and which satisfy the following relation

ΛTηΛ = η , (2.1)

where η is the (mostly minus in our conventions) flat Minkowski metric

ηµν = diag(+,−,−,−) . (2.2)

The Lorentz group has six generators (associated to space rotations and boosts)

enjoying the following commutation relations

[Ji, Jj] = iεijkJk , [Ji, Kj] = iεijkKk , [Ki, Kj] = −iεijkJk . (2.3)

Notice that while the Ji are hermitian, the boosts Ki are anti-hermitian, this being

related to the fact that the Lorentz group is non-compact (topologically, the Lorentz

group is R3×S3/Z2, the non-compact factor corresponding to boosts and the doubly

connected S3/Z2 corresponding to rotations). In order to construct representations

of this algebra it is useful to introduce the following complex linear combinations of

the generators Ji and Ki

J±i =
1

2
(Ji ± iKi) , (2.4)

where now the J±i are hermitian. In terms of J±i the algebra (2.3) becomes

[J±i , J
±
j ] = iεijkJ

±
k , [J±i , J

∓
j ] = 0 . (2.5)
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This shows that the Lorentz algebra is equivalent to two SU(2) algebras. As we will

see later, this simplifies a lot the study of representations of the Lorentz group, which

can be organized into (couples of) SU(2) representations. This isomorphism comes

from the theory of Lie Algebra which says that at the level of complex algebras

SO(4) ' SU(2)× SU(2) . (2.6)

The Lorentz algebra is a specific real form of that of SO(4). This difference can be

seen from the defining commutation relations (2.3): for SO(4) one would have had

a plus sign on the right hand side of the third such commutation relations. This

difference has some consequence when it comes to study representations. In particu-

lar, while in Euclidean space all representations are real or pseudoreal, in Minkowski

space complex conjugation interchanges the two SU(2)’s. This can also be seen at

the level of the generators J±i . In order for all rotation and boost parameters to be

real, one must take all the Ji and Ki to be imaginary and hence from eq. (2.4) one

sees that

(J±i )∗ = −J∓i . (2.7)

In terms of algebras, all this discussion can be summarized noticing that for the

Lorentz algebra the isomorphism (2.6) changes into

SO(1, 3) ' SU(2)× SU(2)∗ . (2.8)

For later purpose let us introduce a four-vector notation for the Lorentz genera-

tors, in terms of an anti-symmetric tensor Mµν defined as

Mµν = −Mνµ with M0i = Ki and Mij = εijkJk , (2.9)

where µ = 0, 1, 2, 3. In terms of such matrices, the Lorentz algebra reads

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ . (2.10)

Another useful relation one should bear in mind is the relation between the

Lorentz group and SL(2,C), the group of 2×2 complex matrices with unit determi-

nant. More precisely, there exists a homomorphism between SL(2,C) and SO(1, 3),

which means that for any matrix A ∈ SL(2,C) there exists an associated Lorentz

matrix Λ, and that

Λ(A) Λ(B) = Λ(AB) , (2.11)
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where A and B are SL(2,C) matrices. This can be proved as follows. Lorentz

transformations act on four-vectors as

x′µ = Λµ
ν x

ν , (2.12)

where the matrices Λ’s are a representation of the generators Mµν defined above.

Let us introduce 2 × 2 matrices σµ where σ0 is the identity matrix and σi are the

Pauli matrices defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.13)

Let us also define the matrices with upper indexes, σµ, as

σµ = (σ0, σi) = (σ0,−σi) . (2.14)

The matrices σµ are a complete set, in the sense that any 2× 2 complex matrix can

be written as a linear combination of them. For every four-dimensional vector xµ

let us construct the 2× 2 complex matrix

ρ : xµ → xµσµ = X . (2.15)

The matrix X is hermitian, since the Pauli matrices are hermitian, and has deter-

minant equal to xµxµ, which is a Lorentz invariant quantity. Therefore, ρ is a map

from Minkowski space to H, the space of 2× 2 hermitian complex matrices

M4 −→
ρ
H . (2.16)

Let us now act on X with a SL(2,C) transformation A

A : X → AXA† = X ′ . (2.17)

This transformation preserves the determinant since detA = 1 and also preserves

the hermicity of X since

X ′† = (AXA†)† = AX†A† = AXA† = X ′ . (2.18)

Therefore A is a map between H and itself

H −→
A

H . (2.19)
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We finally apply the inverse map ρ−1 to X ′ and get a four-vector x′µ. The inverse

map is defined as

ρ−1 =
1

2
Tr[• σ̄µ] (2.20)

(where, as we will later see more rigorously, as a complex 2 × 2 matrix σ̄µ is the

same as σµ). Indeed

ρ−1X =
1

2
Tr[Xσ̄µ] =

1

2
Tr[xνσ

ν σ̄µ] =
1

2
Tr[σν σ̄µ]xν =

1

2
2 ηµνxν = xµ . (2.21)

Assembling everything together we then get a map from Minkowski space into itself

via the following chain

M4 −→
ρ

H −→
A

H −→
ρ−1

M4

xν −→
ρ

xνσ
ν −→

A
Axνσ

νA† −→
ρ−1

1
2

Tr[Axνσ
νA†σ̄µ] = x′µ

(2.22)

This is nothing but a Lorentz transformation obtained by the SL(2,C) transforma-

tion A as

Λµ
ν(A) =

1

2
Tr[σ̄µAσνA

†] . (2.23)

It is now a trivial exercise, provided eq. (2.23), to prove the homomorphism (2.11).

Notice that the relation (2.23) can in principle be inverted, in the sense that

for a given Λ one can find a corresponding A ∈ SL(2,C). However, the relation is

not an isomorphism, since it is double valued. The isomorphism holds between the

Lorentz group and SL(2,C)/Z2 (in other words SL(2,C) is a double cover of the

Lorentz group). This can be seen as follows. Consider the 2× 2 matrix

M(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(2.24)

which corresponds to a Lorentz transformation producing a rotation by an angle θ

about the z-axis. Taking θ = 2π which corresponds to the identity in the Lorentz

group, one gets M = −1 which is a non-trivial element of SL(2,C). It then follows

that the elements of SL(2,C) are identified two-by-two under a Z2 transformation

in the Lorentz group. Note that this Z2 identification holds also in Euclidean space:

at the level of groups SU(2)×SU(2) = Spin(4), where Spin(4) is a double cover of

SO(4) as a group (it has an extra Z2).

The Poincaré group, ISO(1, 3), is the Lorentz group augmented by the space-

time translation generators Pµ. In terms of the generators Pµ and Mµν the Poincaré
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algebra reads

[Pµ, Pν ] = 0

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ (2.25)

[Mµν , Pρ] = −iηρµPν + iηρνPµ .

2.2 Spinors and representations of the Lorentz group

We are now ready to discuss representations of the Lorentz group. Thanks to the

isomorphism (2.8) they can be easily organized in terms of those of SU(2) which

can be labeled by the spins. In this respect, let us introduce two-component spinors

as the objects carrying the basic representations of SL(2,C). There exist two such

representations. A spinor transforming in the self-representationM is a two complex

component object

ψ =

(
ψ1

ψ2

)
(2.26)

where ψ1 and ψ2 are complex Grassmann numbers, which transform under a matrix

M∈ SL(2,C) as

ψα → ψ ′α =M β
α ψβ α, β = 1, 2 . (2.27)

The complex conjugate representation is defined from M∗, where M∗ means com-

plex conjugation, as

ψα̇ → ψ
′
α̇ =M∗ β̇

α̇ ψβ̇ α̇, β̇ = 1, 2 . (2.28)

These two representations are not equivalent, that is it does not exist a matrix C

such that M = CM∗C−1.

There are, however, other representations which are equivalent to the former.

Let us first introduce the invariant tensor of SU(2), εαβ, and similarly for the other

SU(2), εα̇β̇, which one uses to raise and lower spinorial indexes as well as to construct

scalars and higher spin representations by spinor contractions

εαβ = εα̇β̇ =

(
0 −1

1 0

)
εαβ = εα̇β̇ =

(
0 1

−1 0

)
. (2.29)

We can then define

ψα = εαβψβ , ψα = εαβψ
β , ψα̇ = εα̇β̇ψ

β̇
, ψ

α̇
= εα̇β̇ψβ̇ . (2.30)
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The convention here is that adjacent indexes are always contracted putting the

epsilon tensor on the left.

Using above conventions one can easily prove that ψ′α = (M−1T )αβψ
β. Since

M−1T ' M (the matrix C being in fact the epsilon tensor εαβ), it follows that

the self-representation ψα and the representation ψα are equivalent. A similar

story holds for ψ
α̇

which transforms in the representation M∗−1T , that is ψ
′ α̇

=

(M∗−1T )α̇
β̇
ψ
β̇
, which is equivalent to the complex conjugate representation ψα̇ (the

matrix C connectingM∗−1T andM∗ is now the epsilon tensor εα̇β̇). From our con-

ventions one can easily see that the complex conjugate matrix (M β
α )∗ (that is, the

matrix obtained from M β
α by taking the complex conjugate of each entry), once

expressed in terms of dotted indexes, is not M∗ β̇
α̇ , but rather (M∗−1T )α̇

β̇
. Finally,

lower undotted indexes are row indexes, while upper ones are column indexes. Dot-

ted indexes follow instead the opposite convention. This implies that (ψα)∗ = ψ
α̇
,

while under hermitian conjugation (which also includes transposition), we have, e.g.

ψα̇ = (ψα)†, as operator identity.

Due to the homomorphism between SL(2,C) and SO(1, 3), it turns out that the

two spinor representations ψα and ψ
α̇

are representations of the Lorentz group, and,

because of the isomorphism (2.8), they can be labeled in terms of SU(2) represen-

tations as

ψα ≡
(

1

2
, 0

)
(2.31)

ψ
α̇ ≡

(
0,

1

2

)
. (2.32)

To understand the identifications above just note that
∑

i(J
+
i )2 and

∑
i(J
−
i )2 are

Casimir of the two SU(2) algebras (2.5) with eigenvalues n(n + 1) and m(m + 1)

with n,m = 0, 1
2
, 1, 3

2
, . . . being the eigenvalues of J+

3 and J−3 , respectively. Hence

we can indeed label the representations of the Lorentz group by pairs (n,m) and

since J3 = J+
3 + J−3 we can identify the spin of the representation as n + m, its

dimension being (2n+ 1)(2m+ 1). The two spinor representations (2.31) and (2.32)

are just the basic such representations. Note, in passing, that the representations ψα

and ψα are nothing but the fundamental and anti-fundamental representations of

SU(2). That they are equivalent is specific to SU(2) and does not hold for SU(N)

with N > 2.

Recalling that Grassmann variables anticommute (that is ψ1χ2 = −χ2ψ1, ψ1χ2̇ =
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−χ2̇ψ1, etc...) we can now define a scalar product for spinors as

ψχ ≡ ψαχα = εαβψβχα = −εαβψαχβ = −ψαχα = χαψα = χψ (2.33)

ψχ ≡ ψα̇χ
α̇ = εα̇β̇ψ

β̇
χ α̇ = −εα̇β̇ψ

α̇
χ β̇ = −ψ α̇

χα̇ = χα̇ψ
α̇

= χψ . (2.34)

Under hermitian conjugation we have

(ψχ)† = (ψαχα)† = χ †α ψ
α† = χα̇ψ

α̇
= χψ . (2.35)

In our conventions, undotted indexes are contracted from upper left to lower right

while dotted indexes from lower left to upper right (this rule does not apply when

raising or lowering indexes with the epsilon tensor). Recalling eq. (2.17), namely

that under SL(2,C) the matrix X = xµσµ transforms as AXA† and that the index

structure of A and A† is A β
α and A∗β̇α̇, respectively, we see that σµ naturally has a

dotted and an undotted index and can be contracted with an undotted and a dotted

spinor as

ψσµχ ≡ ψασµαα̇χ
α̇ . (2.36)

Similarly one can define σ̄µ as

σ̄ µ α̇α = εα̇β̇εαβσµ
ββ̇

= (σ0, σi) , (2.37)

and define the product of σ̄µ with a dotted and an undotted spinor as

ψσ̄µχ ≡ ψα̇σ̄
µ α̇βχβ . (2.38)

A number of useful identities one can prove are

ψαψβ = −1

2
εαβψψ , (θφ) (θψ) = −1

2
(φψ) (θθ)

χσµψ = −ψσ̄µχ , χσµσ̄νψ = ψσν σ̄µχ

(χσµψ)† = ψσµχ , (χσµσ̄νψ)† = ψσ̄νσµχ

(θψ)
(
θσµφ

)
= −1

2
(θθ)

(
ψσµφ

)
,
(
θψ
) (
θσ̄µφ

)
= −1

2

(
θθ
) (
ψσ̄µφ

)

(φψ) · χα̇ =
1

2
(φσµχ) (ψσµ)α̇ . (2.39)

As some people might be more familiar with four component spinor notation,

let us close this section by briefly mentioning the connection with Dirac spinors. In

the Weyl representation Dirac matrices read

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
(2.40)
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and a Dirac spinor is

ψ =

(
ψα

χ α̇

)
implying r(ψ) =

(
1

2
, 0

)
⊕
(

0,
1

2

)
. (2.41)

This shows that a Dirac spinor carries a reducible representation of the Lorentz

algebra. Using this four component spinor notation one sees that

(
ψα

0

)
and

(
0

χ α̇

)
(2.42)

are Weyl (chiral) spinors, with chirality +1 and −1, respectively. One can easily

show that a Majorana spinor (ψC = ψ) is a Dirac spinor such that χα = ψα. To

prove this, just recall that in four component notation the conjugate Dirac spinor

is defined as ψ = ψ†γ0 and the charge conjugate is ψC = Cψ T
with the charge

conjugate matrix in the Weyl representation being

C =

(
−εαβ 0

0 −εα̇β̇

)
. (2.43)

Finally, Lorentz generators are

Σµν =
i

2
γµν , γµν =

1

2
(γµγν − γνγµ) =

1

2

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)
(2.44)

while the 2-index Pauli matrices are defined as

(σµν) β
α =

1

4

(
σµαγ̇(σ̄

ν)γ̇β − (µ↔ ν)
)
, (σ̄µν)α̇β̇ =

1

4

(
(σ̄µ)α̇γσν

γβ̇
− (µ↔ ν)

)
(2.45)

From the last equations one then sees that iσµν acts as a Lorentz generator on ψα

while iσ̄µν acts as a Lorentz generator on ψ
α̇
.

2.3 The supersymmetry algebra

As we have already mentioned, a no-go theorem provided by Coleman and Mandula

implies that, under certain assumptions (locality, causality, positivity of energy,

finiteness of number of particles, etc...), the only possible symmetries of the S-matrix

are, besides C,P, T

• Poincaré symmetries, with generators Pµ,Mµν
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• An internal symmetry group G with generators Bl being Lorentz scalars and

with the structure of a compact semi-simple group times U(1) factors.

The full symmetry algebra hence reads

[Pµ, Pν ] = 0 (2.46)

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ (2.47)

[Mµν , Pρ] = −iηρµPν + iηρνPµ (2.48)

[Bl, Bm] = if n
lm Bn (2.49)

[Pµ, Bl] = 0 (2.50)

[Mµν , Bl] = 0 , (2.51)

where f n
lm are structure constants and the last two commutation relations simply

say that the algebra is the direct sum of the Poincaré algebra and the algebra G

spanned by the generators Bl, that is

ISO(1, 3)×G , (2.52)

at the level of groups.

The Coleman-Mandula theorem can be evaded by weakening one (or more) of

its assumptions. The theorem assumes, in particular, that the symmetry algebra

involves only commutators but there are not any specific physical requirements for

this to be needed. Haag, Lopuszanski and Sohnius generalized the notion of Lie

algebra to include algebraic systems involving, in addition to commutators, also

anticommutators. This extended Lie algebra goes under the name of graded Lie

algebra. Allowing for a graded Lie algebra weakens the Coleman-Mandula theorem

enough to allow for supersymmetry, which is nothing but a specific graded Lie

algebra.

Let us first define what a graded Lie algebra is. Recall that a Lie algebra is a

vector space (over some field, say R or C) which enjoys an additional composition

rule, called product

[ , ] : L× L→ L , (2.53)
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with the following properties

[v1, v2] ∈ L

[v1, (v2 + v3)] = [v1, v2] + [v1, v3]

[v1, v2] = −[v2, v1]

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0 ,

where vi are elements of the algebra. A graded Lie algebra of grade n is a vector

space

L = ⊕i=ni=0 Li (2.54)

where Li are all vector spaces, and the product

[ , } : L× L→ L (2.55)

has the following properties

[Li, Lj} ∈ Li+j mod n+ 1

[Li, Lj} = −(−1)ij[Lj, Li}

[Li, [Lj, Lk}}(−1)ik + [Lj, [Lk, Li}}(−1)ij + [Lk, [Li, Lj}}(−1)jk = 0 .

From the first such properties it follows that L0 is a Lie algebra while all other Li’s

with i 6= 0 are not. The second property is called supersymmetrization while the

third one is nothing but the generalization to a graded algebra of the well known

Jacobi identity any algebra satisfies.

The supersymmetry algebra is a graded Lie algebra of grade one, namely

L = L0 ⊕ L1 , (2.56)

where L0 is the Poincaré algebra and L1 = (QI
α , Q

I

α̇) with I = 1, . . . , N , where

QI
α , Q

I

α̇ is a set of N +N = 2N anticommuting fermionic generators transforming

in the representations (1
2
, 0) and (0, 1

2
) of the Lorentz group, respectively. Haag,

Lopuszanski and Sohnius proved that this is the only possible consistent extension

of the Poincaré algebra, given the other (very physical) assumptions one would not

like to relax of the Coleman-Mandula theorem. For instance, generators with spin

higher than one, like those transforming in representation (1
2
, 1), cannot be there.

The generators of L1 are spinors and hence they transform non-trivially under

the Lorentz group. Therefore, supersymmetry is not an internal symmetry. Rather
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it is an extension of Poincaré space-time symmetries. Moreover, acting on bosons,

the supersymmetry generators transform them into fermions (and viceversa). Hence,

this symmetry naturally mixes radiation with matter.

The supersymmetry algebra, besides the commutators (2.46)-(2.51), contains the

following (anti)commutators

[
Pµ, Q

I
α

]
= 0 (2.57)

[
Pµ, Q

I

α̇

]
= 0 (2.58)

[
Mµν , Q

I
α

]
= i(σµν)

β
α Q

I
β (2.59)

[
Mµν , Q

Iα̇
]

= i(σ̄µν)
α̇
β̇
Q
Iβ̇

(2.60)

{
QI
α, Q

J

β̇

}
= 2σµ

αβ̇
Pµδ

IJ (2.61)

{
QI
α, Q

J
β

}
= εαβZ

IJ , ZIJ = −ZJI (2.62)
{
Q
I

α̇, Q
J

β̇

}
= εα̇β̇(ZIJ)∗ (2.63)

Let us discuss a bit the above structure.

• Eqs. (2.59) and (2.60) follow from the fact that QI
α and Q

I

α̇ are spinors of

the Lorentz group, recall eq.(2.45). From these same equations, recalling that

M12 = J3, one also sees that

[
J3, Q

I
1

]
=

1

2
QI

1 ,
[
J3, Q

I
2

]
= −1

2
QI

2 . (2.64)

Taking the hermitian conjugate of the above relations we get

[
J3, Q

I

1̇

]
= −1

2
Q
I

1̇ ,
[
J3, Q

I

2̇

]
=

1

2
Q
I

2̇ (2.65)

and so we see that QI
1 and Q

I

2̇ rise the z-component of the spin by half unit

while QI
2 and Q

I

1̇ lower it by half unit.

• Eq.(2.61) has a very important implication. First notice that given the trans-

formation properties of QI
α and Q

J

β̇ under Lorentz transformations, their an-

ticommutator should be symmetric under I ↔ J and should transform as

(
1

2
, 0

)
⊗
(

0,
1

2

)
=

(
1

2
,
1

2

)
. (2.66)
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The obvious such candidate is Pµ which is the only generator in the algebra

with such transformation properties (the δIJ in eq. (2.61) is achieved by diag-

onalizing an arbitrary symmetric matrix and rescaling the Q’s and the Q’s).

Hence, the commutator of two supersymmetry transformations is a translation.

In theories with local supersymmetry (i.e. where the spinorial infinitesimal pa-

rameter of the supersymmetry transformation depends on xµ), the commutator

is an infinitesimal translation whose parameter depends on xµ. This is noth-

ing but a theory invariant under general coordinate transformation, namely a

theory of gravity! The upshot is that theories with local supersymmetry auto-

matically incorporate gravity, the two things are tight together. Such theories

are called supergravity theories, SUGRA for short.

• Eqs.(2.57) and (2.58) are not at all obvious. Compatibility with Lorentz sym-

metry would imply the right hand side of eq. (2.57) to transform as
(

1

2
,
1

2

)
⊗
(

1

2
, 0

)
=

(
0,

1

2

)
⊕
(

1,
1

2

)
, (2.67)

and similarly for eq. (2.58). The second term on the right hand side cannot

be there, due to the theorem of Haag, Lopuszanski and Sohnius which says

that the only allowed fermionic generators in the algebra are supersymmetry

generators, which are spin 1
2
. In other words, there cannot be a consistent

extension of the Poincaré algebra including generators transforming in the

(1, 1
2
) under the Lorentz group. Still, group theory arguments by themselves

do not justify eqs.(2.57) and (2.58) but rather something like

[
Pµ, Q

I
α

]
= CI

Jσµαβ̇ Q
Jβ̇

(2.68)
[
Pµ, Q

I

α̇

]
= (CI

J)∗σ̄µ α̇β Q
Jβ . (2.69)

where CI
J is an undetermined matrix. We want to prove that this matrix

vanishes. Let us first consider the generalized Jacobi identity which the super-

symmetry algebra should satisfy and let us apply it to the (Q,P, P ) system.

We get
[[
QI
α, Pµ

]
, Pν
]

+
[
[Pµ, Pν ] , Q

I
α

]
+
[[
Pν , Q

I
α

]
, Pµ
]

=

−CI
Jσµαβ̇

[
Q
Jβ̇
, Pν

]
+ CI

Jσν αβ̇

[
Q
Jβ̇
, Pµ

]
=

CI
JC

J ∗
K σµαβ̇ σ̄

β̇
ν γQ

Kγ − CI
JC

J ∗
K σν αβ̇ σ̄

β̇
µ γQ

Kγ =

4 (C C∗)IK (σµν)αγQ
Kγ = 0 .
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This implies that

C C∗ = 0 , (2.70)

as a matrix equation. Note that this is not enough to conclude, as we would,

that C = 0. For that, we also need to show, in addition, that C is symmetric.

To this aim we have to consider other equations, as discussed below.

• Let us now consider eqs. (2.62) and (2.63). As for the first, from Lorentz

representation theory we would expect

(
1

2
, 0

)
⊗
(

1

2
, 0

)
= (0, 0)⊕ (1, 0) , (2.71)

which explicitly means

{
QI
α, Q

J
β

}
= εαβZ

IJ + εβγ(σ
µν) γ

α MµνY
IJ . (2.72)

The ZIJ , being Lorentz scalars, should be some linear combination of the

internal symmetry generators Bl and, given the antisymmetric properties of

the epsilon tensor under α↔ β, they should be anti-symmetric under I ↔ J .

On the contrary, given that εβγ(σ
µν) γ

α is symmetric in α↔ β, the matrix Y IJ

should be symmetric under I ↔ J .

Let us now consider the generalized Jacobi identity between (Q,Q, P ), which

can be written as

[{QIα, QJβ}, Pµ] = {QIα, [QJβ, Pµ]}+ {QJβ, [QIα, Pµ]} . (2.73)

If one multiplies it by εαβ, only the anti-symmetric part under α ↔ β of the

left hand side survives, which, from eq. (2.72), can be seen to vanish since the

matrix ZIJ commutes with Pµ. So we get

0 = εαβ{QIα, [QJβ, Pµ]}+ εαβ{QJβ, [QIα, Pµ]}

= εαβC K
I σµββ̇{QJα, Q

β̇

K} − εαβC K
J σµββ̇{QIα, Q

β̇

K} ∼ (CIJ − CJI) σ̄ γ̇αµ σναγ̇Pν

= 2 (CIJ − CJI)Pµ ,

which implies that the matrix C is symmetric. So the previously found equa-

tion C C∗ = 0 can be promoted to CC† = 0, which in turn implies C = 0 and

hence eq. (2.57). A similar rationale leads to eq. (2.58).
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Let us now come back to eq. (2.62), which we have not yet proven. To do so,

we should plug eq. (2.57) into the Jacobi identity (2.73), getting

[{QIα, QJβ}, Pµ] = 0 , (2.74)

which implies, by (2.72), that the matrix Y IJ vanishes because Pµ does not

commute with Mµν . This finally proves eq. (2.62). Similarly, one can prove

eq. (2.63), which is just the hermitian conjugate of (2.62).

What about the commutation relations between supersymmetry generators and in-

ternal symmetry generators, if any? In general, the Q’s will carry a representation

of the internal symmetry group G. So one expects something like

[
QI
α, Bl

]
= (bl)

I
JQ

J
α (2.75)

[
QIα̇, Bl

]
= −QJα̇(bl)

J
I . (2.76)

The second commutation relation comes from the first under hermitian conjugation,

recalling that the bl are hermitian, because so are the generators Bl. The largest

possible internal symmetry group which can act non trivially on the Q’s is thus

U(N), and this is called the R-symmetry group (the relation between a Lie algebra

with generators S and the corresponding Lie group with elements U is U = eiS;

hence hermitian generators, S† = S, correspond to unitary groups, U † = U−1).

In presence of non-vanishing central charges one can prove that the R-symmetry

group reduces to USp(N), the compact version of the symplectic group Sp(N),

USp(N) ∼= U(N) ∩ Sp(N).

As already noticed, the operators ZIJ are Lorentz scalars and should then cor-

respond to some linear combination of the internal symmetry group generators Bl

of the compact Lie algebra G, say

ZIJ = al|IJBl . (2.77)

Using the above equation, the supersymmetry algebra (2.57)-(2.63) and eqs. (2.75)

and (2.76) one can actually prove that the Z’s are central charges, that is they

commute with the whole supersymmetry algebra, and within themselves. Contrary

to what one could naively think, this does not imply they are ineffective. Indeed,

central charges are not numbers but quantum operators and their value may vary

from state to state. For a supersymmetric vacuum state, which is annihilated by all

supersymmetry generators, they are trivially realized, recall eqs. (2.62) and (2.63).
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However, they do not need to vanish in general. For instance, as we will see in the

subsequent chapter, massive representations are very different if ZIJ vanishes or if

it is non-trivially realized on the representation.

We have been using two-component spinor notation in writing the supersymme-

try algebra, but one can equivalently use four-component notation. In four com-

ponent notation the 2N supersymmetry generators QI
α , Q

I

α̇ constitute a set of N

Majorana spinors

QI =

(
QI
α

Q
Iα̇

)
Q
I

=
(
QIα Q

I

α̇

)
(2.78)

and the supersymmetry algebra reads

{QI , Q
J} = 2δIJγµPµ − i I ImZIJ − γ5 ReZIJ

[QI , Pµ] = 0 [QI ,Mµν ] =
i

2
γµνQ

I [QI , R] = iγ5Q
I . (2.79)

Depending on what one needs to do, one notation can be more useful than the other.

In the following, we will stick to two component spinor notation, unless otherwise

stated.

Let us close this section with a few more comments. First, if N = 1 there are

only two supersymmetry generators, which correspond to one Majorana spinor in

four component notation. In this case we then speak of unextended or minimal

supersymmetry (and there are no non-trivial central charges). For N > 1 we have

extended supersymmetry (and there can now be a central extension of the supersym-

metry algebra). From an algebraic point of view there is no limit to N . However, as

we will see later, increasing N the theory must contain particles of increasing spin.

In particular we have

• N ≤ 4 for theories without gravity (spin ≤ 1)

• N ≤ 8 for theories with gravity (spin ≤ 2)

Therefore, to avoid theories with spin higher than two (that is focusing on local,

interacting theories) N = 8 is an upper bound. As discussed in the previous chap-

ter, thus stated this statement is true in four space-time dimensions. Equivalent

statements can be made in higher/lower dimensions, where the dimension of the

spinor representation of the Lorentz group is bigger/smaller. What matters is the

number of single state supersymmetry generators, which is a dimension-independent

statement (e.g., N = 8 corresponds to 32 supercharges).
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For N = 1 the R-symmetry group is just U(1) (one can see it from the Jacobi

identity between (Q,B,B) which implies that the f n
lm are trivially realized on the

supersymmetry generators). In this case the hermitian matrices bl are just real

numbers and by rescaling the generators Bl one gets

[R,Qα] = −Qα , [R,Qα̇] = +Qα̇ . (2.80)

This implies that in minimal supersymmetric models, supersymmetric partners

(which are related by the action of the Q’s) have different U(1) R-charge. In par-

ticular, given eqs. (2.80), if a particle has R = 0 then its superpartner has R = ±1.

An important physical consequence of this property is that in a theory where the

R-symmetry is preserved, the lightest supersymmetric particle (LSP) is stable.

Let us finally comment on the relation between two and four component spinor

notations, when it comes to supersymmetry. In four component notation the 2N

supersymmetry generators QI
α , Q

I

α̇ constitute a set of N Majorana spinors

QI =

(
QI
α

Q
Iα̇

)
Q
I

=
(
QIα Q

I

α̇

)
(2.81)

and the supersymmetry algebra reads

{QI , Q
J} = 2δIJγµPµ − i I ImZIJ − γ5 ReZIJ

[QI , Pµ] = 0 [QI ,Mµν ] =
i

2
γµνQ

I [QI , R] = iγ5Q
I . (2.82)

Depending on what one needs to do, one notation can be more useful than the other.

In the following, we will stick to two component spinor notation, unless otherwise

stated.

2.4 Exercises

1. Prove the following spinor identities

ψαψβ = −1

2
εαβψψ , (θφ) (θψ) = −1

2
(φψ) (θθ)

χσµψ = −ψσ̄µχ , χσµσ̄νψ = ψσν σ̄µχ

(χσµψ)† = ψσµχ , (χσµσ̄νψ)† = ψσ̄νσµχ

(θψ)
(
θσµφ

)
= −1

2
(θθ)

(
ψσµφ

)
,
(
θψ
) (
θσ̄µφ

)
= −1

2

(
θθ
) (
ψσ̄µφ

)

(φψ) · χα̇ =
1

2
(φσµχ) (ψσµ)α̇ .
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2. The operators ZIJ are linear combinations of the internal symmetries gener-

ators Bl, eq. (2.77). Hence, they commute with Pµ and Mµν . Prove that ZIJ

are in fact central charges of the supersymmetry algebra, namely that it also

holds that

[
ZIJ , Bl

]
= 0 ,

[
ZIJ , ZKL

]
= 0 ,

[
ZIJ , QK

α

]
= 0 ,

[
ZIJ , Q

K

α̇

]
= 0 .
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3 Representations of the supersymmetry algebra

The goal of this chapter is to construct representations of the supersymmetry

algebra. Let us first recall how things go for the Poincaré algebra. The Poincaré

algebra (2.25) has two Casimir operators (i.e. two operators which commute with

all generators)

P 2 = PµP
µ and W 2 = WµW

µ , (3.1)

where W µ = 1
2
εµνρσPνMρσ is the so-called Pauli-Lubanski vector. Casimir operators

are useful to classify irreducible representations of a group. In the case of the

Poincaré group such representations are nothing but what we usually call particles.

Let us see how this is realized for massive and massless particles, respectively.

Let us first consider a massive particle with mass m and go to the rest frame,

Pµ = (m, 0, 0, 0). In this frame it is easy to see that the two Casimir reduce to

P 2 = m2 and W 2 = −m2j(j + 1) where j is the spin. The second equality can be

proven by noticing that WµP
µ = 0 which implies that in the rest frame W0 = 0.

Therefore, in the rest frame Wµ = (0, 1
2
εi0jkmM jk) from which one immediately

gets W 2 = −m2 ~J2. So we see that massive particles are distinguished by their mass

and their spin.

Let us now consider massless particles. In the rest frame Pµ = (E, 0, 0, E). In

this case we have that P 2 = 0 and W 2 = 0, and W µ = M12P
µ. In other words, the

two operators are proportional for a massless particle, the constant of proportionality

being M12 = ±j, the helicity. For these representations the spin is then fixed and

the different states are distinguished by their energy and by the sign of the helicity

(e.g. the photon is a massless particle with two helicity states, ±1).

Now, as a particle is an irreducible representation of the Poincaré algebra, we call

superparticle an irreducible representation of the supersymmetry algebra. Since the

Poincaré algebra is a subalgebra of the supersymmetry algebra, it follows that any

irreducible representation of the supersymmetry algebra is a representation of the

Poincaré algebra, which in general will be reducible. This means that a superparticle

corresponds to a collection of particles, the latter being related by the action of the

supersymmetry generators QI
α and Q

I

α̇ and having spins differing by units of half.

Being a multiplet of different particles, a superparticle is often called supermultiplet.

Before discussing in detail specific representations of the supersymmetry algebra,

let us list three generic properties which any of such representations enjoy, all of them

having very important physical implications.
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1. As compared to the Poincaré algebra, in the supersymmetry algebra P 2 is

still a Casimir, but W 2 is not anymore (this follows from the fact that Mµν

does not commute with the supersymmetry generators). Therefore, particles

belonging to the same supermultiplet have the same mass and different spin,

since the latter is not a conserved quantum number of the representation. The

mass degeneracy between bosons and fermions is something we do not observe

in known particle spectra; this implies that supersymmetry, if at all realized,

must be broken in Nature.

Note: what’s above is true in Minkowski space. If one wants to discuss super-

symmetry in, e.g. anti-de Sitter space, things are different. In anti-de Sitter

space the generators Pµ do not commute with Lorentz generators, nor with

the supercharges. The consequence is that P 2 is not anymore a Casimir but

rather C = M2 +αP 2 is, with α a dimension-full quantity proportional to the

anti-de Sitter radius squared. So, in anti-de Sitter space states belonging to

the same multiplet do have the same C-eigenvalue but different P 2 eigenvalue,

so different masses.

2. In a supersymmetric theory the energy of any state is always ≥ 0. Consider

an arbitrary state |φ〉. Using the supersymmetry algebra, we easily get

〈φ|
{
QI
α, Q

I

α̇

}
|φ〉 = 2σµαα̇〈φ|Pµ|φ〉 δII

(
Q
I

α̇ = (QI
α)†
)

= 〈φ|
(
QI
α(QI

α)† + (QI
α)†QI

α

)
|φ〉

= ||(QI
α)†|φ〉||2 + ||QI

α|φ〉||2 ≥ 0 .

The last inequality follows from positivity of the Hilbert space. Summing over

α = α̇ = 1, 2 and recalling that Tr σµ = 2δµ0 we get

4 〈φ|P0|φ〉 ≥ 0 , (3.2)

as anticipated.

3. A supermultiplet contains an equal number of bosonic and fermionic d.o.f.,

nB = nF . Define a fermion number operator

(−1)NF =

{
−1 fermionic state

+1 bosonic state
(3.3)
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NF can be taken to be twice the spin, NF = 2s. Such an operator, when acting

on a bosonic, respectively a fermionic state, gives indeed

(−1)NF |B〉 = |B〉 , (−1)NF |F 〉 = −|F 〉 . (3.4)

We want to show that Tr (−1)NF = 0 if the trace is taken over a finite dimen-

sional representation of the supersymmetry algebra. First notice that

{
QI
α, (−1)NF

}
= 0→ QI

α(−1)NF = −(−1)NFQI
α . (3.5)

Using this property and the cyclicity of the trace one easily sees that

0 = Tr
(
−QI

α(−1)NFQ
J

β̇ + (−1)NFQ
J

β̇Q
I
α

)

= Tr
(

(−1)NF
{
QI
α, Q

J

β̇

})
= 2σµ

αβ̇
Tr
[
(−1)NF

]
Pµδ

IJ .

Summing on I, J and choosing any Pµ 6= 0 it follows that Tr (−1)NF = 0,

which implies that nB = nF .

In the following, we discuss (some) representations in detail. Since the mass is

a conserved quantity in a supermultiplet, it is meaningful distinguishing between

massless and massive representations. Let us start from the former.

3.1 Massless supermultiplets

Let us first assume that all central charges vanish, i.e. ZIJ = 0 (we will see later that

this is the only relevant case, for massless representations). Notice that in this case

it follows from eqs. (2.62) and (2.63) that all Q’s and all Q’s anticommute among

themselves. The steps to construct the irreps are as follows:

1. Go to the rest frame where Pµ = (E, 0, 0, E). In such frame we get

σµPµ =

(
0 0

0 2E

)
(3.6)

Plugging this into eq. (2.61) we get

{
QI
α, Q

J

β̇

}
=

(
0 0

0 4E

)

αβ̇

δIJ −→
{
QI

1, Q
J

1̇

}
= 0 . (3.7)

44



Due to the positiveness of the Hilbert space, this implies that both QI
1 and Q

I

1̇

are trivially realized. Indeed, from the equation above we get

0 = 〈φ|
{
QI

1, Q
I

1̇

}
|φ〉 = ||QI

1|φ〉||2 + ||QI

1̇|φ〉||2 , (3.8)

whose only solution is QI
1 = Q

I

1̇ = 0. We are then left with just QI
2 and Q

I

2̇,

hence only half of the generators.

2. From the non-trivial generators we can define

aI ≡
1√
4E

QI
2 , a†I ≡

1√
4E

Q
I

2̇ . (3.9)

These operators satisfy the anticommutation relations of a set of N creation

and N annihilation operators

{
aI , a

†
J

}
= δIJ , {aI , aJ} = 0 ,

{
a†I , a

†
J

}
= 0 . (3.10)

These are the basic tools we need in order to construct representations of the

supersymmetry algebra. Recall that in our conventions the operators QI
2 and

Q
I

2̇ (and hence aI and a†I) lower respectively raise the helicity of half unit on

the state they act on.

3. To construct a representation, one can start by choosing a state annihilated

by all aI ’s (known as the Clifford vacuum): such state will carry some irrep

of the Poincaré algebra. Besides having m = 0, it will carry some helicity λ0,

and we call it |E, λ0〉 (|λ0〉 for short). For this state

aI |λ0〉 = 0 . (3.11)

Note that this state can be either bosonic or fermionic, and should not be

confused with the actual vacuum of the theory, which is the state of minimal

energy: the Clifford vacuum is a state with quantum numbers (E, λ0) and

which satisfies eq. (3.11).

4. The full representation (aka supermultiplet) is obtained acting on |λ0〉 with

the creation operators a†I as follows

|λ0〉 , a†I |λ0〉 ≡ |λ0 +
1

2
〉I , a†Ia

†
J |λ0〉 ≡ |λ0 + 1〉IJ ,

. . . , a†1a
†
2 . . . a

†
N |λ0〉 ≡ |λ0 +

N

2
〉 .
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Hence, starting from a Clifford vacuum with helicity λ0, the state with highest

helicity in the representation has helicity λ = λ0+N
2

. Due to the antisymmetry

in I ↔ J , at helicity level λ = λ0 + k
2

we have

# of states with helicity λ0 +
k

2
=

(
N

k

)
, (3.12)

where k = 0, 1, . . . , N . The total number of states in the irrep will then be

N∑

k=0

(
N

k

)
= 2N =

(
2N−1

)
B

+
(
2N−1

)
F
, (3.13)

half of them having integer helicity (bosons), half of them half-integer helicity

(fermions).

5. CPT flips the sign of the helicity. Therefore, unless the helicity is distributed

symmetrically around 0, which is not the case in general, a supermultiplet is

not CPT-invariant. This means that in order to have a CPT-invariant the-

ory one should in general double the supermultiplet we have just constructed

adding its CPT conjugate. This is not needed if the supermultiplet is self-

CPT conjugate, which can happen only if λ0 = −N
4

(in this case the helicity

is indeed distributed symmetrically around 0).

Let us now apply the above procedure and construct several (physically inter-

esting) irreps of the supersymmetry algebra.

N = 1 supersymmetry

• Matter multiplet (aka chiral multiplet):

λ0 = 0 →
(

0,+
1

2

)
⊕
CPT

(
−1

2
, 0

)
. (3.14)

The degrees of freedom of this representation are those of one Weyl fermion

and one complex scalar (on shell; recall we are constructing supersymmetry

representations on states!). Note that since the two representations above

are exchanged by CPT, the two spin 0 states have opposite parity, so if one

corresponds to a scalar the other is a pseudoscalar. In a N = 1 supersymmetric

theory this is the representation where matter sits; this is why such multiplets

are called matter multiplets.
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• Gauge (or vector) multiplet:

λ0 =
1

2
→

(
+

1

2
,+1

)
⊕
CPT

(
−1,−1

2

)
. (3.15)

The degrees of freedom are those of one vector and one Weyl fermion. This

is the representation one needs to describe gauge fields in a supersymmetric

theory. Notice that since internal symmetries (but the R-symmetry) commute

with the supersymmetry algebra, the representation the Weyl fermion should

transform under gauge transformations should be the same as the vector field,

i.e. the adjoint. Hence, usual Standard Model matter (quarks and leptons)

cannot be accommodated in these multiplets.

Although in this course we will focus on rigid supersymmetry and hence not con-

sider supersymmetric theories with gravity, let us list for completeness (and future

reference) also representations containing states with higher helicity.

• Spin 3/2 multiplet:

λ0 = 1 →
(

1,+
3

2

)
⊕
CPT

(
−3

2
,−1

)
. (3.16)

The degrees of freedom are those of a spin 3/2 particle and one vector.

• Graviton multiplet:

λ0 =
3

2
→

(
+

3

2
,+2

)
⊕
CPT

(
−2,−3

2

)
. (3.17)

The degrees of freedom are those of a graviton, which has helicity 2, and a

particle of helicity 3/2, known as the gravitino (the supersymmetric partner

of the graviton).

Representations constructed from a Clifford vacuum with higher helicity will in-

evitably include states with helicity higher than 2. Hence, if one is interested in

interacting local field theories, the story stops here. Recall that in an interacting

local field theory massless particles with helicity higher than 1
2

should couple to con-

served quantities at low momentum. The latter are: conserved internal symmetry

generators for (soft) massless vectors, supersymmetry generators for (soft) gravitinos

and four-vector Pµ for (soft) gravitons. The supersymmetry algebra does not allow

for generators other than these ones. Hence, supermultiplets with helicity λ ≥ 5
2

are
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ruled out: they may exist, but they cannot have couplings that survive in the low

energy limit.

The above discussion also implies that in a local interacting field theory a spin

3/2 particle is inevitably associated to local supersymmetry and hence, in turn,

with gravity. Therefore, there is no much meaning for a theory without the graviton

multiplet and a spin 3/2 multiplet, which would be a non-interacting one in fact. In

other words, the physical gravitino is the one sitting in the graviton multiplet.

N = 2 supersymmetry

• Matter multiplet (aka hypermultiplet):

λ0 = −1

2
→

(
−1

2
, 0, 0,+

1

2

)
⊕
CPT

(
−1

2
, 0, 0,+

1

2

)
. (3.18)

The degrees of freedom are those of two Weyl fermions and two complex

scalars. This is where matter sits in a N = 2 supersymmetric theory. In

N = 1 language this representation corresponds to two chiral multiplets with

opposite chirality (CPT flips the chirality).

Note: in principle this representation enjoys the necessary condition to be

CPT self-conjugate, λ0 = −N
4

. However, a closer look shows that an hyper-

multiplet cannot be self-conjugate (that’s why we added the CPT conjugate

representation). The way the various states are constructed out of the Clifford

vacuum shows that under the compact part of the R-symmetry group, SU(2),

the helicity 0 states behave as a doublet while the fermionic states are sin-

glets. If the representation were CPT self-conjugate the two scalar degrees of

freedom would have been both real. Such states cannot form a SU(2) doublet

since a two-dimensional representation of SU(2) is pseudoreal, and hence the

doublet should be complex.

• Gauge (or vector) multiplet:

λ0 = 0 →
(

0,+
1

2
,+

1

2
,+1

)
⊕
CPT

(
−1,−1

2
,−1

2
, 0

)
. (3.19)

The degrees of freedom are those of one vector, two Weyl fermions and one

complex scalar. In N = 1 language this is just a vector and a matter multiplet

(both transforming in the adjoint representation of the gauge group).
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• Spin 3/2 multiplet:

λ0 = −3

2
→

(
−3

2
,−1,−1,−1

2

)
⊕
CPT

(
+

1

2
,+1,+1,+

3

2

)
. (3.20)

The degrees of freedom are those of a spin 3/2 particle, two vectors and one

Weyl fermion.

• Graviton multiplet:

λ0 = −2 →
(
−2,−3

2
,−3

2
,−1

)
⊕
CPT

(
+1,+

3

2
,+

3

2
,+2

)
. (3.21)

The degrees of freedom are those of a graviton, two gravitini and a vector,

which is usually called graviphoton in the supergravity literature.

N = 4 supersymmetry

• Gauge (or vector) multiplet:

λ0 = −1 →
(
−1,4×−1

2
,6× 0,4×+

1

2
,+1

)
. (3.22)

The degrees of freedom are those of a vector, four Weyl fermions and three

complex scalars. In N = 1 language this corresponds to one vector multiplet

and three matter multiplets (all transforming in the adjoint). Notice that

this multiplet is CPT self-conjugate. This time there are no issues with R-

symmetry transformations. The vector is a singlet under SU(4), fermions

transform under the fundamental representation, and scalars under the two

times anti-symmetric representation, which is the fundamental of SO(6), and

is real. The fact that the representation under which scalars transform is real

also explains why for N = 4 supersymmetry, the R-symmetry group is not

U(4) but just SU(4).

For N = 4 it is not possible to have matter in the usual sense, since the number

of supersymmetry generators is too high to avoid helicity one states. Therefore,

N = 4 supersymmetry cannot accommodate fermions transforming in fundamental

representations. Besides the vector multiplet there are of course also representations

with higher helicity, but we refrain to report them here.

One might wonder why we did not discuss N = 3 representations. This is just

because as far as non-gravitational theories are concerned, N = 3 and N = 4 are
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physically equivalent: when constructing N = 3 representations with maximal spin

one, once the CPT conjugate representation is added (in this case we cannot satisfy

the condition λ0 = −N
4

) one ends up with a multiplet which is the same as the

N = 4 vector multiplet. N = 4 and N = 3 differ only for representations including

states with spin higher than one.

N > 4 supersymmetry

In this case one can easily get convinced that it is not possible to avoid gravity

since there do not exist representations with helicity smaller than 3
2

when N > 4.

Hence, theories with N > 4 are all supergravity theories. It is interesting to note

that N = 8 supergravity allows only one possible representation with highest helic-

ity smaller than 5
2

and that for higher N one cannot avoid states with helicity 5
2

or

higher. Therefore, N = 8 is an upper bound on the number of supersymmetry gen-

erators, as far as interacting local field theories are concerned. Beware: as stated, all

these statements are valid in four space-time dimensions. The way to count super-

symmetries depends on the dimension of space-time, since spinorial representations

get bigger, the more the dimensions. Obviously, completely analogous statements

can be made in higher dimensions. For instance, in ten space-time dimensions the

maximum allowed supersymmetry to avoid states with helicity 5
2

or higher is N = 2.

A dimension-independent statement can be made counting the number of single

component supersymmetry generators. Using this language, the maximum allowed

number of supersymmetry generators for non-gravitational theories is 16 (which is

indeed N = 4 in four dimensions) and 32 for theories with gravity (which is N = 8

in four dimensions).

The table below summarizes all results we have discussed.

N λmax = 1 λmax = 1
2 λmax = 2 λmax = 3

2

8 none none
[
(2), 8(3

2), 28(1), 56(1
2), 70(0)

]
none

6 none none
[
(2), 6(3

2), 16(1), 26(1
2), 30(0)

] [
(3

2), 6(1), 15(1
2), 20(0)

]

5 none none
[
(2), 5(3

2), 10(1), 11(1
2), 10(0)

] [
(3

2), 6(1), 15(1
2), 20(0)

]

4
[
(1), 4(1

2), 6(0)
]

none
[
(2), 4(3

2), 6(1), 4(1
2), 2(0)

] [
(3

2), 4(1), 7(1
2), 8(0)

]

3
[
(1), 4(1

2), 6(0)
]

none
[
(2), 3(3

2), 3(1), (1
2)
] [

(3
2), 3(1), 3(1

2), 2(0)
]

2
[
(1), 2(1

2), 2(0)
] [

2(1
2)4(0)

] [
(2), 2(3

2), (1)
] [

(3
2), 2(1), (1

2)
]

1
[
(1), (1

2)
] [

(1
2)2(0)

] [
(2), (3

2)
] [

(3
2), (1)

]
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The numbers in parenthesis represent the helicity, while others represent the multi-

plicity of states with given helicity. Notice that, as anticipated, any supermultiplet

contains particles with spin at least as large as 1
4
N . The N = 7 theory has not been

reported since that allows only the graviton multiplet which, once CPT invariance

is required, is identical to the N = 8 graviton multiplet. In other words, at the

interacting level, N = 7 supergravity is the same as N = 8 supergravity (this is the

same argument we used for not discussing N = 3 representations as far as maximal

spin one is concerned).

A final, very important comment regards chirality. The Standard Model is a

chiral theory, in the sense that there exist particles in the spectrum whose chiral

and anti-chiral components transform differently under the gauge group (weak in-

teractions are chiral). When it comes to supersymmetric extensions, it is easy to

see that only N = 1 theories allow for chiral matter. That N = 1 irreps can be

chiral is obvious: Wess-Zumino multiplets contain one single Weyl fermion. There-

fore, in N = 1 supersymmetric extensions of the Standard Model one can accom-

modate left and right components of leptons and quarks in different multiplets,

which can then transform differently under the SU(2) gauge group. What about

N > 1 supersymmetry? First notice that all helicity 1
2

states belonging to multi-

plets containing vector fields should transform in the adjoint representation of the

gauge group, which is real. Therefore, the only other representation which might

allow for helicity 1
2

states transforming in fundamental representations is the N = 2

hypermultiplet. However, as already noticed, a hypermultiplet contains two Wess-

Zumino multiplets with opposite chirality. Since for any internal symmetry group G,

we have that the corresponding algebra commutes with the SuperPoincaré algebra,

[G, SuperPoincaré] = 0, these two Wess-Zumino multiplets transform in the same

representation under G. Therefore, N = 2 is non-chiral: left and right components

of leptons and quarks would belong to the same matter multiplet and could not

transform differently under the SU(2) Standard Model gauge group. Summarizing,

if extended supersymmetry is realized in Nature, it should be broken at some high

enough energy scale to an effective N = 1 model. This is why at low energy people

typically focus just on N = 1 extensions of the Standard Model.
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3.2 Massive supermultiplets

The logical steps one should follow for massive representations are similar to previous

ones. There is however one important difference. Let us consider a state with mass

m in its rest frame, Pµ = (m, 0, 0, 0). One can easily see that, differently from

the massless case, the number of non-trivial generators gets not diminished: there

remain the full set of 2N creation and 2N annihilation operators. Indeed, eq. (2.61)

is now {
QI
α, Q

J

β̇

}
= 2mδαβ̇ δ

IJ (3.23)

and no supersymmetric generators are trivially realized. This means that, gener-

ically, massive representations are longer than massless ones. Another important

difference is that we better speak of spin rather than helicity, now. A given Clifford

vacuum will be defined by mass m and spin j, with j(j + 1) being the eigenvalue

of J2. Hence, the Clifford vacuum will have itself degeneracy 2j + 1 since j3 takes

values from −j to +j.

N = 1 supersymmetry

The annihilation and creation operators, satisfying the usual oscillator algebra,

now read

a1,2 ≡
1√
2m

Q1,2 , a†1,2 ≡
1√
2m

Q1̇,2̇ . (3.24)

As anticipated these are twice those for the massless case. Notice that a†1 lowers the

spin by half unit while a†2 raises it. We can now define a Clifford vacuum as a state

with mass m and spin j0 which is annihilated by both a1 and a2 and act with the

creation operators to construct the corresponding massive representations.

• Matter multiplet:

j = 0 →
(
−1

2
, 0, 0′,+

1

2

)
. (3.25)

The number of degrees of freedom is the same as the massless case (but with

no need to add any CPT conjugate, now). It is worth noticing that also in the

present case the two spin 0 states, 0′ and 0, as one can easily proof playing a bit

with the operator algebra. Summarizing, the multiplet is made of a massive

complex scalar and a massive Majorana fermion.

• Gauge (or vector) multiplet:

j =
1

2
→

(
−1,2×−1

2
,2× 0,2×+

1

2
, 1

)
. (3.26)
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The degrees of freedom one ends-up with are those of one massive vector, one

massive Dirac fermion and one massive real scalar (recall the comment after

eq. (3.23), which in this case implies that the Clifford vacuum, j = 1
2

contains

two single particle states, with j3 component |1/2〉 and | − 1/2〉, respectively).

The representation is longer than that of a massless vector supermultiplet, as

expected. Notice, though, that the number of these degrees of freedom is the

same as those of a massless vector multiplet plus one massless matter multiplet.

This is reassuring, since we do not like massive vectors to start with, and only

allow Higgs-like mechanisms to generate masses for vector fields in a unitary

and renormalizable theory. One can generate massive vector multiplets by a

generalization of the Higgs mechanism, in which a massless vector multiplet

eats-up a chiral multiplet while preserving supersymmetry.

Since we cannot really make sense of massive particles with spin higher than one

(and we are not much interested in supergravity theories in this course, anyway),

we stop here and move to extended supersymmetry representations.

Extended supersymmetry

Let us then consider N > 1 and allow also for non-trivial central charges. A

change of basis in the space of supersymmetry generators turns out to be useful for

the following analysis. Since the central charge matrix ZIJ is antisymmetric, with

a U(N) rotation one can put it in the standard block-diagonal form

ZIJ =




0 Z1

−Z1 0

0 Z2

−Z2 0

. . . . . .

. . . . . .

0 ZN/2

−ZN/2 0




(3.27)
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(we have assumed for simplicity that N is even). One can now define

a1
α =

1√
2

(
Q1
α + εαβ(Q2

β)†
)

b1
α =

1√
2

(
Q1
α − εαβ(Q2

β)†
)

a2
α =

1√
2

(
Q3
α + εαβ(Q4

β)†
)

b2
α =

1√
2

(
Q3
α − εαβ(Q4

β)†
)

. . . = . . .

. . . = . . .

aN/2α =
1√
2

(
QN−1
α + εαβ(QN

β )†
)

bN/2α =
1√
2

(
QN−1
α − εαβ(QN

β )†
)

which satisfy the oscillator algebra

{
arα, (a

s
β)†
}

= (2m+ Zr) δrs δαβ
{
brα, (b

s
β)†
}

= (2m− Zr) δrs δαβ
{
arα, (b

s
β)†
}

=
{
arα, a

s
β

}
= · · · = 0 .

where r, s = 1, . . . , N/2. As anticipated, we have now 2N creation operators

(arα)† , (brα)† r = 1, . . . , N/2 , α = 1, 2 (3.28)

which we can use to construct massive representations starting from some given

Clifford vacuum. Notice that, from their very definition, it follows that creation

operators with spinorial index α = 1 lower the spin by half unit, while those with

spinorial index α = 2 raise it.

Several important comments are in order. Due to the positiveness of the Hilbert

space, from the oscillator algebra above one can show that

2m ≥ |Zr| , r = 1, . . . ,
N

2
. (3.29)

This means that the mass of a given representation is always larger (or equal) than

(half) the modulus of any central charge eigenvalue. The first important consequence
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of the bound (3.29) is that for massless representations (for which the left hand side

is identically 0) the central charges are always trivially realized, i.e. ZIJ = 0. That’s

why we did not discuss massless multiplets with non vanishing central charges in

the previous section.

There is another important consequence of the bound (3.29). Suppose none of

the central charge eigenvalues saturate it, namely 2m > |Zr| , ∀r. Proceeding as

before, starting from a Clifford vacuum λ0 annihilated by all operators arα, b
r
α and

acting on it with the creation operators (3.28) one creates 22N states, 22N−1 bosonic

and 22N−1 fermionic, with spin going from λ0 − N/2 to λ0 + N/2. Therefore, the

representation has states with spins spanning 2N + 1 half-integer values.

Suppose instead that some Zr saturate the bound (3.29), say k ≤ N/2 of them

do so. Looking at the oscillator algebra one immediately sees that k b-type operators

become trivial (we are supposing, without loss of generality, that all Zr are posi-

tive), and the dimension of the representation diminishes accordingly. The multiplet

contains only 22(N−k) states now. These are called short multiplets. The extreme

case is when all Zr saturate the bound (k = N/2). In this case half the creation

operators trivialize and we get a multiplet, known as ultrashort, whose dimension is

identical to that of a massless one: the number of states is indeed 2N , 2N−1 bosonic

and 2N−1 fermionic.

The upshot of the discussion above is that in theories with extended supersym-

metry one can have massive multiplets with different lengths:

long multiplets 22N =
(
22N−1

)
B

+
(
22N−1

)
F

short multiplets 22N−2k =
(
22(N−k)−1

)
B

+
(
22(N−k)−1

)
F

ultra-short multiplets 22N−2N
2 = 2N =

(
2N−1

)
B

+
(
2N−1

)
F

.

As it happens for massless representations, states belonging to some representa-

tion of supersymmetry also transform into given representations of the R-symmetry

group, since the supercharges do so. One should just remember that the R-symmetry

group is U(N) in absence of central charges but reduces to USp(N) if central charges

are present.

N = 2 supersymmetry

In this case we have one only central charge eigenvalue, Z, and we have four

oscillators aα and bα (we have dropped the now inessential upper index r). In
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the following, the Clifford vacuum will be defined as a state annihilated by all

undaggered operators, unless otherwise stated.

Let us first consider the case of long multiplets, namely a situation in which the

bound (3.29) is not saturated. In this case we cannot have massive matter since

we have too many creation operators to avoid spins higher than 1
2
. So the only

possibility are (massive) vector multiplets.

• Gauge (or vector) multiplet:

j = 0 →
(
−1,4×−1

2
,6× 0,4×+

1

2
, 1

)
. (3.30)

The degrees of freedom correspond to a massive vector, two Dirac fermions,

and five real scalars. Their number equals that of a massless N = 2 vector

multiplet and a massless N = 2 hypermultiplet. As before, such massive

vector multiplet should be thought of as obtained via some supersymmetric

Higgs-like mechanism.

Let us now consider shorter representations. Since in this case there is only one

central charge eigenvalue, Z, the only possible short representation is in fact the

ultrashort, whose length should equal that of the corresponding massless represen-

tation. The only non-trivial oscillators are now aα, since the bα are trivially realized

(we are assuming Z > 0)..

• Matter multiplet (short rep.):

j = 0 →
(

2×−1

2
,4× 0,2×+

1

2

)
, (3.31)

(where the doubling of states arises for similar reasons as for the massless hy-

permultiplet). The degrees of freedom are those of one massive Dirac fermion

and two massive complex scalars. As expected the number of degrees of free-

dom equals those of a massless hypermultiplet.

• Vector multiplet (short rep.):

j =
1

2
→

(
−1,2×−1

2
,2× 0,2×+

1

2
,+1

)
. (3.32)

The degrees of freedom are those of one massive vector, one massive Dirac

fermion and one massive real scalar. While rearranged differently in terms of
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fields, the number of bosonic and fermionic degrees of freedom equals that of

a massless vector multiplet. What’s interesting here is that a massive ultra-

short vector multiplet can arise dynamically, via some Higgs-like mechanism

involving only a massless vector multiplet, something peculiar to N = 2 su-

persymmetry and related to the fact that massless vector multiplets contain

scalars, and can then self-Higgs.

N = 4 supersymmetry

For N = 4 supersymmetry long multiplets are not allowed since the number

of states (actually 256!) would include at least spin 2 states; such a theory would

then include a massive spin 2 particle which is not believed to be possible in a local

quantum field theory. What are are possible are short multiplets, actually only

the ultrashort, whose field content amounts to rearrange the fields characterizing a

massless vector multiplet into massive states: one would get a massive vector, two

Dirac fermions and five real scalars. The construction is left to the reader.

Let us finally notice that all short multiplets are supersymmetry preserving,

meaning they are annihilated by the supersymmetry generators whose correspond-

ing central charge eigenvalue saturates the bound. In general one can then have
1
N
, 2
N
, . . . , N/2

N
supersymmetry preserving multiplets (the numerator is nothing but

the integer k previously defined). For instance, ultrashort multiplets, for which

k = N/2, are 1
2

supersymmetry preserving states. These multiplets accommodate

states which have very important properties at the quantum level; most notably,

it turns out that they are more protected against quantum corrections with re-

spect to states belonging to long multiplets. Short multiplets are also called BPS,

since the bound (3.29) is very much reminiscent of the famous Bogomonlyi-Prasad-

Sommerfeld bound which is saturated by solitons, tipically. This is not just a mere

analogy, since the bound (3.29) is in fact not just an algebraic relation but it has a

very concrete physical meaning: it is nothing but a specific BPS-like bound. Indeed,

short multiplets often arise as solitons in supersymmetric field theories, and central

charges correspond to physical (topological) charges. We will see concrete examples

of BPS states later in this course.

3.3 Representation on fields: a first try

So far we have discussed supersymmetry representations on states. However, we

would like to discuss supersymmetric field theories, eventually. Therefore, we need
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to construct supersymmetric representations in terms of multiplets of fields rather

than multiplets of states. In principle, following our previous strategy this can be

done quite easily.

Let us start focusing on N = 1 supersymmetry. To build a representation of the

supersymmetry algebra on fields, we start from some field φ(x) for which

[
Qα̇, φ(x)

]
= 0 . (3.33)

The field φ is the analogous of the Clifford vacuum |λ0〉 we used previously, the

ground state of the representation. Similarly as before, acting on this ground state

φ(x) with the supersymmetry generator Qα, we can generate new fields out of it, all

belonging to the same supermultiplet.

For definiteness, we choose φ(x) to be a scalar field, but one can also have ground

states which are fields with some non-trivial tensor structure, as we will later see.

Not much of what we want to say here depends on this choice.

The first thing to notice is that the scalar field φ(x) is actually complex. Suppose

it were real. Then, taking the hermitian conjugate of eq. (3.33) one would have

obtained

[Qα, φ(x)] = 0 . (3.34)

One can now use the generalized Jacobi identity for (φ,Q,Q) and get

[
φ(x),

{
Qα, Qα̇

}]
+
{
Qα,

[
Qα̇, φ(x)

]}
−
{
Qα̇, [φ(x), Qα]

}
= 0

−→ 2σµ [φ(x), Pµ] = 0 −→ [Pµ, φ(x)] ∼ ∂µφ(x) = 0 , (3.35)

which should then imply that the field is actually a constant (not a field, really!).

So better φ(x) to be complex. In this case eq. (3.34) does not hold, but rather

[Qα, φ(x)] ≡ ψα(x) . (3.36)

This automatically defines a new field ψα belonging to the same representation (since

φ is a scalar, ψ is a Weyl spinor). The next step is to see whether acting with su-

persymmetry generators on ψα gives new fields or just derivatives (or combinations)

of fields already present in the representation. In principle we have

{Qα, ψβ(x)} = Fαβ(x) (3.37)

{
Qα̇, ψβ(x)

}
= Xα̇β(x) . (3.38)
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Enforcing the generalized Jacobi identity on (φ,Q,Q), and using eq. (3.36), after

some trivial algebra one gets

Xα̇β =
{
ψβ(x), Qα̇

}
= 2σµβα̇ [Pµ, φ] ∼ ∂µφ , (3.39)

which implies that Xα̇β is not a new field but just the space-time derivative of the

scalar field φ. Let us now enforce the generalized Jacobi identity on (φ,Q,Q). Since

the Q’s anticommute (recall we are considering N = 1 supersymmetry and hence

there are no central charges) one simply gets

{Qα, [Qβ, φ]} − {Qβ, [φ,Qα]} = 0 −→ Fαβ + Fβα = 0 . (3.40)

This says that the field Fαβ is antisymmetric under α↔ β, which implies that

Fαβ(x) = εαβF (x) . (3.41)

No other constraints are imposed on F by other consistency conditions. So we find

here a new complex scalar field F . Again, we should now ask whether acting on it

with supersymmetry generators produces new fields. We get

[Qα, F ] = λα (3.42)

[
Qα̇, F

]
= χα̇ . (3.43)

Using the generalized Jacobi identities for (ψ,Q,Q) and (ψ,Q,Q), one can easily

prove that λα is actually vanishing and that χα̇ is proportional to the space-time

derivative of the field ψ. So no new fields in this case: after a certain number of

steps the representation closes. The multiplet of fields we have found is then

(φ, ψ, F ) . (3.44)

If φ is a scalar field, as we have supposed here, this multiplet is a matter multiplet

since it contains particles with spin 0 and 1/2 only. It is called chiral multiplet and

it is indeed the field theory counterpart of the chiral multiplet of states we have

constructed before. Notice that the equality of the number of fermionic and bosonic

states for a given representation still holds: we are now off-shell, and the spinor ψα

has four degrees of freedom; this is the same number of bosonic degrees of freedom,

two coming from the scalar field φ and two from the scalar field F

(Reφ, Imφ,ReF, ImF )B , (Reψ1, Imψ1,Reψ2, Imψ2)F . (3.45)
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While we see the expected degeneracy between bosonic and fermonic degrees of free-

dom, they do not match those of the chiral multiplet of states we have constructed

before, which are just 2B +2F . This is because we are off-shell, now. Going on-shell,

the 4 fermionic degrees of freedom reduce to just 2 propagating degrees of freedom,

due to Dirac equation. The same sort of reduction should occur for the bosonic

degrees of freedom, in order to match the 2B + 2F on-shell condition. But Klein-

Gordon equation does not diminish the number of independent degrees of freedom!

What happens is that F turns out to be a non-dynamical auxiliary field: as we will

see when constructing Lagrangians, the equation of motion for F simply tells that

this scalar field is not an independent field but rather a (specific) function of other

fields, F = F (φ, ψ) . This is not specific to the chiral multiplet we have constructed,

but it is in fact a completely general phenomenon. We will come back to this point

in next lectures.

The procedure we have followed to construct the multiplet (3.44) can be eas-

ily generalized. Modifying the condition (3.33) one can construct other kind of

multiplets, like linear multiplets, vector multiplets, etc... And/or construct chiral

multiplets with different field content, simply by defining a ground state carrying

some space-time index, letting φ being a spinor, a vector, etc...

Out of a set of multiplets with the desired field content, one can construct suitable

Lagrangian made out of these fields. In order for the theory to be supersymmetric,

this Lagrangian should (at most) transform as a total space-time derivative under

supersymmetry transformations. Indeed, in this case, the action constructed out of

it

S =

∫
d4xL , (3.46)

will be supersymmetric invariant.

In principle, this is a well defined program. In practice, however, to see whether

a given action is invariant under supersymmetry is rather cumbersome: one should

take any single term in the Lagrangian, act on it with supersymmetry transforma-

tions and prove that the variations of all (possibly very many) terms sum-up to

a total space-time derivative. This turns out to be very involved, in general, but

theoretical physicists came up with a brilliant idea to circumvent this problem.

This difficulty is due to the fact that the formulation above is a formulation in

which supersymmetry is not manifest. Ordinary field theories are naturally defined

in Minkowski space and in such formulation it is easy to construct Lagrangians

respecting Poincaré symmetry. It turns out that supersymmetric field theories are
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naturally defined on an extension of Minkoswki space, known as superspace, which,

essentially, takes into account the extra space-time symmetries associated to the

supersymmetry generators. In such extended space it is much easier to construct

supersymmetric Lagrangians, and indeed the superspace formalism is what is most

commonly used to discuss supersymmetric field theories. This is the formalism

we will use along this course, and next chapter will be devoted to a throughout

introduction of superspace.

3.4 Exercises

1. Prove that P 2 and W 2 are Casimir of the Poincaré algebra.

2. Prove that CPT flips the sign of the helicity.

3. Construct explicitly, in terms of creation operators acting on the Clifford vac-

uum, the massive N = 1 vector multiplet (3.26) and the massive N = 2 BPS

vector multiplet (3.32). For the latter, determine the SU(2)R representations

under which bosonic and fermionic states transform.

4. Construct explicitly the N = 4 1/2 BPS vector multiplet (Hint: the Clif-

ford vacuum has j = 0). Discuss its (massive) content and its relation with

the massless vector multiplet. Can one construct a 1/4 BPS N = 4 vector

multiplet?

5. Enforcing the generalized Jacobi identity on (ψ,Q,Q) and (ψ,Q,Q), using

eqs. (3.37), (3.38), (3.42) and (3.43), prove that λα = 0 and χβ̇ ∼ ∂µ(σµψ)β̇.
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4 Superspace and superfields

The usual space-time Lagrangian formulation is not the most convenient one for

describing supersymmetric field theories. This is because in ordinary space-time

supersymmetry is not manifest. In fact, an extension of ordinary space-time, known

as superspace, happens to be the best and most natural framework in which to for-

mulate supersymmetric theories. The basic idea of (N = 1) superspace is to enlarge

the space-time labelled with coordinates xµ, associated to the generators Pµ, by

adding 2 + 2 anti-commuting Grassmann coordinates θα, θ̄α̇, associated to the su-

persymmetry generators Qα, Qα̇, and obtain a eight coordinate superspace labelled

by (xµ, θα, θ̄α̇). In such an apparently exotic space many mysterious (or hidden)

properties of supersymmetric field theories become manifest. As we will see, at the

price of learning a few mathematical new ingredients, the goal of constructing super-

symmetric field theories will be achieved much more easily, and within a framework

in which many classical and quantum properties of supersymmetry will be more

transparent.

In this lecture we will introduce superspace and superfields. In subsequent lec-

tures we will use this formalism to construct supersymmetric field theories and study

their dynamics.

4.1 Superspace as a coset

Let us start recalling the relation between ordinary Minkowski space and the Poincaré

group. Minkowski space is a four-dimensional coset space defined as

M1,3 =
ISO(1, 3)

SO(1, 3)
, (4.1)

where ISO(1, 3) is the Poincaré group and SO(1, 3) the Lorentz group. The Poincaré

group ISO(1, 3) is nothing but the isometry group of this coset space, which means

that any point of M1,3 can be reached from the origin with a Poincaré transfor-

mation. This transformation, however, is defined up to Lorentz transformations.

Therefore, each coset class (≡ a point in space-time) has a unique representative

which is just a translation and can be parametrized by a coordinate xµ

xµ ←→ e(xµPµ) . (4.2)

Superspace can be defined along similar lines. The first thing we need to do is to

extend the Poincaré group to the so-called superPoincaré group. In order to do this,
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given that a group is the exponent of the algebra, we have to rewrite the whole

supersymmetry algebra in terms of commutators, namely as a Lie algebra. This is

achieved by introducing a set of constant Grassmann numbers θα, θ̄α̇, defined as to

anti-commute with everything fermionic and commute with everything bosonic

{θα, θβ} = 0 , {θ̄α̇, θ̄β̇} = 0 , {θα, θ̄β̇} = 0 . (4.3)

This allows to transform anti-commutators of the supersymmetry algebra into com-

mutators, and get

[
θQ, θ̄Q

]
= 2 θσµθ̄Pµ , [θQ, θQ] =

[
θ̄Q, θ̄Q

]
= 0 , (4.4)

where as usual θQ ≡ θαQα , θ̄Q ≡ θ̄α̇Q
α̇
. This way, one can write the supersymmetry

algebra solely in terms of commutators. Exponentiating this algebra one gets the

superPoincaré group. A generic group element can then be written as

G(x, θ, θ̄, ω) = exp(ixP + iθQ+ iθ̄Q+
1

2
iωM) , (4.5)

where xP is a shorthand notation for xµPµ and ωM a shorthand notation for

ωµνMµν .

The superPoincaré group, mathematically, isOsp(4|1). Let us open a brief paren-

thesis and explain such a notation. Let us define the graded Lie algebra Osp(2p|N)

as the grade one Lie algebra L = L0 ⊕ L1 whose generic element can be written as

a matrix of complex dimension (2p+N)× (2p+N)

(
A B

C D

)
(4.6)

where A is a (2p× 2p) matrix, B a (2p×N) matrix, C a (N × 2p) matrix and D a

(N ×N) matrix. An element of L0 respectively L1 has entries

(
A 0

0 D

)
respectively

(
0 B

C 0

)
(4.7)

where

ATΩ(2p) + Ω(2p)A = 0

DTΩ(N) + Ω(N)D = 0

C = Ω(N)B
TΩ(2p)
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and

Ω2
(2p) = −I , ΩT

(N) = Ω(N) , ΩT
(2p) = −Ω(2p) . (4.8)

This implies that the matrices A span a Sp(2p,C) algebra and the matrices D a

O(N,C) algebra. Therefore we have that

L0 = Sp(2p)⊗O(N) , (4.9)

hence the name Osp(2p|N) for the whole superalgebra. A generic element of the

superalgebra has the form

Q = qata + qltl , (4.10)

where ta ∈ L0 and tl ∈ L1 are a basis of the corresponding vector spaces, and we

have introduced complex numbers qa for L0 and Grassman numbers ql for L1 (recall

why and how we introduced the fermionic parameters θα, θ̄α̇ before).

Taking now p = 2 we have the algebra Osp(4|N). This is not yet what we are

after. The last step, which we do not describe in detail here, amounts to take the

so-called Inonu-Wigner contraction. Essentially, one has to rescale (almost) all gen-

erators by a constant 1/ē, rewrite the algebra in terms of the rescaled generators

and take the limit ē → 0. What one ends up with is the N -extended supersym-

metry algebra in Minkowski space we all know, dubbed Osp(4|N), where in the

aforementioned limit one gets the identification

A→ Pµ ,Mµν D → ZIJ B,C → QI , Q̄I . (4.11)

Taking N = 1 one finally gets the unextended supersymmetry algebra Osp(4|1).

Given the generic group element of the superPoincaré group (4.5), N = 1 super-

space is defined as the (4+4 dimensional) group coset

M4|1 =
Osp(4|1)

SO(1, 3)
. (4.12)

A point in superspace (point in a loose sense, of course, given the non-commutative

nature of the Grassman parameters θα, θ̄α̇) gets identified with the coset represen-

tative corresponding to a so-called super-translation through the one-to-one map

(
xµ, θα, θ̄α̇

)
←→ e(xµPµ) e(θQ+θ̄Q) . (4.13)

The 2 + 2 anti-commuting Grassmann numbers θα, θ̄α̇ can then be thought of as co-

ordinates in superspace (in four-component notation they correspond to a Marojana

spinor θ). For these Grassmann numbers all usual spinor identities hold.
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Thus far we have introduced what is known as N = 1 superspace. If discussing

extended supersymmetry one should introduce, in principle, a larger superspace.

There exist (two, at least) formulations of N = 2 superspace. However, these

formulations present some subtleties and problems whose discussion is beyond the

scope of this course. And no formulation is known of N = 4 superspace. In this

course we will use N = 1 superspace even when discussing extended supersymmetry,

as it is typically done in most of the literature.

4.2 Superfields as fields in superspace

Superfields are nothing but fields in superspace: functions of the superspace coordi-

nates (xµ, θα, θ̄α̇). Since θα and θ̄α̇ anticommute, any product involving more than

two θ’s or two θ̄’s vanishes: given that θαθβ = −θβθα, we have that θαθβ = 0 for

α = β and therefore θαθβθγ = 0, since at least two indexes in this product are the

same. Hence, the most general superfield Y = Y (x, θ, θ̄) has the following simple

Taylor-like expansion

Y (x, θ, θ̄) = f(x) + θψ(x) + θ̄ χ(x) + θθm(x) + θ̄θ̄ n(x) +

+ θσµθ̄ vµ(x) + θθ θ̄ λ(x) + θ̄θ̄ θρ(x) + θθ θ̄θ̄ d(x) . (4.14)

Each entry above is a field (possibly with some non-trivial tensor structure). In this

sense, a superfield is nothing but a finite collection (a multiplet) of ordinary fields.

We aim at constructing supersymmetric Lagrangians out of superfields. In such

Lagrangians superfields get multiplied one another, sometime we should act on them

with derivatives, etc... Moreover, integration in superspace will be needed, eventu-

ally. Therefore, it is necessary to pause a bit and recall how operations of this kind

work for Grassman variables.

Derivation in superspace is defined as follows

∂α ≡
∂

∂θα
and ∂α = εαβ∂β , ∂̄α̇ ≡

∂

∂θ̄α̇
and ∂̄α̇ = εα̇β̇∂̄β̇ , (4.15)

where

∂αθ
β = δβα , ∂̄α̇θ̄

β̇ = δβ̇α̇ , ∂αθ̄β̇ = 0 , ∂̄α̇θβ = 0 . (4.16)

Note that this implies that ∂αθβ = −δαβ and ∂̄α̇θ̄β̇ = −δα̇
β̇

(that’s life!).

Let us consider a single Grassmann variable θ (either θ1, θ2, θ̄1̇ or θ̄2̇ in our case).

Integration in θ is defined as follows∫
dθ = 0

∫
dθ θ = 1 . (4.17)
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This implies that for a generic function f(θ) = f0 + θf1, the following results hold
∫
dθ f(θ) = f1 ,

∫
dθ δ(θ)f(θ) = f0 −→

∫
= ∂ , θ = δ(θ) . (4.18)

These relations can be easily generalized to N = 1 superspace, provided

d2θ ≡ 1

2
dθ1dθ2 , d2θ̄ ≡ 1

2
dθ̄2̇dθ̄1̇ . (4.19)

With these definitions one can prove the following useful identities
∫
d2θ θθ =

∫
d2θ̄ θ̄θ̄ = 1 ,

∫
d2θd2θ̄ θθ θ̄θ̄ = 1

∫
d2θ =

1

4
εαβ∂α∂β ,

∫
d2θ̄ = −1

4
εα̇β̇∂̄α̇∂̄β̇ . (4.20)

Another crucial question we need to answer is: how does a superfield transform

under supersymmetry transformations? In order to answer this question we first

need to realize the supersymmetry generators Qα, Qα̇ as differential operators, in

the same way we do for the generators of Poincaré algebra (translations, rotations

and boosts).

Let us recall how the story goes in ordinary space-time and consider a translation

generated by Pµ with infinitesimal parameter aµ, on a field φ(x) (for notational

convenience, we will use momentarily calligraphic letters for the abstract operator

and latin ones for the representation of the same operator as a differential operator

in field space). This is defined as

φ(x+ a) = e−iaPφ(x)eiaP = φ(x)− iaµ [Pµ, φ(x)] + . . . . (4.21)

On the other hand, Taylor expanding the left hand side we get

φ(x+ a) = φ(x) + aµ∂µφ(x) + . . . (4.22)

Equating the right hand sides of the two equations above we then get

[φ(x),Pµ] = −i∂µφ(x) ≡ Pµφ(x) , (4.23)

where Pµ is the generator of translations and Pµ is its representation as a differential

operator in field space (recall that ∂µ is an operator and from (∂µ)∗ = ∂µ one gets

that (∂µ)† = −∂µ; hence Pµ is hermitian, as it should). So, a translation of a field

by parameter aµ induces a change on the field itself as

δaφ ≡ φ(x+ a)− φ(x) = iaµPµ φ . (4.24)
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Notice that here and below we are using right multiplication, when acting on fields.

We now want to apply the same procedure to a superfield. A translation in

superspace (i.e. a supersymmetry transformation) on a superfield Y (x, θ, θ̄) by a

quantity (εα, ε̄α̇), where εα, ε̄α̇ are spinorial parameters, is defined as

Y (x+ δx, θ + δθ, θ̄ + δθ̄) = e−i(εQ+ε̄Q)Y (x, θ, θ̄)ei(εQ+ε̄Q) , (4.25)

with

δε,ε̄Y (x, θ, θ̄) ≡ Y (x+ δx, θ + δθ, θ̄ + δθ̄)− Y (x, θ, θ̄) (4.26)

the variation of the superfield under the supersymmetry transformation.

To find the representation of Q and Q as differential operators, there are two

questions we need to answer, first. What is the explicit expression for δx, δθ, δθ̄?

Why are we supposing here δx 6= 0, given we are not acting with the generator of

space-time translations Pµ, but just with supersymmetry generators?

First notice that eq. (4.25) can be written as

Y (x+ δx, θ + δθ, θ̄ + δθ̄) = e−i(εQ+ε̄Q)e−i(xP+θQ+θ̄Q)Y (0; 0, 0)ei(xP+θQ+θ̄Q)ei(εQ+ε̄Q)

(4.27)

Let us now evaluate the last two exponentials, for which we need to recall the Baker-

Campbell-Hausdorff formula for non-commuting objects which says that

eAeB = eC where C =
∞∑

n=1

1

n!
Cn(A,B) (4.28)

with

C1 = A+B , C2 = [A,B] , C3 =
1

2
[A, [A,B]]− 1

2
[B, [B,A]] . . . . (4.29)

We then have

exp{i
(
xP + θQ+ θ̄Q

)
} exp{i

(
εQ+ ε̄Q

)
} =

= exp{ixµPµ + i(ε+ θ)Q+ i(ε̄+ θ̄)Q− 1

2

[
θ̄Q, εQ

]
− 1

2

[
θQ, ε̄Q

]
}

= exp{ixµPµ + i(ε+ θ)Q+ i(ε̄+ θ̄)Q+ εσµθ̄Pµ − θσµε̄Pµ}

= exp{i(xµ + iθσµε̄− iεσµθ̄)Pµ + i(ε+ θ)Q+ i(ε̄+ θ̄)Q} (4.30)

which means that 



δxµ = iθσµε̄− iεσµθ̄
δθα = εα

δθ̄α̇ = ε̄α̇
(4.31)
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This answers the first question. Notice, further, the expression for δxµ, which is

non-vanishing. This is needed, in order to be consistent with the supersymmetry

algebra,
{
Qα, Qα̇

}
∼ Pµ: two subsequent supersymmetry transformations generate

a space-time translation. This answers the second question.

We can now find the representation of the supersymmetry generators Qα and

Qα̇ as differential operators. Let us take eq. (4.26) and, recalling eqs. (4.31), let us

Taylor expand the right hand side which becomes

δε,ε̄Y (x, θ, θ̄) = Y (x, θ, θ̄) + i
(
θσµε̄− εσµθ̄

)
∂µY (x, θ, θ̄) +

+ εα∂αY (x, θ, θ̄) + ε̄α̇∂̄α̇Y (x, θ, θ̄) + · · · − Y (x, θ, θ̄)

=
[
εα∂α + ε̄α̇∂̄α̇ + i

(
θσµε̄− εσµθ̄

)
∂µ + . . .

]
Y (x, θ, θ̄) (4.32)

On the other hand, from eq. (4.25) we get

δε,ε̄Y (x, θ, θ̄) =
(
1− iεQ− iε̄Q+ . . .

)
Y (x, θ, θ̄)

(
1 + iεQ+ iε̄Q+ . . .

)
− Y (x, θ, θ̄)

= −iεα
[
Qα, Y (x, θ, θ̄)

]
+ iε̄α̇

[
Qα̇, Y (x, θ, θ̄)

]
+ . . . , (4.33)

(recall that iε̄Q ≡ iε̄α̇Q
α̇

= −iε̄α̇Qα̇). Defining

[Y,Qα] ≡ QαY ,
[
Y,Qα̇

]
≡ Qα̇Y , (4.34)

the previous result implies that the supersymmetry variation of a superfield by

parameters ε, ε̄ is represented as

δε,ε̄Y =
(
iεQ+ iε̄Q

)
Y . (4.35)

Comparing with eq. (4.32) we get the following expression for the differential oper-

ators Qα, Qα̇ {
Qα = − i∂α − σµ

αβ̇
θ̄β̇∂µ

Qα̇ = + i∂̄α̇ + θβσµβα̇∂µ
(4.36)

Notice that, consistently, Q†α = Qα̇ (to prove this, recall that (σµ
αβ̇

)† = σµβα̇).

One can check the validity of the expressions (4.36) by showing that the two

differential operators close the supersymmetry algebra, namely that

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 , {Qα, Qβ̇} = 2σµ
αβ̇
Pµ . (4.37)

We can now give a more precise definition for what a superfield actually is: a super-

field is a field in superspace which transforms under a super-translation according

to eq. (4.25). This implies, in particular, that a product of superfields is still a

superfield.

69



4.3 Supersymmetric invariant actions - general philosophy

Having seen that a supersymmetry transformation is simply a translation in super-

space, it is now easy to construct supersymmetric invariant actions. In order for

an action to be invariant under superPoincaré transformations it is enough that the

Lagrangian is Poincaré invariant (actually, it should transform as a scalar density)

and that its supersymmetry variation is a total space-time derivative.

Here is where the formalism we have introduced starts to manifest its powerful-

ness. The basic point is that the integral in superspace of any arbitrary superfield

is a supersymmetric invariant quantity. In other words, the following integral

∫
d4x d2θ d2θ̄ Y (x, θ, θ̄) (4.38)

is manifestly supersymmetric invariant, if Y is a superfield. This can be proven as

follows. The integration measure is translationally invariant by construction since

∫
dθθ =

∫
d(θ + ξ)(θ + ξ) = 1 (4.39)

This implies that

δε,ε̄

∫
d4x d2θ d2θ̄ Y (x, θ, θ̄) =

∫
d4x d2θ d2θ̄ δε,ε̄Y (x, θ, θ̄) . (4.40)

Now, using eqs. (4.35) and (4.36) we get

δε,ε̄Y = εα∂αY + ε̄α̇∂̄
α̇Y + ∂µ

[
−i
(
εσθ̄ − θσε̄

)
Y
]
. (4.41)

Integration in d2θd2θ̄ kills the first two terms since they do not have enough θ’s or

θ̄’s to compensate for the measure, and leaves only the last term, which is a total

derivative. In other words, under supersymmetry transformations the integrand in

eq. (4.40) transforms as a total space-time derivative plus terms which get killed by

integration in superspace. Hence the full integral is supersymmetric invariant

δε,ε̄

∫
d4x d2θ d2θ̄ Y (x, θ, θ̄) = 0 . (4.42)

Supersymmetric invariant actions are constructed this way, i.e. by integrating in

superspace a suitably defined superfield. Such superfield, call it A, should not be

generic, of course. It should have the right structure to give rise, upon integration

on Grassman coordinates, to a Lagrangian density, which is a real, dimension-four
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operator, transforming as a scalar density under Poincaré transformations. The end

result will be a supersymmetric invariant action S

S =

∫
d4x d2θ d2θ̄ A(x; θ, θ̄) =

∫
d4x L (φ(x), ψ(x), Aµ(x), . . . ) . (4.43)

Let us emphasize again: one does not need to prove S to be invariant under super-

symmetry transformations. If it comes from an integral of a superfield in superspace,

this is just automatic: by construction, the Lagrangian L on the r.h.s. of eq. (4.43),

an apparently innocent-looking function of ordinary fields, is guaranteed to be su-

persymmetric invariant, up to total space-time derivatives.

The superfield A will be in general a product of superfields (recall that a prod-

uct of superfields is still a superfield). However, the general superfield (4.14) cannot

be the basic object of this construction: it contains too many field components to

correspond to an irreducible representation of the supersymmetry algebra. We have

to put (supersymmetric invariant) constraints on Y and restrict its form to contain

only a subset of fields. Being the constraint supersymmetric invariant, this reduced

set of fields will still be a superfield, and hence it will carry a representation of the

supersymmetry algebra. In what follows, we will start discussing a few such con-

straints, the so-called chiral and real constraints. These will be the relevant ones for

our purposes, as they will lead to chiral and vector superfields, the right superfields

to accommodate matter and radiation, respectively, and to linear superfields, where

conserved currents sit.

4.4 Chiral superfields

One can construct covariant derivatives Dα, Dα̇ defined as
{
Dα = ∂α + i σµ

αβ̇
θ̄β̇∂µ

Dα̇ = ∂̄α̇ + i θβσµβα̇∂µ
(4.44)

and which anticommute with the supersymmetry generators Qα, Qα̇. More precisely

we have

{Dα, Dβ̇} = 2i σµ
αβ̇
∂µ = −2σµ

αβ̇
Pµ , (4.45)

{Dα, Dβ or Qβ or Qβ̇} = 0 (similarly for Dα̇) . (4.46)

This implies that

δε,ε̄ (DαY ) = Dα (δε,ε̄Y ) , (4.47)
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since Dα commutes both with εQ and ε̄Q. Therefore, if Y is a superfield, that is a

field in superspace transforming as dictated by eq. (4.25) under a supersymmetry

transformation, so is DαY . This means that DαY = 0 is a supersymmetric invariant

constraint we can impose on a superfield Y to reduce the number of its components,

while still having the field carrying a representation of the supersymmetry algebra

(the same holds for the constraint Dα̇Y = 0).

Recall the generic expression (4.14) for Y and consider ∂̄α̇Y : this has fewer

components with respect to Y itself, since, for instance, there is no θθθ̄θ̄ term.

However [
∂̄α̇, εQ

]
= εβσµβα̇ ∂µ . (4.48)

This implies that a supersymmetry transformation on X α̇ = ∂̄α̇Y would generate a

θθθ̄θ̄ term which X α̇ did not contain. Hence ∂̄α̇Y is not a superfield, in the sense

of providing a basis for a representation of supersymmetry. On the other hand, the

covariant derivatives defined in (4.44) anticommute with Qα and Qα̇. Hence, if Y is

a superfield, DαY,Dα̇Y are also superfields (and so is ∂µY , since Pµ commutes with

Qα and Qα̇).

A chiral superfield Φ is a superfield such that

Dα̇Φ = 0 . (4.49)

Seemingly, an anti-chiral superfield Ψ is a superfield such that

DαΨ = 0 . (4.50)

Notice that if Φ is chiral, its hermitian conjugate, Φ, is anti-chiral (unless otherwise

stated, here and in the following we will use the symbol − instead of † to mean

hermitian conjugation, to adapt to the two-component spinor notation for which

ψ† = ψα̇). This implies that a chiral superfield cannot be real (i.e. Φ = Φ). Indeed,

in this case it is easy to show that it should be a constant. Taking the hermitian

conjugate of eq. (4.49) one would conclude that the field would also be anti-chiral.

Acting now on it with the anticommutator in eq.(4.45) one would get ∂µΦ = 0. This

is the superfield analogue of what we have seen in the previous lecture, when we

constructed the chiral multiplet and we learned that the scalar field φ had to be

complex.

We would like to find the most general expression for a chiral superfield in terms

of ordinary fields, as we did for the general superfield (4.14). In other words, we have
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to integrate the constraint (4.49). To this aim, it is useful to define new coordinates

yµ = xµ + iθσµθ̄ , ȳµ = xµ − iθσµθ̄ . (4.51)

It easily follows that

Dα̇θβ = Dα̇y
µ = 0 , Dαθ̄β̇ = Dαȳ

µ = 0 . (4.52)

Recalling the definition (4.49) this implies that Φ depends only on (yµ, θα) explicitly,

but not on θ̄α̇ (the θ̄-dependence is hidden inside yµ). In this (super)coordinate

system the chiral constraint is easily solved by

Φ(y, θ) = φ(y) +
√

2θψ(y)− θθF (y) . (4.53)

Taylor-expanding the above expression around x we get for the actual Φ(x, θ, θ̄)

Φ(x, θ, θ̄) = φ(x)+
√

2θψ(x)+iθσµθ̄∂µφ(x)−θθF (x)− i√
2
θθ∂µψ(x)σµθ̄−1

4
θθθ̄θ̄�φ(x) ,

(4.54)

which can also be conveniently recast as Φ(x, θ, θ̄) = eiθσ
µ∂µθ̄Φ(x, θ). We see that,

as expected, this superfield has less components than the general superfield Y , and

some of them are related to each other.

The chiral superfield (4.54) is worth its name, since it is a superfield which

encodes precisely the degrees of freedom of the chiral multiplet of fields we have

previously constructed. On-shell, it corresponds to a N = 1 multiplet of states,

hence carrying an irreducible representation of the N = 1 supersymmetry algebra.

A similar story holds for the anti-chiral superfield Φ for which we would get

Φ(x, θ, θ̄) = φ(ȳ) +
√

2θ̄ψ(ȳ)− θ̄θ̄F (ȳ) (4.55)

= φ(x) +
√

2θ̄ψ(x)− iθσµθ̄∂µφ(x)− θ̄θ̄F (x) +
i√
2
θ̄θ̄θσµ∂µψ(x)− 1

4
θθθ̄θ̄�φ(x) .

Let us now try and see how does a chiral (or anti-chiral) superfield transform under

supersymmetry transformations. This amounts to compute

δε,ε̄Φ(y; θ) =
(
iεQ+ iε̄Q

)
Φ(y; θ) (4.56)

(and similarly for Φ). To compute eq. (4.56) it is convenient to write the differential

operators Qα, Qα̇ in the (yµ, θα, θ̄α̇) coordinate system. This amounts to trade the
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partial derivatives taken with respect to (xµ, θα, θ̄α̇) for those taken with respect to

the new system (yµ, θα, θ̄α̇) and plug this into eqs. (4.36). The final result reads

{
Qnew
α = −i∂α

Q
new

α̇ = i∂̄α̇ + 2θασµαα̇
∂
∂yµ

(4.57)

Plugging these expressions into eq. (4.56) one gets

δε,ε̄Φ(y; θ) =

(
εα∂α + 2iθασµ

αβ̇
ε̄β̇

∂

∂yµ

)
Φ(y; θ)

=
√

2εψ − 2εθF + 2iθσµε̄

(
∂

∂yµ
φ+
√

2θ
∂

∂yµ
ψ

)
(4.58)

=
√

2εψ +
√

2θ

(
−
√

2εF +
√

2iσµε̄
∂

∂yµ
φ

)
− θθ

(
−i
√

2ε̄σ̄µ
∂

∂yµ
ψ

)
.

Therefore, the final expression for the supersymmetry variation of the different field

components of the chiral superfield Φ reads





δφ =
√

2εψ

δψα =
√

2i(σµε̄)α∂µφ−
√

2εαF

δF = i
√

2∂µψσ
µε̄

(4.59)

It is left to the reader to derive the corresponding expressions for an anti-chiral

superfield. In this case, one should write the generators Qα, Qα̇ in the (ȳµ, θα, θ̄α̇)

coordinate system.

4.5 Real (aka vector) superfields

In order to have gauge interactions we clearly need to find a supersymmetric invari-

ant projection which saves the vector field vµ in the general expression (4.14) and

makes it real (this was not the case for the constraint (4.49), for which the vector

component is ∼ ∂µφ). The right thing to do is to impose a reality condition on the

general superfield Y . Indeed, under hermitian conjugation, Y → Y , one has that

vµ → vµ; so imposing a reality condition, the vector component not only survives

as an independent degree of freedom, but becomes real.

A real (aka vector) superfield V is a superfield such that

V = V . (4.60)

74



Looking at the general expression (4.14) this leads to the following expansion for V

V (x, θ, θ̄) = C(x) + i θχ(x)− i θ̄χ(x) + θσµθ̄vµ +
i

2
θθ (M(x) + iN(x))

− i

2
θ̄θ̄ (M(x)− iN(x)) + i θθθ̄

(
λ(x) +

i

2
σ̄µ∂µχ(x)

)
(4.61)

− i θ̄θ̄θ

(
λ(x) +

i

2
σµ∂µχ(x)

)
+

1

2
θθθ̄θ̄

(
D(x)− 1

2
∂2C(x)

)
.

Notice that, as such, this superfield has 8B + 8F degrees of freedom. The next step

is to introduce the supersymmetric version of gauge transformations. As we shall

see, after gauge fixing, this will reduce the number of off-shell degrees of freedom to

4B + 4F , which become 2B + 2F on-shell (for a massless representation), as it should

be the case for a massless vector multiplet of states, see eq. (3.15).

First notice that if Φ is a chiral superfield, then Φ + Φ is a (very special) vector

superfield. So, under the following transformation on V

V → V + Φ + Φ (4.62)

one gets a a superfield V which is still real. Under the shift (4.62) the vector

component vµ in (4.61) transforms as vµ → vµ−∂µ (2 Imφ). This is precisely how an

ordinary (abelian) gauge transformation acts on a vector field. Therefore, eq. (4.62)

is a natural definition for the supersymmetric version of a gauge transformation.

Under eq. (4.62) the component fields of V transform as




C → C + 2 Reφ

χ → χ− i
√

2ψ

M → M − 2 ImF

N → N + 2 ReF

D → D

λ → λ

vµ → vµ − 2 ∂µImφ

(4.63)

where the components of Φ have been dubbed (φ, ψ, F ). From the transformations

above one sees that properly choosing Φ, namely choosing

Reφ = −C
2

, ψ = − i√
2
χ , ReF = −N

2
, ImF =

M

2
. (4.64)

one can gauge away (namely put to zero) C,M,N, χ. The choice above is called

Wess-Zumino gauge. In this gauge a vector superfield can be written as

VWZ = θσµθ̄ vµ(x) + iθθ θ̄λ(x)− iθ̄θ̄ θλ(x) +
1

2
θθ θ̄θ̄D(x) . (4.65)
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Therefore, taking into account gauge invariance (that is, the redundancy of one

of the vector degrees of freedom, the one associated to the transformation vµ →
vµ− ∂µ (2 Imφ), which the WZ gauge does not fix), we end-up with 4B + 4F degrees

of freedom off-shell. As we shall see later, D will turn out to be an auxiliary field;

therefore, by imposing the equations of motion for D, the spinor λ and the vector

vµ, one will end up with 2B + 2F degrees of freedom on-shell. Since we like to

formulate gauge theories keeping gauge invariance manifest off-shell, the WZ gauge

is defined as a gauge where C = M = N = χ = 0, but no restrictions on vµ. This

way, while remaining in the WZ gauge, we still have the freedom to do ordinary

gauge transformations. In other words, once in the WZ gauge, we can still perform a

supersymmetric gauge transformation (4.62) with parameters φ = −φ, ψ = 0, F = 0.

Let us end this section with two important comments. First notice that in the

WZ gauge each term in the expansion of VWZ contains at least one θ. Therefore

V 2
WZ =

1

2
θθθ̄θ̄vµv

µ , V n
WZ = 0 n ≥ 3 . (4.66)

These identities will simplify things a lot when it comes to construct supersymmetric

gauge actions. Second, it should be remarked that the WZ gauge does not commute

with supersymmetry. Acting with a supersymmetry transformation on a vector

superfield in the WZ gauge, one obtains a new superfield which is not in the WZ

gauge. Hence, when working in this gauge, after a supersymmetry transformation,

one has to do a compensating supersymmetric gauge transformation (4.62), with a

properly chosen Φ, to come back to the WZ gauge.

4.6 (Super)Current superfields

The two superfields described above are what we need to describe matter and ra-

diation in a supersymmetric theory, if we are not interested in gravitational inter-

actions. However, in a supersymmetric theory, also composite operators should sit

in superfields. There are at least two other types of superfields which accommodate

important composite operators, i.e. conserved currents and the supersymmetry cur-

rent (supercurrent for short), the latter being ubiquitous in a supersymmetric QFT,

as this is the current associated to the supersymmetry charge itself. Both these su-

perfields turn out to be real superfields, as the superfield described in the previous

section, but current conservation implies extra supersymmetric invariant conditions

they should satisfy which make them a particular class of real superfields. In what

follows, we will briefly describe both of them.
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4.6.1 Internal symmetry current superfields

Because of Nöether theorem, in a local QFT any continuous symmetry is associated

to a conserved current jµ satisfying ∂µjµ = 0, and to the corresponding conserved

charge Q defined as Q =
∫
d3x j0. Here we are referring to non-R symmetries.

R-symmetry will be discussed later.

As any other operator, in a supersymmetric theory a conserved current should

sit in a superfield. It turns out that this is a real scalar superfield J satisfying the

following extra constraint

D2J = D
2J = 0 . (4.67)

A real superfield satisfying the constraint above is called linear superfield. Working

a little bit one can show that a real superfield subject to the conditions (4.67) has

the following component expression

J = J(x)+iθj(x)−iθ̄j̄(x)+θσµθ̄jµ(x)+
1

2
θ2θ̄σ̄µ∂µj(x)−1

2
θ̄2θσµ∂µj̄(x)+

1

4
θ2θ̄2�J(x) ,

(4.68)

where J is a real scalar and jα a spinor. By imposing eq. (4.67) on the above

expression one easily sees that the current jµ satisfies ∂µjµ = 0, i.e. is a conserved

current. So the constraint (4.67) is indeed the correct supersymmetric generaliza-

tion of current conservation. Note that while the condition (4.67) is compatible with

supersymmetry (both D2 and D
2

commute with supersymmetry transformations),

it stands on a slightly different footing with respect to the conditions (4.49), (4.50)

and (4.60). The latter constrain the dependence of a superfield as a function of

the fermionic coordinates (θα, θ̄α̇), but they do not say anything about space-time

dependence. On the contrary, eq. (4.67) constrains also the space-time dependence

of some of the fields imposing differential equations in x-space, one obvious exam-

ple being the conservation equation ∂µjµ = 0. In this sense, (4.67) is an on-shell

constraint.

A few comments are in order. First notice that, as compared to a general real

superfield (4.61), a linear superfield has less independent components. This is due

to the extra condition (4.67) a linear superfield has to satisfy. Another comment

regards the spin content of J . One condition that J should (and does) satisfy is

that it should not contain fields with spin higher than one. If this were the case,

one could not gauge the current jµ without introducing higher-spin gauge fields,

something which is expected not to be consistent in a local interacting QFT with

rigid supersymmetry (recall our discussion in the previous lecture). This implies
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that J should be a real scalar superfield, namely its lowest component J should be

a scalar. Finally, it is worth notice that the detailed structure of J is not uniquely

fixed, but in fact defined up to Schwinger terms entering the current algebra.

This can be understood as follows. Because the conserved charge Q is a non-R

symmetry charge, it commutes with supersymmetry generators, [Qα, Q] = 0. This

implies that the operator on the right hand side of the current algebra

[Qα, jµ] = Oαµ , (4.69)

should be an operator which vanishes when acting with ∂µ, because so is jµ, and it

should also be a total space-time derivative for µ = 0, say Oα0 = ∂νAαν , so that it

integrates to zero, because so happens to the left hand side given that
∫
d4x [Qα, j0] =

∫
dt [Qα, Q] = 0 . (4.70)

An operator of this kind is known as Schwinger term. Different Schwinger terms

provide different versions of the superfield J , which is hence not univocally defined.

The superfield defined in eq. (4.68) is one possible such completions, for which

Oαµ = −2i(σµν)
β
α ∂

νjβ. This can be easily checked using eqs. (4.34)-(4.35). This

said, the first terms in the expansion of J , namely J + iθj − iθ̄j̄ + θσµθ̄jµ(x), are

universal in the sense that they turn out not to depend on the specific Schwinger

term appearing in eq. (4.69).

4.6.2 Supercurrent superfields

While currents associated to internal symmetries might or might not be there, in

any supersymmetric theory there always exists, by definition, a conserved current,

the supersymmetry current Sαµ, associated to the conservation of the supercharge

Qα. In terms of the supercurrent, the supersymmetry charge is Qα =
∫
d3xS 0

α .

Such supercurrent should sit in a superfield.

An equation analogous to eq. (4.69) is imposed by the supersymmetry algebra,

which reads {
Qα̇, Sαν

}
= 2σµαα̇Tµν +Oαα̇ν , (4.71)

where Tµν is the (conserved) energy-momentum tensor andOαα̇ν is again a Schwinger

term. Note that, unlike eq. (4.69), the ν = 0 component of the left hand side of

eq. (4.71) does not integrate to zero now but is proportional to
∫
dt Pµ by the

supersymmetry algebra, namely to
∫
d4xT 0

µ . This is why, on top of a Schwinger
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term, the energy-momentum tensor appears on the right hand side of eq. (4.71).

This also shows that the supercurrent and the energy-momentum tensor sit in the

same superfield, Tµν being the highest spin field of the representation (otherwise,

it would be problematic coupling supersymmetry with gravity avoiding higher spin

currents). This is the current operators counterpart of the fact that the graviton

and the gravitino sit in the same multiplet. These properties are enough to fix the

universal structure of the supercurrent superfield which reads

Jµ = jµ + θ (Sµ + . . . ) + θ̄
(
Sµ + . . .

)
+ θσν θ̄ (2Tµν + . . . ) + . . . . (4.72)

The arbitrariness of the Schwinger term gives rise to different possible completions

of Jµ. The most known such completions is due to Ferrara and Zumino. The FZ

multiplet can be described by a pair of superfields (Jµ, X) satisfying the relation

2D
α̇
σµαα̇ Jµ = DαX , (4.73)

with Jµ being a real vector superfield, and X a chiral superfield, Dα̇X = 0. The

same comment we made on the on-shell nature of the condition (4.67) holds also

in this case. From the defining equation above one can work out the component

expression of these two superfields. They read

Jµ =jµ + θ

(
Sµ −

1

3
σµS

)
+ θ̄

(
Sµ +

1

3
σ̄µS

)
+
i

2
θ2∂µx

∗ − i

2
θ̄2∂µx

+ θσν θ̄

(
2Tµν −

2

3
ηµνT +

1

2
εµνρσ∂

ρjσ
)

+ . . .

(4.74)

and

X = x+
2

3
θS + θ2

(
2

3
T + i ∂µjµ

)
+ . . . , (4.75)

where . . . stand for the supersymmetric completion and we have defined the trace

operators T ≡ T µµ and Sα ≡ σµαα̇S
α̇

µ. All in all, the FZ superfield contains a (in

general non-conserved) R-current jµ, a symmetric and conserved Tµν , a conserved

Sαµ, and a complex scalar x. That jµ is a R-current follows from the fact that it sits in

the same superfield where Sαµ sits and so it does not commute with supersymmetry.

From the above expression one can also see that whenever X vanishes the current

jµ becomes conserved and all trace operators vanish. In this case the theory is

conformal and jµ becomes the always present (and conserved) superconformal R-

current.

We have seen that the FZ multiplet contains a non-conserved R-current. What if

a theory admits a U(1)R R-symmetry? For theories with an R-symmetry there exists
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an alternative supermultiplet accommodating the energy-momentum tensor and the

supercurrent, the so-called R multiplet. It turns out this is again defined in terms

of a pair of superfields (Rµ, χα) which now satisfy a different on-shell condition

2D
α̇
σµαα̇Rµ = χα , (4.76)

whereRµ is a real vector superfield and χα a chiral superfield which, besides Dα̇χα =

0, also satisfies the identity Dα̇χ
α̇ −Dαχα = 0. This implies that ∂µRµ = 0, from

which it follows that the lowest component of Rµ is now a conserved current, the R-

current jRµ . The component expression of the superfields making-up the R multiplet

reads

Rµ = jRµ + θSµ + θ̄ Sµ + θσν θ̄

(
2Tµν +

1

2
εµνρσ(∂ρjσ + Cρσ)

)
+ . . . (4.77)

and

χα = −2Sα −
(
4δβαT + 2i (σρσ̄τ )βαCρτ

)
θβ + 2i θ2σναα̇∂νS

α̇
+ . . . (4.78)

where again . . . stand for the supersymmetric completion, and Cµν is a closed two-

form. That jRµ is an R-current can be easily seen noticing that the current algebra

now reads
[
Qα, j

R
µ

]
= Sαµ. Taking the time-component and integrating, this implies

that
∫
dt
[
Qα, Q

R
]

=
∫
dtQα, which is what is expected for a R-symmetry, recall

eq. (2.80). Notice, finally, that when X = 0, the FZ multiplet (4.74) becomes

a (special instance of an) R-multiplet, one for which χα = 0. Indeed, its lowest

component jµ becomes now the conserved superconformal R-current.

The FZ and R multiplets are the more common supercurrent multiplets. How-

ever, there are instances in which a theory does not admit a R-symmetry (and hence

the R multiplet cannot be defined) and the FZ multiplet is not a well-defined oper-

ator, e.g. it is not gauge invariant. In these cases, one should consider yet another

multiplet where the supercurrent can sit, the so-called S multiplet, which is bigger

than the two above. We will not discuss the S multiplet here, and refer to the

references given at the end of this lecture. On the contrary, there exist theories in

which both the FZ and the R multiplets can be defined. In such cases it turns out

that the two are related by a so-called shift transformation defined as

Rµ = Jµ +
1

4
σ̄α̇αµ

[
Dα, Dα̇

]
U , X = −1

2
D

2
U , χα =

3

2
D

2
DαU , (4.79)

where U is a real superfield associated to a non-conserved (and non-R) current.
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4.7 Exercises

1. Prove identities (4.20).

2. Check that the differential operators Qα and Qα̇ (4.36) close the supersymme-

try algebra (4.37).

Hint: recall that all θ’s and θ̄’s anti-commute between themselves, and that

{ai, aj} = 0 −→ ∂

∂ai
aj =

∂aj
∂ai
− aj

∂

∂ai
, (4.80)

which implies that, e.g.

{∂α, θ̄γ̇} = 0 , {∂α, θβ} = δβα , {∂̄α̇, θ̄β̇} = δβ̇α̇ . (4.81)

3. Check that the covariant derivatives Dα and Dα̇ (4.44) anticommute between

themselves and with the supercharge operators (4.36).

4. Compute how the field components of an anti-chiral superfield Ψ transform

under supersymmetry transformations. Show that if Ψ = Φ one gets the

hermitian conjugate of the transformations (4.59).

5. Compute the supersymmetric variation of a vector superfield in the WZ gauge,

and find the explicit form of the chiral superfield Φ which, via a compensating

supersymmetric gauge transformation, brings the vector superfield back to the

WZ gauge.
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5 Supersymmetric actions: minimal supersymmetry

In the previous lecture we have introduced the basic superfields one needs to

construct N = 1 supersymmetric theories, if one is not interested in describing

gravitational interactions. We are now ready to look for supersymmetric actions

describing the dynamics of these superfields. We will first concentrate on matter

actions and construct the most general supersymmetric action describing the inter-

action of a set of chiral superfields. Then we will introduce SuperYang-Mills theory

which is nothing but the supersymmetric version of Yang-Mills. Finally, we will

couple the two sectors with the final goal of deriving the most general N = 1 super-

symmetric action describing the interaction of radiation with matter. In all these

cases, we will consider both renormalizable as well as non-renormalizable theories,

the latter being relevant to describe effective low energy theories.

Note: in what follows we will deal with gauge theories, and hence gauge groups,

like SU(N) and alike. In order to avoid confusion, in the rest of these lectures we

will use calligraphic N when referring to the number of supersymmetry, N = 1, 2 or

4.

5.1 N=1 Matter actions

Following the general strategy outlined in §4.3 we want to construct a supersym-

metric invariant action describing the interaction of a (set of) chiral superfield(s).

Let us first notice that a product of chiral superfields is still a chiral superfield and a

product of anti-chiral superfields is an anti-chiral superfield. Conversely, the product

of a chiral superfield with its hermitian conjugate (which is anti-chiral) is a (very

special, in fact) real superfield.

Let us start analyzing the theory of a single chiral superfield Φ. Consider the

following integral ∫
d2θ d2θ̄ ΦΦ . (5.1)

This integral satisfies all necessary conditions to be a supersymmetric Lagrangian.

First, it is supersymmetric invariant (up to total space-time derivative) since it is the

integral in superspace of a superfield. Second, it is real and a scalar object. Indeed,

the first component of ΦΦ is φφ which is real and a scalar. Now, the θ2θ̄2 component

of a superfield, which is the only term contributing to the above integral, has the

same tensorial structure as its first component since θ2θ̄2 does not have any free
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space-time indexes and is real, that is (θ2θ̄2)† = θ2θ̄2. Finally, the above integral has

also the right physical dimensions for being a Lagrangian, i.e. [M ]4. Indeed, from

the expansion of a chiral superfield, one can see that θ and θ̄ have both dimension

[M ]−1/2 (compare the first two components of a chiral superfield, φ(x) and θψ(x),

and recall that a spinor in four dimensions has physical dimension [M ]3/2). This

means that the θ2θ̄2 component of a superfield Y has dimension [Y ] + 2 if [Y ] is

the dimension of the superfield (which is that of its lowest component). Since the

dimension of ΦΦ is 2, it follows that its θ2θ̄2 component has dimension 4 (notice that,

consistently,
∫
d2θd2θ̄ θ2θ̄2 is dimensionless since dθ (dθ̄) has opposite dimensions

with respect to θ (θ̄), given that the differential is equivalent to a derivative, for

Grassman variables). Summarizing, eq. (5.1) is an object of dimension 4, is real, and

transforms as a total space-time derivative under SuperPoincaré transformations.

To perform the integration in superspace one can start from the expression of

Φ and Φ in the y (resp. ȳ) coordinate system, take the product of Φ(ȳ, θ̄)Φ(y, θ),

expand the result in the (x, θ, θ̄) space, and finally pick up the θ2θ̄2 component, only.

The end result is

Lkin =

∫
d2θ d2θ̄ ΦΦ = ∂µφ ∂

µφ+
i

2

(
∂µψ σµψ − ψ σµ∂µψ

)
+FF+ total der . (5.2)

What we get is precisely the kinetic term describing the degrees of freedom of a

free chiral superfield! In doing so we also see that, as anticipated, the F field is

an auxiliary field, namely a non-propagating degree of freedom. Integrating it out

(which is trivial in this case since its equation of motion is simply F = 0) one gets a

(supersymmetric) Lagrangian describing physical degrees of freedom, only. Notice

that after integrating F out, supersymmetry is realized on-shell, only, namely upon

imposing the equation of motions on the propagating degrees of freedom.

The equations of motion for φ, ψ and F following from the Lagrangian (5.2) can

be easily derived using superfield formalism readily from the expression in super-

space. This might not look obvious at a first sight since varying the action (5.1)

with respect to Φ we would get Φ = 0, which does not provide the equations of

motion we would expect, as it can be easily inferred expanding it in components.

The point is that the integral in eq. (5.1) is a constrained one, since Φ is a chiral

superfield and hence subject to the constraint Dα̇Φ = 0. One can rewrite the above

integral as an unconstrained one noticing that

∫
d2θ d2θ̄ ΦΦ = −1

4

∫
d2θ̄ ΦD2Φ . (5.3)
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In getting the right hand side we have used the fact that
∫
dθα = Dα, up to total

space-time derivative, and that Φ is a chiral superfield (hence DαΦ = 0). Now,

varying with respect to Φ we get

D2Φ = 0 , (5.4)

which, upon expansion in (x, θ, θ̄), does correspond to the equations of motion for

φ, ψ and F one would obtain from the Lagrangian (5.2).

That’s great. However, we want to describe interactions, not just a set of freely

propagating fields. Can we have a more general Lagrangian than just (5.1)? Let us

try to consider a more generic function of Φ and Φ, call it K(Φ,Φ), and consider

the integral ∫
d2θ d2θ̄ K(Φ,Φ) . (5.5)

In order for the integral (5.5) to be a promising object to describe a supersymmetric

Lagrangian, the function K should satisfy a number of properties. First, it should

be a superfield. This ensures supersymmetric invariance. Second, it should be a real

and scalar function. As before, this is needed since a Lagrangian should have these

properties and the θ2θ̄2 component of K, which is the only one contributing to the

above integral, is a real scalar object, if so is the superfield K. Third, K should

have mass dimension 2, since then its θ2θ̄2 component will have dimension 4, as a

Lagrangian should have. Finally, K should be a function of Φ and Φ but not of

DαΦ and Dα̇Φ. The reason is that, as it can be easily checked, covariant derivatives

would provide θθθ̄θ̄-term contributions giving a higher derivative theory (third order

and higher), which cannot be accepted for a local field theory. It is not difficult to

get convinced that the most general expression for K which is compatible with all

these properties is

K(Φ,Φ) =
∞∑

m,n=1

cmnΦ
m

Φn where cmn = c∗nm. (5.6)

where the reality condition on K is ensured by the relation cmn = c∗nm. Not that all

coefficients cmn with either m or n greater than one have negative mass dimension,

while c11 is dimensionless. This means that, in general, a contribution as that in

eq. (5.5) will describe a supersymmetric but non-renormalizable theory, typically

defined below some cut-off scale Λ. Indeed, the coefficients cmn will be of the form

cmn ∼ Λ2−(m+n) (5.7)
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with the constant of proportionality being a pure number. The function K is called

Kähler potential. The reason for such fancy name will become clear later (see §5.1.1).

If renormalizability is an issue, the lowest component of K should not contain

operators of dimension bigger than 2, given that the θ2θ̄2 component has dimension

[K] + 2. In this case all cmn but c11 should vanish and the Kähler potential would

just be equal to ΦΦ, the object we already considered before and which leads to the

renormalizable (but free) Lagrangian (5.2).

In passing, notice that the combination Φ + Φ respects all the physical require-

ments discussed above. However, a term like that would not give any contribution

since its θ2θ̄2 component is a total derivative. This means that two Kähler potentials

K and K ′ related as

K(Φ,Φ)′ = K(Φ,Φ) + Φ + Φ , (5.8)

are different, but their integrals in full superspace, which is all what matters for us,

are the same
∫
d4x d2θ d2θ̄ K(Φ,Φ)′ =

∫
d4x d2θ d2θ̄ K(Φ,Φ) . (5.9)

This is the reason why we did not consider m = 0 or n = 0 in the expansion (5.6)

(recall that products of (anti)chiral superfields is still a (anti)chiral superfield so

(5.8) holds with arbitrary powers of Φ and Φ)).

Thus far, we have not been able to describe any renormalizable interaction,

like non-derivative scalar interactions and Yukawa interactions. How to describe

them? As we have just seen, the simplest possible integral in superspace full-filling

the minimal and necessary physical requirements, ΦΦ, already gives two-derivative

contributions, see eq. (5.2). What can we do, then?

When dealing with chiral superfields, there is yet another possibility to construct

supersymmetric invariant superspace integrals. Let us consider a generic chiral

superfield Σ (which can be obtained from products of Φ’s, in our case). Integrating

it in full superspace would give

∫
d4x d2θ d2θ̄ Σ = 0 , (5.10)

since its θ2θ̄2 component is a total derivative. Consider instead integrating Σ in half

superspace ∫
d4x d2θ Σ . (5.11)
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Differently from the previous one, this integral does not vanish, since now it is

the θ2 component which contributes, and this is not a total derivative for a chiral

superfield. Note that in computing (5.11) one can work in the (y, θ, θ̄) coordinate

space, taking Σ = Σ(y, θ), and then evaluate the result at yµ = xµ. The terms one

is missing would just provide total space-time derivatives, which do not contribute

to
∫
d4x. Another way to reach the same conclusion is to notice that in (xµ, θα, θ̄α̇)

coordinate, the chiral superfield Σ reads Σ(x, θ, θ̄) = exp(iθσµθ̄∂µ)Σ(x, θ).

Besides being non-vanishing, (5.11) is also supersymmetric invariant, since the

θ2 component of a chiral superfield transforms as a total derivative under supersym-

metry transformations, as can be seen from eq. (4.59)

An integral like (5.11) is more general than an integral like (5.5). The reason

is the following. Any integral in full superspace can be re-written as an integral in

half superspace. Indeed, for any superfield Y
∫
d4x d2θ d2θ̄ Y = −1

4

∫
d4x d2θ D

2
Y , (5.12)

(in passing, let us notice that for any arbitrary Y , D
2
Y is manifestly chiral, since

D
3

= 0 identically). This is because when going from dθ̄ to D the difference is just

a total space-time derivative, which does not contribute to the above integral. On

the other hand, the converse is not true in general. Consider a term like
∫
d4x d2θΦn , (5.13)

where Φ is a chiral superfield. This integral cannot be converted into an integral in

full superspace, essentially because there are no covariant derivatives to play with.

Integrals like (5.13), which cannot be converted into integral in full superspace, are

called F-terms. All others, like (5.12), are called D-terms.

Coming back to our problem, it is clear that since the simplest non-vanishing

integral in full superspace, eq. (5.1), already contains field derivatives, we must turn

to F-terms. First notice that any holomorphic function of Φ, namely a function

W (Φ) such that ∂W/∂Φ = 0, is a chiral superfield, if so is Φ. Indeed

Dα̇W (Φ) =
∂W

∂Φ
Dα̇Φ +

∂W

∂Φ
Dα̇Φ = 0 . (5.14)

The proposed term for describing interactions in a theory of a chiral superfield is

Lint =

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ) , (5.15)
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where W is a holomorphic function of Φ and the hermitian conjugate has been

added to make the whole thing real. The function W is called superpotential. Which

properties should W satisfy? First, as already noticed, W should be a holomorphic

function of Φ. This ensures it to be a chiral superfield and hence (5.15) to be a

supersymmetric invariant quantity (modulo total space-time derivatives). Second,

W should not contain covariant derivatives since DαΦ is not a chiral superfield, given

that Dα and Dα̇ do not (anti)commute. Finally, [W ] = 3, to make the expression

(5.15) have dimension 4. The upshot is that the superpotential should have an

expression like

W (Φ) =
∞∑

n=1

an Φn (5.16)

If renormalizability is an issue, the lowest component of W should not contain opera-

tors of dimensionality bigger than 3, given that the θ2 component has dimensionality

[W ] + 1. Since Φ has dimension one, it follows that to avoid non-renormalizable op-

erators the highest power in the expansion (5.16) should be n = 3, so that the θ2

component will have operators of dimension 4, at most. In other words, a renormal-

izable superpotential should be at most cubic.

The superpotential is also constrained by R-symmetry. Given a chiral superfield

Φ, if the U(1)R charge of its lowest component φ is r, then that of ψ is r − 1 and

that of F is r − 2. This follows from the commutation relations (2.80). Therefore,

we have

R[θ] = 1 , R[θ̄] = −1 , R[dθ] = −1 , R[dθ̄] = 1 (5.17)

(recall that dθ = ∂/∂θ, and similarly for θ̄). In theories with a R-symmetry, it the

follows that the superpotential should have R-charge equal to 2

R[W ] = 2 , (5.18)

in order for the Lagrangian (5.15) to have R-charge 0 and hence be R-symmetry

invariant. Does R-symmetry constraint also the Kähler potential? Let us first notice

that the integral measure in full superspace has R-charge 0, because of eqs. (5.17).

This implies that for theories with a R-symmetry, the Kähler potential should have

itself R-charge 0. This is trivially the case for a canonical Kähler potential, since

ΦΦ has R-charge 0. If one allows for non-canonical Kähler potential, then besides

the reality condition, one should also impose that cnm = 0 whenever n 6= m, see

eq. (5.6).
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The integration in superspace of the Lagrangian (5.15) is easily done recalling

the expansion of the superpotential in powers of θ. We have

W (Φ) = W (φ) +
√

2
∂W

∂φ
θψ − θθ

(
∂W

∂φ
F +

1

2

∂2W

∂φ∂φ
ψψ

)
, (5.19)

where
∂nW

∂φn
≡ ∂nW

∂Φn

∣∣∣
Φ=φ

. (5.20)

So, modulo total space-time derivatives, we get

Lint =

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ) = −∂W

∂φ
F − 1

2

∂2W

∂φ∂φ
ψψ + h.c. , (5.21)

where, again, the rhs is already evaluated at xµ.

Summing up (5.5) and (5.15) we can now write down the most generic N = 1

supersymmetric Lagrangian describing the dynamics of a chiral superfield Φ, which

reads

L =

∫
d2θ d2θ̄ K(Φ,Φ) +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ) . (5.22)

Renormalizability restricts the structure of the Kähler potential and of the super-

potential as

K(Φ,Φ) = ΦΦ , W (Φ) =
3∑

1

an Φn . (5.23)

In this case, upon integrating in superspace we get

L =

∫
d2θ d2θ̄ΦΦ +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ) (5.24)

= ∂µφ ∂
µφ+

i

2

(
∂µψ σµψ − ψ σµ∂µψ

)
+ FF − ∂W

∂φ
F − 1

2

∂2W

∂φ∂φ
ψψ + h.c. .

We can now integrate the auxiliary fields F and F out by substituting in the La-

grangian their equations of motion which read

F =
∂W

∂φ
, F =

∂W

∂φ
. (5.25)

Doing so, we get a Lagrangian where only physical fields enter, that is

Lon−shell = ∂µφ ∂
µφ+

i

2

(
∂µψ σµψ − ψ σµ∂µψ

)
−
∣∣∣∂W
∂φ

∣∣∣
2

− 1

2

∂2W

∂φ∂φ
ψψ− 1

2

∂2W

∂φ∂φ
ψψ .

(5.26)
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From this we can read the scalar potential which is

V (φ, φ) =
∣∣∣∂W
∂φ

∣∣∣
2

= FF , (5.27)

where the last equality holds on-shell, namely upon use of eqs. (5.25).

All what we said so far can be easily generalized to a set of chiral superfields Φi

where i = 1, 2, . . . , n. In this case the most general Lagrangian reads

L =

∫
d2θ d2θ̄ K(Φi,Φi) +

∫
d2θW (Φi) +

∫
d2θ̄ W (Φi) . (5.28)

For renormalizable theories we have

K(Φi,Φi) = ΦiΦ
i and W (Φi) = aiΦ

i +
1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk , (5.29)

where summation over dummy indexes is understood (notice that a quadratic Kähler

potential can always be brought to such diagonal form by means of a GL(n,C)

transformation on the most general term Ki
j ΦiΦ

j, where Ki
j is a constant hermitian

matrix). In this case the scalar potential reads

V (φi, φi) =
n∑

i=1

∣∣∣∂W
∂φi

∣∣∣
2

= F iF
i , (5.30)

where

F i =
∂W

∂φi
, F i =

∂W

∂φi
. (5.31)

5.1.1 Non-linear sigma model I

The possibility to deal with non-renormalizable supersymmetric field theories we al-

luded to previously, is not just academic. In fact, one often has to deal with effective

field theories at low energy. The Standard Model itself, though renormalizable, is

best thought of as an effective field theory, valid up to a scale of order the TeV scale

or slightly higher. Not to mention other effective field theories which are relevant

beyond the realm of particle physics. In this section we would like to say some-

thing more about the Lagrangian (5.28) once the most general Kähler potential and

superpotential are allowed, and show that what one ends-up with in this case is a

supersymmetric version of a non-linear σ-model. Though a bit heavy notation-wise,

the effort we are going to do here will be very instructive as it will show the deep

relation between supersymmetry and geometry.
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Since we do not care about renormalizability here, the superpotential is no more

restricted to be cubic and the Kähler potential is no more restricted to be quadratic

(though it must still be real and with no covariant derivatives acting on the chiral

superfields Φi). For later purposes it is convenient to define the following quantities

Ki =
∂

∂φi
K(φ, φ) , Ki =

∂

∂φi
K(φ, φ) , Kj

i =
∂2

∂φi∂φj
K(φ, φ)

Wi =
∂

∂φi
W (φ) , W i = W i , Wij =

∂2

∂φi∂φj
W (φ) , W ij = W ij ,

where in the above fromulæ both the Kähler potential and the superpotential are

meant as their restriction to the scalar component of the chiral superfields, while φ

stands for the full n-dimensional vector made out of the n scalar fields φi (similarly

for φ).

Extracting the F-term contribution in terms of the above quantities is pretty

simple. The superpotential can be written as

W (Φ) = W (φ) +Wi∆
i +

1

2
Wij∆

i∆j , (5.32)

where we have defined

∆i(y) = Φi − φi(y) =
√

2θψi(y)− θθF i(y) , (5.33)

and we get for the F-term

∫
d2θW (Φi) +

∫
d2θ̄ W (Φi) =

(
−WiF

i − 1

2
Wijψ

iψj
)

+ h.c. , (5.34)

where, see the comment after eq. (5.11), all quantities on the rhs are evaluated in

xµ.

Extracting the D-term contribution is more tricky (but much more instructive).

Let us first define

∆i(x) = Φi − φi(x) , ∆i(x) = Φi − φi(x) (5.35)

which read

∆j(x) =
√

2θψj(x) + iθσµθ̄∂µφ
j(x)− θθF j(x)− i√

2
θθ∂µψ

j(x)σµθ̄ − 1

4
θθ θ̄θ̄�φj(x)

∆j(x) =
√

2θ̄ψj(x)− iθσµθ̄∂µφj(x)− θ̄θ̄F j(x) +
i√
2
θ̄θ̄θσµ∂µψj(x)− 1

4
θθ θ̄θ̄�φj(x) .
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Note that ∆i∆j∆k = ∆i∆j∆k = 0. With these definitions the Kähler potential can

be written as follows

K(Φ,Φ) = K(φ, φ) +Ki∆
i +Ki∆i +

1

2
Kij∆

i∆j +
1

2
Kij∆i∆j +Kj

i ∆
i∆j +

+
1

2
Kk
ij∆

i∆j∆k +
1

2
Kij
k ∆i∆j∆

k +
1

4
Kkl
ij ∆i∆j∆k∆l . (5.36)

We can now compute the D-term contribution to the Lagrangian. We get

∫
d2θ d2θ̄ K(Φ,Φ) = −1

4
Ki�φ

i − 1

4
Ki�φi −

1

4
Kij∂µφ

i∂µφj − 1

4
Kij∂µφi∂

µφj +

+ Kj
i

(
F iF j +

1

2
∂µφ

i∂µφj −
i

2
ψiσµ∂µψj +

i

2
∂µψ

iσµψj

)

+
i

4
Kk
ij

(
ψiσµψk∂µφ

j + ψjσµψk∂µφ
i − 2iψiψjF k

)
− i

4
Kij
k (h.c.) +

+
1

4
Kkl
ij ψ

iψjψkψl , (5.37)

up to total derivatives. Notice now that

�K(φ, φ) = Ki�φ
i +Ki�φi + 2Kj

i ∂µφj∂
µφi +Kij∂µφ

i∂µφj +Kij∂µφi∂
µφj . (5.38)

Using this identity we can eliminate Kij and Kij, and rewrite eq. (5.37) as

∫
d2θ d2θ̄ K(Φ,Φ) = Kj

i

(
F iF j + ∂µφ

i∂µφj −
i

2
ψiσµ∂µψj +

i

2
∂µψ

iσµψj

)
+

+
i

4
Kk
ij

(
ψiσµψk∂µφ

j + ψjσµψk∂µφ
i − 2iψiψjF k

)
− i

4
Kij
k (h.c.) +

+
1

4
Kkl
ij ψ

iψjψkψl , (5.39)

again up to total derivatives.

A few important comments are in order. As just emphasized, independently

whether the fully holomorphic and fully anti-holomorphic Kähler potential compo-

nents, Kij and Kij respectively, are or are not vanishing, they do not enter the final

result (5.39). In other words, from a practical view point it is as if they are not there.

The only two-derivative contribution entering the effective Lagrangian is hence Kj
i .

This means that given any holomorphic function of φ, Λ(φ), the transformation

K(φ, φ)→ K(φ, φ) + Λ(φ) + Λ(φ) , (5.40)
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known as Kähler transformation, is a symmetry of the theory (in fact, such symmetry

applies to the full Kähler potential, as we have already observed). This is important

for our second comment.

The function Kj
i which normalizes the kinetic term of all fields in eq. (5.39), is

hermitian, i.e. Kj
i = Ki †

j , since K(φ, φ) is a real function. Moreover, it is positive

definite and non-singular, because of the correct sign for the kinetic terms of all

non-auxiliary fields. That is to say Kj
i has all necessary properties to be interpreted

as a metric of a manifold M of complex dimension n whose coordinates are the

scalar fields φi themselves. The metric Kj
i is in fact the second derivative of a (real)

scalar function K, since

Kj
i =

∂2

∂φi∂φj
K(φ, φ) . (5.41)

In this case we speak of a Kähler metric and the manifoldM is what mathematically

is known as Kähler manifold. The scalar fields are maps from space-time to this

Riemanniann manifold, which supersymmetry dictates to be Kähler. This is the

(supersymmetric) σ-model. Actually, in order to prove that the Lagrangian is a

σ-model, with target space the Kähler manifold M, we should prove that not only

the kinetic term but any other term in the Lagrangian can be written in terms of

geometric quantities defined on M, e.g. the affine connection and the curvature

tensor. With some work one can compute both of them out of the Kähler metric

Kj
i and, using the auxiliary field equations of motion

F i = (K−1)ikW
k − 1

2
(K−1)ikK

k
lmψ

lψm (5.42)

(remark: the above equation shows that when the Kähler potential is non-canonical,

the auxiliary fields can depend also on fermion fields!), get for the Lagrangian

L = Kj
i

(
∂µφ

i∂µφj +
i

2
Dµψ

iσµψj −
i

2
ψiσµDµψj

)
− (K−1)ijWiW

j (5.43)

− 1

2

(
Wij − ΓkijWk

)
ψiψj − 1

2

(
W ij − ΓijkW

k
)
ψiψj +

1

4
Rkl
ijψ

iψjψkψl ,

where

V (φ, φ) = (K−1)ijWiW
j (5.44)

is the scalar potential, and the covariant derivatives for the fermions are defined as

Dµψ
i = ∂µψ

i + Γijk∂µφ
iψk

Dµψi = ∂µψi + Γkji ∂µφkψj .
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With our conventions on indexes, Γijk = (K−1)imK
m
jk while Γkji = (K−1)mi K

kj
m and

Rkl
ij = Kkl

ij −Km
ij (K−1)nmK

kl
n .

As anticipated, a complicated component field Lagrangian is uniquely charac-

terized by the geometry of the target space. Once a Kähler potential is specified,

anything in the Lagrangian (masses and couplings) depends geometrically on this

potential (and on W ). This shows the strong connection between supersymmetry

and geometry. There are of course infinitely many Kähler metrics and therefore

infinitely many N = 1 supersymmetric σ-models. The normalizable case, Kj
i = δji ,

is just the simplest such instances.

The more supersymmetry the more constraints, hence one could imagine that

there should be more restrictions on the geometric structure of the σ-model for

theories with extended supersymmetry. This is indeed the case, as we will see

explicitly when discussing the N = 2 version of the supersymmetric σ-model. In

this case, the scalar manifold is further restricted to be a special class of Kähler

manifolds, known as special-Kähler manifolds. For N = 4 constraints are even

sharper. In fact, in this case the Lagrangian turns out to be unique, the only

possible scalar manifold being the trivial one, M = R6n, if n is the number of

N = 4 vector multiplets (recall that a N = 4 vector multiplet contains six scalars).

So, for N = 4 supersymmetry the only allowed Kähler potential is the canonical

one! As we will discuss later, this has drastic consequences on the quantum behavior

of theories with N = 4 supersymmetry.

5.2 N=1 SuperYang-Mills

We would now like to find a supersymmetric invariant action describing the dynamics

of vector superfields. In other words, we want to write down the supersymmetric

version of Yang-Mills theory (SYM for short). Let us start considering an abelian

theory, with gauge group G = U(1). The basic object we should play with is

the vector superfield V , which is the supersymmetric extension of a spin one field.

Notice, however, that the vector vµ appears explicitly in V so the first thing to do is

to find a suitable supersymmetric generalization of the field strength, which is the

gauge invariant object which should enter the action. Let us define the following

superfield

Wα = −1

4
DDDαV , W α̇ = −1

4
DDDα̇V , (5.45)
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and see if this can do the job. First, Wα is obviously a superfield, since V is a

superfield and both Dα̇ and Dα commute with supersymmetry transformations. In

fact, Wα is a chiral superfield, since D
3

= 0 identically. The chiral superfield Wα is

invariant under the gauge transformation (4.62). Indeed

Wα → Wα −
1

4
DDDα

(
Φ + Φ

)
= Wα +

1

4
D

β̇
Dβ̇DαΦ

= Wα +
1

4
D

β̇{Dβ̇, Dα}Φ = Wα +
i

2
σµ
αβ̇
∂µD

β̇
Φ = Wα . (5.46)

This also means that, as anticipated, as far as we deal with Wα, we can stick

to the WZ-gauge without bothering about compensating gauge transformations or

anything.

In order to find the component expression for Wα it is useful to use the (y, θ, θ̄)

coordinate system, momentarily. In the WZ gauge the vector superfield reads

VWZ = θσµθ̄ vµ(y) + iθθ θ̄λ(y)− iθ̄θ̄ θλ(y) +
1

2
θθ θ̄θ̄ (D(y)− i∂µvµ(y)) . (5.47)

It is a simple exercise we leave to the reader to prove that expanding in (x, θ, θ̄)

coordinate system, the above expression reduces to eq. (4.65). Acting with Dα

written in the (y, θ, θ̄) coordinate system, we get

DαVWZ = σµ
αβ̇
θ̄β̇vµ + 2iθαθ̄λ− iθ̄θ̄λα + θαθ̄θ̄D + 2i(σµν) β

α θβ θ̄θ̄∂µvν + θθθ̄θ̄σµ
αβ̇
∂µλ

β̇

(5.48)

and finally, using the identity DDθ̄θ̄ = −4

Wα = −iλα + θαD + i (σµνθ)α Fµν + θθ
(
σµ∂µλ

)
α
, (5.49)

where Fµν = ∂µvν − ∂νvµ is the usual gauge field strength and y-dependence of

all fields is understood. Since it contains the field strength Fµν this seems to be

the right superfield we were searching for! Wα is the so-called supersymmetric field

strength and it is an instance of a chiral superfield whose lowest component is not

a scalar field, as we have been used to, but in fact a Weyl fermion, λα, the gaugino.

For this reason, Wα is also called gaugino superfield.

Given that Wα is a chiral superfield, a putative supersymmetric Lagrangian could

be constructed out of the following integral in chiral superspace

∫
d2θWαWα , (5.50)
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which, notice, has dimension 4. Plugging eq. (5.49) into the expression above and

computing the superspace integral one gets after some simple algebra
∫
d2θWαWα = −1

2
FµνF

µν − 2iλσµ∂µλ+D2 +
i

4
εµνρσFµνFρσ . (5.51)

One can get a real object by adding the hermitian conjugate to (5.51), having finally

Lgauge =

∫
d2θWαWα +

∫
d2θ̄ W α̇W

α̇
= −FµνF µν − 4iλσµ∂µλ+ 2D2 . (5.52)

This is the supersymmetric version of the abelian gauge Lagrangian (up to an overall

normalization to be fixed later). As anticipated, D is an auxiliary (real) field.

The Lagrangian (5.52) has been written as an integral over chiral superspace, so

one might be tempted to say it is a F-term. This is wrong since (5.52) is not a true

F-term. Indeed, it can be re-written as an integral in full superspace (while F-terms

cannot) ∫
d2θWαWα =

∫
d2θ d2θ̄ DαV ·Wα , (5.53)

and so it is in fact a D-term. As we will see later, this fact has important conse-

quences at the quantum level, when discussing renormalization properties of super-

symmetric Lagrangians.

All what we said, so far, has to do with abelian interactions. What changes if

we consider a non-abelian gauge group G? First, we have to promote the vector

superfield to

V = VaT
a a = 1, . . . , dimG , (5.54)

where T a are hermitian generators and Va are n = dimG vector superfields. Second,

it is useful to define the finite version of the gauge transformation (4.62) which can

be written as

eV → eiΛeV e−iΛ . (5.55)

One can easily check that at leading order in Λ this indeed reduces to (4.62), upon

the identification Φ = −iΛ. Again, it is straightforward to set the WZ gauge for

which

eV = 1 + V +
1

2
V 2 . (5.56)

In what follows this gauge choice is always understood. The gaugino superfield is

generalized as follows

Wα = −1

4
DD

(
e−VDαe

V
)

, W α̇ = −1

4
DD

(
eVDα̇e

−V ) (5.57)
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which again reduces to the expression (5.45) to first order in V . Let us look at

eq. (5.57) more closely. Under the gauge transformation (5.55) Wα transforms as

Wα → −1

4
DD

[
eiΛe−V e−iΛDα

(
eiΛeV e−iΛ

)]

= −1

4
DD

[
eiΛe−V

( (
Dαe

V
)
e−iΛ + eVDαe

−iΛ)]

= −1

4
eiΛDD

(
e−VDαe

V
)
e−iΛ = eiΛWαe

−iΛ , (5.58)

where we used the fact that, given that Λ (and products thereof) is a chiral superfield,

Dα̇e
−iΛ = 0, Dαe

iΛ = 0 and also DDDαe
−iΛ = 0. The end result is that Wα

transforms covariantly under a finite gauge transformation, as it should whenever

one is dealing with non-abelian groups. Similarly, one can prove that

W α̇ → eiΛW α̇e
−iΛ . (5.59)

Let us now expand Wα in component fields. We would expect the non-abelian

generalization of eq. (5.49). We have

Wα = −1

4
DD

[(
1− V +

1

2
V 2

)
Dα

(
1 + V +

1

2
V 2

)]

= −1

4
DDDαV −

1

8
DDDαV

2 +
1

4
DDVDαV

= −1

4
DDDαV −

1

8
DDVDαV −

1

8
DDDαV · V +

1

4
DDVDαV

= −1

4
DDDαV +

1

8
DD [V,DαV ] .

The first term is the same as the one we already computed in the abelian case. As

for the second term we get

1

8
DD [V,DαV ] =

1

2
(σµνθ)α [vµ, vν ]−

i

2
θθσµ

αβ̇

[
vµ, λ

β̇
]
. (5.60)

Adding everything up simply amounts to turn ordinary derivatives into covariant

ones, finally obtaining

Wα = −iλα(y) + θαD(y) + i (σµνθ)α Fµν + θθ
(
σµDµλ(y)

)
α

(5.61)

with

Fµν = ∂µvν − ∂νvµ −
i

2
[vµ, vν ] , Dµ = ∂µ −

i

2
[vµ, ] , (5.62)
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which provide the correct non-abelian generalization for the field strength and the

(covariant) derivatives.

In view of coupling the pure SYM Lagrangian with matter, it is convenient to

introduce the coupling constant g explicitly, making the redefinition

V → 2gV ⇔ vµ → 2gvµ , λ→ 2gλ , D → 2gD , (5.63)

which implies the following changes in the final Lagrangian. First, we have now

Fµν = ∂µvν − ∂νvµ − ig [vµ, vν ] , Dµ = ∂µ − ig [vµ, ] . (5.64)

Moreover, the gaugino superfield (5.61) should be multiplied by 2g and the (non-

abelian version of the) Lagrangian (5.52) by 1/4g2. The end result for the SYM

Lagrangian is

LSYM =
1

32π
Im

(
τ

∫
d2θTrWαWα

)

= Tr
[
− 1

4
FµνF

µν − iλσµDµλ+
1

2
D2
]

+
θYM

32π2
g2TrFµνF̃

µν , (5.65)

where we have introduced the complexified gauge coupling

τ =
θYM

2π
+

4πi

g2
(5.66)

and the dual field strength

F̃ µν =
1

2
εµνρσFρσ , (5.67)

while gauge group generators are normalized as TrT aT b = δab.

5.3 N=1 Gauge-matter actions

We want now to couple radiation with matter in a supersymmetric consistent way.

To this end, let us consider a chiral superfield Φ transforming in some representation

R of the gauge group G, T a → (T aR)ij where i, j = 1, 2, . . . , dimR. Under the gauge

transformation (5.55) we expect Φ to transform as

Φ→ Φ′ = eiΛΦ , Λ = ΛaT
a
R . (5.68)

Note that since Λ is a chiral superfield, Φ′ is still a chiral superfield. This looks

promising but in this way it turns out that the chiral superfield kinetic action we

have derived previously would not be gauge invariant since

ΦΦ→ Φe−iΛeiΛΦ 6= ΦΦ . (5.69)

97



This means that we have to change the kinetic action. As we are going to show in

the following, the correct expression for the kinetic term happens to be

ΦeV Φ , (5.70)

which can be easily shown to be a supersymmetric invariant quantity (modulo total

space-time derivatives) and also gauge invariant, when integrated in superspace.

With this modification, the complete Lagrangian for charged matter hence reads

Lmatter =

∫
d2θ d2θ̄ ΦeV Φ +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ) . (5.71)

Obviously the superpotential should be compatible with the gauge symmetry, i.e.

it should be gauge invariant itself. This means that a term like

ai1i2...inΦi1Φi2 . . .Φin (5.72)

is allowed only if ai1i2...in is an invariant tensor of the gauge group and ifR×R×· · ·×R
n times contains the singlet representation of the gauge group G.

As an explicit example, take the gauge group of strong interactions, G = SU(3),

and consider quarks as matter field. In this case R is the fundamental representation,

R = 3. Since 3 × 3 × 3 = 1 + . . . and εijk is an invariant tensor of SU(3), while

1 6⊂ 3×3 it follows that a supersymmetric and gauge invariant cubic term is allowed,

but a mass term is not. In order to have mass terms for quarks, one needs R = 3+3̄

corresponding to a chiral superfield Φ in the 3 (quark) and a chiral superfield Φ̃ in

the 3̄ (anti-quark). In this case Φ̃Φ is gauge invariant and does correspond to a mass

term. This is consistent with the fact that a chiral superfield contains a Weyl fermion

only and quarks are described by Dirac fermions. The lesson is that to construct

supersymmetric actions with colour charged matter, one needs to introduce two sets

of chiral superfields which transform in conjugate representations of the gauge group.

This is just the supersymmetric version of what happens in ordinary QCD or in any

non-abelian gauge theory with fermions transforming in complex representations

(G = SU(2) is an exception because 2 ' 2̄) .

Let us now compute the D-term of the Lagrangian (5.71). We have (as usual we

work in the WZ gauge)

ΦeV Φ = ΦΦ + ΦV Φ +
1

2
ΦV 2Φ . (5.73)
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The first term is the one we have already calculated, so let us focus on the D-term

contribution of the other two. After some algebra we get

ΦV Φ|θθ θ̄θ̄ =
i

2
φvµ∂µφ−

i

2
∂µφv

µφ− 1

2
ψσ̄µvµψ +

i√
2
φλψ − i√

2
ψλφ+

1

2
φDφ

ΦV 2Φ|θθ θ̄θ̄ =
1

2
φvµvµφ .

Putting everything together we finally get (up to total derivatives)

ΦeV Φ|θθ θ̄θ̄ =
(
Dµφ

)
Dµφ− iψσ̄µDµψ + FF +

i√
2
φλψ − i√

2
ψλφ+

1

2
φDφ , (5.74)

where Dµ = ∂µ− i
2
vaµT

a
R .

Performing the rescaling V → 2gV and rewriting ψσ̄µDµψ = ψσµDµψ (recall

the spinor identity χσµψ = −ψσ̄µχ) we get finally

Φe2gV Φ|θθ θ̄θ̄ =
(
Dµφ

)
Dµφ−iψσµDµψ+FF+i

√
2gφλψ−i

√
2gψλφ+gφDφ , (5.75)

where now Dµ = ∂µ−igvaµT aR. The above result shows that the D-term in the La-

grangian (5.71) not only provides matter kinetic terms but also interaction terms

between matter fields φ, ψ and gauginos λ, where it is understood that

φλψ = φi(T
a
R)ijλaψ

j , (5.76)

and similarly for the other couplings.

To get the most general action there is one term still missing: the so called Fayet-

Iliopulos term. Suppose that the gauge group is not semi-simple, i.e. it contains

U(1) factors. Let V A be the vector superfields corresponding to the abelian factors,

A = 1, 2, . . . ,m, where m is the number of abelian factors. The D-term of V A

transforms as a total derivative under supersymmetric gauge transformations, since

V A → V A − iΛ + iΛ : DA → DA + ∂µ∂
µ (. . .) . (5.77)

Therefore a Lagrangian of this type

LFI =
∑

A

ξA

∫
d2θd2θ̄ V A =

1

2

∑

A

ξAD
A (5.78)

is supersymmetric invariant (since V A are superfields) and gauge invariant, modulo

total space-time derivatives.
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We can now assemble all ingredients and write down the most general N = 1

supersymmetric Lagrangian (with canonical Kähler potential, hence renormalizable,

if the superpotential is at most cubic) which reads

L = LSYM + Lmatter + LFI =

=
1

32π
Im

(
τ

∫
d2θTrWαWα

)
+ 2g

∑

A

ξA

∫
d2θd2θ̄ V A +

+

∫
d2θd2θ̄Φe2gV Φ +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ) (5.79)

= Tr
[
− 1

4
FµνF

µν − iλσµDµλ+
1

2
D2
]

+
θYM

32π2
g2TrFµνF̃

µν

+ g
∑

A

ξAD
A +

(
Dµφ

)
Dµφ− iψσµDµψ + FF + i

√
2gφλψ

− i
√

2gψλφ+ gφDφ− ∂W

∂φi
F i − ∂W

∂φi
F i −

1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φi∂φj
ψiψj .

Both Da and F i are auxiliary fields and can be integrated out. Their equations of

motion read

F i =
∂W

∂φi
, Da = −gφT aφ− gξa (ξa = 0 if a 6= A) . (5.80)

These can plugged back into (5.79) leading to the following on-shell Lagrangian

L = Tr
[
− 1

4
FµνF

µν − iλσµDµλ
]

+
θYM

32π2
g2TrFµνF̃

µν +DµφD
µφ− iψσµDµψ +

+ i
√

2gφλψ − i
√

2gψλφ− 1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φi∂φj
ψiψj − V (φ, φ) , (5.81)

where the scalar potential V (φ, φ) is

V
(
φ, φ

)
=

∂W

∂φi
∂W

∂φi
+
g2

2

∑

a

|φi(T a)ijφj + ξa|2 = (5.82)

= FF +
1

2
D2
∣∣∣
on the solution

≥ 0 .

where in the last step we have used eqs. (5.80). The above equation shows that the

potential is a semi-positive definite quantity in supersymmetric theories.

Expressing the potential in terms of auxiliary fields, as above, provides a very

direct way to understand whether a supersymmetric theory admits supersymmetric

vacua and also suggests how to parametrize such vacua.
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First recall that a vacuum is a Lorentz invariant state configuration. This means

that all field derivatives and all fields but scalar ones should vanish in a vacuum

state. Hence, the only non trivial thing of the Hamiltonian which can be different

from zero in the vacuum is the non-derivative scalar part, which, by definition, is

the scalar potential. Therefore, the vacua of a theory, which are the minimal energy

states, are in one-to-one correspondence with the (global or local) minima of the

scalar potential.

As we have already seen, in a supersymmetric theory the energy of any state is

semi-positive definite. This holds also for vacua. For a vacuum Ω we have

〈Ω|P 0|Ω〉 ∼
∑

α

(
||Qα|Ω〉||2 + ||Q†α|Ω〉||2

)
≥ 0 . (5.83)

This means that the vacuum energy is 0 if and only if it is a supersymmetric state,

that is Qα|Ω〉 = 0, Qα̇|Ω〉 = 0 with α, α̇ = 1, 2. Conversely, supersymmetry is broken

(in the perturbative theory based on this vacuum) if and only if the vacuum energy is

positive. This implies that supersymmetric vacua are in one-to-one correspondence

with the zero’s of the scalar potential. From eq. (5.82) we see that, if they exist,

they are described by the set of scalar field VEVs which solve simultaneously the

so-called D-term and F-term equations

F i(φ) = 0 , Da(φ, φ) = 0 . (5.84)

To find such zero’s, the most convenient thing to do is to look first for the space

of scalar field VEVs such that

Da(φ, φ) = 0 , (5.85)

which is called the space of D-flat directions. If a superpotential is present, one

should then consider the F-term equations, which may put further constraints on

the subset of scalar field VEVs already satisfying the D-term equations (5.85). The

subspace of the space of D-flat directions which is also F-flat, i.e. which also satisfies

the equations

F i(φ) = 0 , (5.86)

is called (classical) moduli space and represents the space of (classical) supersym-

metric vacua, Mcl. Note that in solving for the D-term equations, one should mod

out by gauge transformations, since solutions which are related by gauge transfor-

mations are physically equivalent and describe the same vacuum state.
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The space of flat directions is the space of fields the potential does not depend

on and is called moduli space because each flat direction has a massless particle

associated to it, a modulus. The moduli represent the lightest degrees of freedom

of the low energy effective theory (think about the supersymmetric σ-model we

discussed in §5.1.1). As one moves along the moduli space one spans physically

inequivalent (supersymmetric) vacua, since the mass spectrum changes from point

to point as, generically, particle masses will depend on scalar field VEVs.

Let us anticipate an important and far-reaching fact that we will derive later.

While in a non-supersymmetric theory (or in a supersymmetry breaking vacuum of

a supersymmetric theory) the space of classical flat directions, if any, is generically

lifted by radiative corrections (which can be computed at leading order by e.g. the

Coleman-Weinberg potential), in supersymmetric theories this does not happen. If

the ground state energy is zero at tree level, it remains so at all orders in pertur-

bation theory. This is because perturbations around a supersymmetric vacuum are

themselves described by a supersymmetric Lagrangian and quantum corrections are

protected by cancellations between fermionic and bosonic loops. This means that the

only way to lift a classical supersymmetric vacuum, namely to break supersymme-

try, if not at tree level by some cleverly chosen superpotential, are non-perturbative

corrections. We will have much more to say about this issue in later lectures.

5.3.1 Classical moduli space: examples

To make concrete the previous discussion on moduli space, in what follows we would

like to consider two examples explicitly. Before we do that, however, we want to

rephrase our definition of moduli space presenting an alternative (but equivalent)

way to describe it.

Suppose we are considering a theory without superpotential. For such a theory

the space of D-flat directions coincides with the moduli space. The space of D-flat

directions is defined as the set of scalar field VEVs satisfying the D-flat conditions

Mcl = {〈φi〉 / Da = 0 ∀a}/gauge transformations . (5.87)

Generically it is not at all easy to solve the above constraints and find a simple

parametrization of Mcl. An equivalent, though less transparent definition of the

space of D-flat directions can help in this respect. It turns out that the same space

can be defined as the space spanned by all (single trace) gauge invariant operator
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VEVs made out of scalar fields, modulo classical relations between them

Mcl = {〈Gauge invariant operators ≡ Xr(φ)〉}/classical relations . (5.88)

The latter parametrization is very convenient since, up to classical relations, the

construction of the moduli space is unconstrained. In other words, the gauge in-

variant operators provide a direct parametrization of the space of scalar field VEVs

satisfying the D-flat conditions (5.85).

Notice that if a superpotential is present, this is not the end of the story: F-

equations will put extra constraints on the Xr(φ)’s and may lift part of (or even all)

the moduli space of supersymmetric vacua. In later lectures we will discuss some

such instances in detail. Here, in order clarify the equivalence between definitions

(5.87) and (5.88), we will instead consider two models with no superpotential term.

Massless SQED. The first example we want to consider is (massless) SQED, the su-

persymmetric version of quantum electrodynamics. This is a supersymmetric gauge

theory theory with gauge group U(1), F (couples of) chiral superfields (Qi, Q̃i) hav-

ing opposite charge with respect to the gauge group (we will set for definiteness

the charges to be ±1) and no superpotential, W = 0. The vanishing of the super-

potential implies that for this system the space of D-flat directions coincides with

the moduli space of supersymmetric vacua. The Lagrangian is an instance of the

general one we derived before and reads

LSQED =
1

32π
Im

(
τ

∫
d2θ WαWα

)
+

∫
d2θd2θ̄

(
Q†i e

2VQi + Q̃†i e
−2V Q̃i

)
(5.89)

(in order to ease the notation, we have come back to the most common notation to

indicate hermitian conjugation).

The (only one) D-equation reads

D = Q†iQ
i − Q̃†iQ̃i = 0 (5.90)

where here and in the following a 〈 〉 is understood whenever Qi or Q̃i appear.

What is the moduli space? Let us first use the definition (5.87). The number of

putative complex scalar fields parametrizing the moduli space is 2F . We have one

D-term equation only, which provides one real condition, plus gauge invariance

Qi → eiαQi , Q̃i → e−iαQ̃i , (5.91)
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which provides another real condition. Therefore, the complex dimension of the

moduli space is

dimCMcl = 2F − 1

2
− 1

2
= 2F − 1 . (5.92)

At a generic point of the moduli space the gauge group U(1) is broken. Indeed, the

−1 above corresponds to the complex scalar field which, together with its fermionic

superpartner, gets eaten by the vector superfield to give a massive vector superfield.

One component of the complex scalar field provides the third polarization to the

otherwise massless photon; the other real component provides the real physical

scalar field a massive vector superfield has. Finally, the Weyl fermion provides the

extra degrees of freedom to let the photino become massive. This is nothing but

the supersymmetric version of the Higgs mechanism. As anticipated, the vacua are

physically inequivalent, generically, since e.g. the mass of the photon depends on

the VEV of the scalar fields.

Let us now repeat the above analysis using the definition (5.88). The only gauge

invariants we can construct are

M i
j = QiQ̃j , (5.93)

the so-called mesons. They look as F 2 degrees of freedom but there are classical

relations between them, that we now want to find. The matrix (5.93) is a symmetric

F ×F complex matrix with rank one since so is the rank of Q and Q̃ (Q and Q̃ are

vectors of length F , since the gauge group is abelian). This implies that the meson

matrix has only one non-vanishing eigenvalue which means

det (M − λ1) = λF−1(λ− λ0)(−1)F . (5.94)

Recalling that for a matrix A

εi1i2...iFA
i1
j1
Ai2j2 . . . A

iF
jF

= detA εj1j2...jF (5.95)

with εi1i2...iF the fully antisymmetric tensor with F indexes, we have

εi1i2...iF (M i1
j1
− λδi1j1) . . . (M iF

jF
− λδiFjF ) = λF−1(λ− λ0)(−1)F εj1j2...jF (5.96)

which means that from the left hand side only the coefficients of the terms λF and

λF−1 survive. The next contribution, proportional to λF−2, should vanish, that is

εi1i2...iFM
i1
j1
M i2

j2
εj1j2...jF = 0 . (5.97)
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One can show that of the above complex equations, only (F − 1)2 give indepen-

dent conditions, while the contributions proportional to lower powers of λ, that is

λF−3, λF−4, . . . do not give new constraints. So we finally get that

dimCMcl = F 2 − (F − 1)2 = 2F − 1 . (5.98)

which coincides with what we have found before, eq. (5.92)! A quick way to get

the same result looking at the meson matrix is to observe that being of rank one,

the matirx M i
j is fully determined by the first row and the first column, namely by

2F − 1 elements.

The parametrization in terms of (single trace) gauge invariant operators is very

useful if one wants to find the low energy effective theory around the supersym-

metric vacua. Indeed, up to classical relations, these gauge invariant operators (in

fact, their fluctuations) directly parametrize the massless degrees of freedom of the

perturbation theory constructed upon these same vacua.

Using that Q, Q̃ and that the meson matrix M have rank one, one can show that

on the moduli space (5.90)

TrQ†Q = Tr Q̃†Q̃ = Tr
√
M †M . (5.99)

Therefore, the Kähler potential, which is canonical in terms of the microscopic UV

degrees of freedom Q and Q̃, once projected on the moduli space reads

K = Tr
[
Q†Q+ Q̃†Q̃

]
= 2Tr

√
M †M . (5.100)

The Kähler metric of the non-linear σ-model hence reads

ds2 = KMM†dMdM † =
1

2

1√
M †M

dMdM † (5.101)

which is manifestly non-canonical. Notice that the (scalar) kinetic term

1

2

∫
d4x

1√
M †M

∂µM∂µM † (5.102)

is singular at the origin, since the Kähler metric diverges there. This has a clear

physical interpretation: at the origin the theory is unhiggsed, the photon becomes

massless and the correct low energy effective theory should include it in the de-

scription. This is a generic feature in this all business: singularities showing-up at

specific points of the moduli space are a signal of extra-massless degrees of freedom

that, for a reason or another, show up at those specific points

Singularities ←→ New massless d.o.f. . (5.103)
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The correct low energy, singularity-free, effective description of the theory should

include them. The singular behavior of KMM† at the origin is simply telling us that.

Massless SQCD. Let us now consider the non-abelian version of the previous

theory. We have now a non-abelian gauge group which we take for definiteness to

be SU(N), F flavors and again no superpotential, W = 0. The quarks superfields

Q and Q̃ are F × N complex matrices. Looking at the Lagrangian, which is the

obvious generalization of (5.89), we see there are two independent flavor symmetries,

one associated to Q and one to Q̃, SU(F )L and SU(F )R respectively. To make the

different (flavor and gauge) symmetries manifest we split matter indexes as (i, a) with

i an index in the (anti)fundamental of SU(F )L,R and a in the (anti)fundamental of

SU(N). This is summarized in the table below

SU(N) SU(F )L SU(F )R

Qi
a N F 1

Q̃b
j N 1 F

(5.104)

where i, j = 1, 2, . . . , F and a, b = 1, 2, . . . , N . The convention for gauge indexes is

that lower indexes are for an object transforming in the fundamental representation

and upper indexes for an object transforming in the anti-fundamental. The conven-

tion for flavor indexes is chosen to be the opposite one. Given these conventions,

the D-term equations read

DA = Q†
b

i (TAN )cbQ
i
c + Q̃†

i

b (T aN̄)bc Q̃
c
i = Q†

b

i (TA)cbQ
i
c − Q̃†

i

b (TA)bc Q̃
c
i

= Q†
b

i (TA)cbQ
i
c − Q̃ b

i (TA)cb Q̃
†
i

c = 0 , (5.105)

where A = 1, 2, . . . , N2 − 1 is an index in the adjoint of SU(N), and we used the

fact that (TAN )ab = −(TA
N̄

)ab ≡ (TA)ab.

Let us first focus on the case F < N . Using the two SU(F ) flavor symmetries

and the (global part of the) gauge symmetry SU(N), one can show that on the

moduli space (5.105) the matrices Q and Q̃ can be put, at most, in the following

form (recall that the maximal rank of Q and Q̃ is F in this case, since F < N)

Q =




v1 0 . . . 0 . . .

0 v2 . . . 0 . . .

. . . . . . . . . . . . . . .

0 0 . . . vF . . .


 = Q̃T (5.106)
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This means that at a generic point of the moduli space the gauge group is broken

to SU(N − F ). So, the complex dimension of the classical moduli space is

dimCMcl = 2FN −
{
N2 − 1−

[
(N − F )2 − 1

]}
= F 2 . (5.107)

Let us now use the parametrization in terms of gauge invariant single trace operators

(5.88). In this case we have

M i
j = Qi

aQ̃
a
j (5.108)

(notice the contraction on the N gauge indexes). The meson matrix has now maxi-

mal rank, since F < N , so there are no classical constraints it has to satisfy: its F 2

entries are all independent. In terms of the meson matrix the classical moduli space

dimension is then (trivially) F 2, in agreement with eq. (5.107). Again, playing with

global symmetries, the meson matrix can be diagonalized in terms of F complex

eigenvalues Vi, which, not suprprisingly, turn out to be the square of the ones in

(5.106), Vi = v2
i .

Also in this case one can write down the (classical) effective action. On the

moduli space we have Q†
a
iQ

i
b = Q̃a

iQ̃
†
i

b. Using this identity we get

(
M †M

)i
j

= Q̃†
i

aQ
†a
k Q

k
bQ̃

b
j = Q̃†

i

aQ̃
a
k Q̃

†
k

bQ̃
b
j (5.109)

which implies Q̃†Q̃ =
√
M †M as a matrix equation. So the Kähler potential is

K = 2Tr
√
M †M . (5.110)

The Kähler metric is singular whenever the meson matrix M is not invertible. This

does not only happen at the origin of field space as for SQED, but actually on the

subspace where some of the N2 − 1−
[
(N − F )2 − 1

]
= (2N − F )F massive gauge

bosons parametrizing the coset SU(N)/SU(N−F ) become massless (and they need

to be included in the low energy effective description).

Let us now consider the case F ≥ N . Following a similar procedure as the one

before, the matrices Q and Q̃ can be brought to the following form on the moduli

space

Q =




v1 0 . . . 0

0 v2 . . . 0

. . . . . . . . . . . .

0 0 . . . vN

0 0 0 0

. . . . . . . . . . . .

0 0 0 0




, Q̃T =




ṽ1 0 . . . 0

0 ṽ2 . . . 0

. . . . . . . . . . . .

0 0 . . . ṽN

0 0 0 0

. . . . . . . . . . . .

0 0 0 0




(5.111)
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where |vi|2 − |ṽi|2 = a, with a a i-independent number. Since F ≥ N , at a generic

point on the moduli space the gauge group is now completely higgsed. Therefore,

the dimension of the classical moduli space is now

dimC Mcl = 2NF −
(
N2 − 1

)
. (5.112)

The parametrization in terms of gauge invariant operators is slightly more involved,

in this case. The mesons are still there, and defined as in eq. (5.108). However,

there are non-trivial classical constraints one should take into account, since the

rank of the meson matrix, which is at most N , is now smaller than its dimension, F ,

like in the SQED example. Moreover, besides the mesons, there are now new gauge

invariant single trace operators one can build, the baryons, which are operators made

out of N fields Q respectively N fields Q̃, with fully anti-symmetrized indexes.

As an explicit example of this richer structure, let us apply the above rationale

to the case N = F . According to eq. (5.112), in this case dimC Mcl = F 2 + 1. The

gauge invariant operators are the meson matrix plus two baryons, B and B̃, defined

as

B = εa1a2...aN Q 1
a1
Q 2
a2
. . . Q N

aN

B̃ = εa1a2...aN Q̃a1
1 Q̃

a2
2 . . . Q̃

aN
N .

Notice that since F = N the anti-symmetrization on the flavor indexes is automat-

ically taken care of, once anti-symmetrization on the gauge indexes is imposed. All

in all we have, naively, F 2 + 2 complex moduli space directions. There is however

one classical constraints between them which reads

detM −BB̃ = 0 , (5.113)

as can be easily checked from the definition of the meson matrix (5.108) and that of

the baryons above. Hence, the actual dimension of the moduli space is F 2 + 2− 1 =

F 2 +1, as expected. As for the case F < N , there is a subspace in the moduli space,

which includes the origin, where some fields become massless and the low energy

effective analysis should be modified to include them.

All we said, so far, is true classically. As we will see when discussing the quantum

dynamics of SQCD, quantum corrections sensibly change this picture and the exact

structure of the moduli space differs in many respects from the classical one. For

instance, focusing again on F = N SQCD it turns out that the classical constraint

(5.113) is modified at the quantum level. This has the effect of excising the origin
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of field space from the actual quantum moduli space removing all singular subspace

and the corresponding extra massless degrees of freedom, which are then just an

artifact of the classical analysis, in this case.

We will have much more to say about SQCD and its classical and quantum

properties at some later stage.

5.3.2 Non-linear sigma model II

In section 5.1.1 we discussed the supersymmetric non-linear σ-model for matter

fields, which is relevant to describe supersymmetric low energy effective theories.

Though it is not often the case, it may happen to face effective theories with some left

over propagating gauge degrees of freedom at low energy. Therefore, in this section

we will generalize the σ-model of section 5.1.1 to such a situation: a supersymmetric

but non-renormalizable effective theory coupled to gauge fields. Note that the choice

of the gauge group cannot be arbitrary here. In order to preserve the structure of

the non-linear σ-model one can gauge only a subgroup G of the isometry group of

the scalar manifold.

Following previous strategy, one gets easily convinced that the pure SYM part

changes simply by promoting the (complexified) gauge coupling τ to a holomorphic

function of the chiral superfields, getting

τ

∫
d2θ TrWαWα −→

∫
d2θFab(Φ)WαaW b

α , (5.114)

where the chiral superfield Fab(Φ) should transform in the Adj × Adj of the gauge

group G in order for the whole action to be G-invariant. Notice that for Fab =

τ TrTaTb one gets back the usual result (recall that we have normalized the gauge

group generators as TrTaTb = δab). For this reason the function Fab (actually its

restriction to the scalar fields) is dubbed generalized complex gauge coupling.

As for the matter Lagrangian, given what we have already seen, namely that

whenever one has to deal with charged matter fields the gauge invariant combination

is (Φe2gV )iΦ
i, one should simply observe that the same holds for any real G-invariant

function of Φ and Φ. In other words, the σ-model Lagrangian for charged chiral

superfields is obtained from the one we derived in section 5.1.1 upon the substitution

K(Φi,Φi) −→ K(Φi, (Φe2gV )i) . (5.115)
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The end result is then

L =
1

32π
Im

[∫
d2θFab(Φ)WαaW b

α

]
+

+

∫
d2θd2θ̄K(Φi, (Φe2gV )i) +

∫
d2θW (Φi) +

∫
d2θ̄ W (Φi) . (5.116)

By expanding and integrating in superspace one gets the final result. The derivation

is a bit lengthy and we omit it here. Let us just mention some important differences

with respect to our previous results. The gauge part has the imaginary part of

Fab multiplying the kinetic term (the generalized gauge coupling) and the real part

multiplying the instanton term (generalized θ-angle). Moreover, there are higher

order couplings between fields belonging to vector and scalar multiplets which are

proportional to derivatives of Fab with respect to the scalar fields, and which are

obviously absent for the renormalizable Lagrangian (5.79). As for the matter part,

one important difference with respect to the σ-model Lagrangian (5.43) is that all

derivatives are (also) gauge covariantized. More precisely we have

D̃µψ
i = ∂µψ

i − igvaµT aRψi + Γijk∂µφ
iψk

D̃µψj = ∂µψj − igvaµT aRψj + Γkij ∂µφkψi ,

which are covariant both with respect to the σ-model metric and the gauge con-

nection. As compared to the Lagrangian (5.79) the Yukawa-like couplings have the

Kähler metric inserted, that is

φλψ −→ Ki
jφiλψ

j = Ki
jφiT

a
Rλaψ

j = Ki
j(φi)M(T aR)MN λa(ψ

j)N , (5.117)

where M,N are gauge indexes. Moreover, the term gφDφ is also modified into

gφiDK
i, where as usual Ki = ∂K/∂φi.

All these changes are important to keep in mind. However, it is worth noticing

that in N = 1 supersymmetry vectors belong to different multiplets with respect to

those where scalars sit. Hence, any geometric operation on the scalar manifold M
will not have much effect on the vectors, and viceversa. In other words, the structure

of the N = 1 non-linear σ-model is essentially unchanged by gauging some of the

isometries of the scalar manifold. This is very different from what happens in models

with extended supersymmetry, as we will see in the next lecture.
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After solving for the auxiliary fields which read (with obvious notation)

F i = (K−1)ijW
j − 1

2
Γijkψ

jψk − i g
2

16π
(K−1)ij(Fab,j)†λ

a
λ
b

(5.118)

Da = −4π

g2
(ImF)−1

ab

(
gφiT

bKi + g2 1

8π
√

2

[
(Fbc,i)ψiλc + h.c.

])
(5.119)

one finds for the potential

V (φ, φ) = (K−1)ijWiW
j + 2π (ImF)−1

ab (φiT
aKi) (φjT

bKj) , (5.120)

which is the σ-model version of the potential (5.82).

As far as the potential, we cannot resist making a comment which will actually

be relevant later, when we will discuss supersymmetry breaking. Whenever the

effective theory one is dealing with does not have any propagating gauge degrees of

freedom (due to Higgs mechanism, confinement or alike) the scalar potential (5.120)

gets contributions from the first term, only. In this case the zero’s of the potential,

which correspond to the supersymmetric vacua of the theory, are described just by

Wi = 0 , (5.121)

as in cases where the Kähler potential is canonical, since K is a positive definite

matrix (provided the integrating out procedure has been done correctly along the

whole moduli space). This means that it is possible to see whether supersymmetry

is broken/unbroken independently of any knowledge of the Kähler potential! This

is very different from non-supersymmetric σ models and it is related to what was

mentioned earlier, namely that in a supersymmetric theory if supersymmetry is

unbroken classically it cannot be broken at any order in perturbation theory but

only non-perturbatively. This said, other important features which characterize the

vacua, as field VEVs, the exact value of the vacuum energy (if not zero), the mass

and the interactions of the lightest excitations, etc... do depend onK. With an abuse

of notation, eqs. (5.121) are usually referred to as F-term equations, even though

for a theory with non-canonical Kähler potential the correct F-term equations are

eqs. (5.118).

5.4 Exercises

1. Derive eq. (5.2). Using eqs. (4.59), show that the resulting expression trans-

forms as a total space-time derivative under supersymmetry transformations.
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2. Compute D2Φ = 0 and show that the different components provide the equa-

tions of motion for a free massless WZ multiplet.

3. Consider a theory of a chiral superfield Φ with canonical Kähler potential,

K = ΦΦ and superpotential W (Φ) = 1
2
mΦ2 + 1

3
gΦ3. This is the renowned

Wess-Zumino model. Derive the equation of motion in superfield formalism

and the corresponding ones in component fields. Compute the off-shell and

on-shell space-time Lagrangians. Show that once auxiliary fields are integrated

out supersymmetry closes only on-shell, namely that the algebra closes only

upon use of (some of) the equations of motion.

4. Consider the theory of a single chiral superfield Φ and Kähler potential K =

Λ2 ln(1 + ΦΦ/Λ2), where Λ is a given mass scale. Compute the off-shell and

on-shell Lagrangians and study the geometry of the one-dimensional super-

symmetric non-linear σ model.

5. Using all possible available symmetries, show that in SU(N) SQCD with F <

N flavors, the complex scalar field matrices parametrizing the moduli space

can be put in the form (5.106). Using the same procedure, show that the

structure (5.111) holds for F ≥ N .

6. Consider the following matter theories

1. K = QQ , W =
1

2
mQ2

2. K = XX + Y Y , W = (X −m)Y 2

3. K = XX + Y Y + ZZ , W = gXY Z

4. K = Λ
√
XX , W = λX .

Determine whether there are supersymmetric vacua and, if they exist, compute

the mass spectrum of the theory around them.
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6 Supersymmetric actions: extended supersymmetry

Until now we have discussed theories with N = 1 supersymmetry. In this lecture

we will discuss the structure of theories with extended supersymmetry. This will

also let us emphasize the basic differences which arise at the quantum level between

theories with different number of supersymmetries.

6.1 N=2 supersymmetric actions

In this section we would like to construct the most general N = 2 supersymmetric

action in four dimensions. We will follow the same logic of the previous lecture,

but we will not develop the corresponding N = 2 superspace approach, whose

formulation is beyond our scope. Rather, we will use the (by now familiar) N = 1

superspace formalism and see which specific properties does more supersymmetry

impose on an otherwise generic N = 1 Lagrangian.

We have two kinds of N = 2 multiplets we have to deal with, vector multiplets

and hypermutiplets. What we noticed at the level of representations of the super-

symmetry algebra on states, see. lecture 3, holds also at the field level. In particular,

in N = 1 language a N = 2 vector superfield can be seen as the direct sum of a

vector superfield V and a chiral superfield Φ (having, the same internal quantum

numbers, e.g. they both transform in the adjoint representation of the gauge group).

Similarly, in terms of degrees of freedom a hypermultiplet can be constructed out of

two N = 1 chiral superfields, H1 and H2. Schematically, we have

[N = 2 vector multiplet] : V = (λα, vµ, D) ⊕ Φ = (φ, ψα, F )

[N = 2 hypermultiplet] : H1 = (H1, ψ1α, F1) ⊕ H2 =
(
H2, ψ2α̇, F 2

)

(notice that H1 and H2 transform in the same representations of internal symmetries

since they belong to the same supersymmetry representation, while H2 transforms

in the complex conjugate representations).

Let us start considering pure SYM. In N = 1 language this is a Lagrangian of

the type (5.79) on which, however, two specific requirements should be imposed.

First, as already stressed, the chiral superfield Φ should transform in the adjoint

representation of the gauge group, as the vector superfield V does. Second, notice

that we have now a larger R-symmetry group, whose compact component, SU(2)R,

should be a symmetry of the Lagrangian. All bosonic degrees of freedom vµ, D, F
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and φ are singlets under SU(2)R, but (λα, ψα) transform as a doublet. This is

because (Q1
α, Q

2
α) transform under the fundamental representation of SU(2)R, and

the same should hold for λα and ψα (recall from (3.19) that they are obtained acting

with the two supersymmetry generators on the Clifford vacuum |j = 0〉).
The Lagrangian reads

LN=2
SYM =

1

32π
Im

(
τ

∫
d2θTrWαWα

)
+

∫
d2θd2θ̄Tr Φe2gV Φ =

= Tr

{
−1

4
FµνF

µν − iλσµDµλ− iψσµDµψ +DµφD
µφ+

θYM

32π2
g2FµνF̃

µν+

+
1

2
D2 + FF + i

√
2gφ{λ, ψ} − i

√
2g{ψ, λ}φ+ gD

[
φ, φ

]}
(6.1)

where

φ = φaTa , ψα = ψaαTa , F = F aTa ; λα = λaαTa , vµ = vaµTa , D = DaTa ,

with a = 1, 2, . . . , dimG. The reason why commutators and anti-commutators ap-

pear in the Lagrangian (6.1) is just because all fields transform in the adjoint rep-

resentation of G. Indeed, given that (T aadj)bc = −ifabc, we have that, e.g. the term

φλψ is actually

φ
b
λa(T aadj)bcψ

c = −iφbλafabcψc = iφ
b
λafbacψ

c = φ
b
λaψc TrTb [Ta, Tc] = Trφ{λ, ψ} ,

(6.2)

and similarly for all other contributions in eq. (6.1).

As compared to a N = 1 Lagrangian describing matter coupled SYM theory,

the above Lagrangian is special in many respects.

First and foremost, despite N = 2 supersymmetry is not manifest using N = 1

superspace language, the above Lagrangian is invariant under two independent su-

persymmetries, as it should. This can be seen using the SU(2)R symmetry the La-

grangian enjoys, actually just its center Z2, under which the two generators Q1
α, Q

2
α

are exchanged. Eq. (6.1) is written in terms of two N = 1 superfields and, cor-

respondingly, it is obviously N = 1 invariant. Acting now with a Z2 R-symmetry

rotation which acts as ψα → λα and λα → −ψα, while leaving the bosonic fields

invariant, one sees that the same Lagrangian shows an invariance under an inde-

pendent N = 1 supersymmetry acting on two different superfields with entries

(φ, λα, F ) and (vµ,−ψα, D) . So we conclude that the Lagrangian is indeed N = 2

supersymmetric invariant.
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The existence of a manifest SU(2)R symmetry has also other related conse-

quences on the structure of the Lagrangian (6.1). The kinetic terms for λ and ψ

have the same normalization. Moreover, and more importantly, the Lagrangian

has no superpotential, W = 0. Indeed, a superpotential would give ψ interactions

and/or mass terms, that are absent for λ. This is clearly forbidden by the SU(2)R

symmetry. While there is no superpotential, there is a potential, which comes from

D-terms. Indeed, the auxiliary fields equations of motion are in this case

F a = 0 , Da = −g
[
φ, φ

]a
(6.3)

(the auxiliary fields F a appear only in the non-dynamical kinetic term F aF
a and

therefore are trivial). The potential hence reads

V (φ, φ) =
1

2
DaDa =

1

2
g2 Tr

[
φ, φ

]2
. (6.4)

The above expression shows that pure N = 2 SYM enjoys a huge moduli space of

supersymmetric vacua. Indeed, the potential vanishes whenever the fields φ belong

to the Cartan subalgebra of the gauge group G. At a generic point of the moduli

space the scalar field matrix can be diagonalized and the gauge group is broken to

U(1)r, with r the rank of G. The low energy effective dynamics is that of r massless

vector multiplets and dimG− r massive vector multiplets whose masses depend on

the scalar fields VEVs. The theory is said to be in a Coulomb phase, since charged

external sources will feel a Coulomb-like potential. The (classical) moduli space

is a r-dimensional complex manifolds, parametrized by r massless complex scalars.

Singularities arise whenever some VEVs become degenerate and the theory gets

partially unhiggsed (in particular, at the origin of the moduli space one recovers the

full gauge symmetry G). This is classical analysis and, as for N = 1 theories, in later

lectures we will see if and how this description gets modified once (non-perturbative)

quantum corrections are taken into account.

Let us now consider the addition of hypermultiplets. In this case the scalar

fields, H1 and H2 form a SU(2)R doublet (again, recall how they were constructed

from the ground state of the corresponding N = 2 supersymmetry representation).

Hypermultiplets cannot interact between themselves since no cubic SU(2) invariant

is possible. Therefore, for renormalizable theories a superpotential is not allowed

and interactions turn out to be all gauge interactions.

Let us now suppose that matter transforms under some non-trivial representation
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of the gauge group. We get for the corresponding N = 2 hypermultiplet Lagrangian

LN=2
Matter =

∫
d2θd2θ̄

(
H1e

2gVRH1 +H2e
−2gVRH2

)
+

∫
d2θ
√

2gH1ΦH2 + h.c. , (6.5)

where the suffix R on the vector superfield V refers to the representation of the gauge

group G carried by the hypermultiplets. The F-term coupling the hypermultiplets

with the chiral multiplet Φ belonging to the N = 2 vector multiplet is there because

of N = 2 supersymmetry (it is, say, the supersymmetric partner of the kinetic

terms which couple the hypermultiplets to V ). So we see that eventually a cubic

interaction does arise, but it is a gauge interaction, in the sense that it vanishes once

the gauge coupling g is switched off.

Eliminating the auxiliary fields F1 and F2, the scalar potential for the hypermul-

tiplets can be recast as a D-term contribution only and reads

V (H1, H2) =
1

2
D2 =

1

2
g2|H1T

a
RH1−H2T

a
RH2|2 , Da = g Tr

(
H1T

a
RH1 −H2T

a
RH2

)
.

(6.6)

Notice finally that a mass term can be present and has the form

mH1H2 . (6.7)

However, a term of this sort can be there only for BPS hypermultiplets (which, as

discussed in lecture 3, are short enough to close the algebra within maximal spin

1/2 particle states).

6.1.1 Non-linear sigma model III

In the previous section we have constructed the most general renormalizable N = 2

supersymmetric Lagrangian. Like for N = 1 supersymmetry, one can relax renor-

malizability and get a N = 2 σ-model.

Let us start with pure SYM. Differently from theN = 1 case, this is a meaningful

thing to do, since scalar fields are present in a N = 2 vector multiplet and a σ-

model can exist. To write it down it is sufficient to take the N = 1 σ-model

Lagrangian (5.116), set the superpotential to zero, and take into account that the

chiral superfield Φ transforms in the adjoint representation of the gauge group.

On general grounds, one would expect he Kähler potential K to be related, in a

N = 2 consistent way, to the generalized complexified gauge coupling Fab, since

the scalars spanning the manifold M sit in the same multiplets where the vectors
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sit (in particular, one would expect that an isometry transformation on M should

have effects on the vectors, too). Equivalently, one can notice from (5.116) that the

imaginary part of the generalized complexified gauge coupling multiplies the gaugino

kinetic term while the Kähler metric that of the matter fermion fields. These should

transform as a doublet under SU(2)R and then one would expect Fab and Kab to be

exchanged under a Z2 R-symmetry rotation

Im Fab × λaσµDµλ
b ←→ Kb

a × ψaσµDµψb . (6.8)

What one actually finds is that Fab and K can be written in terms of one and the

same holomorphic function F(Φ), dubbed prepotential and read

Fab(Φ) =
∂2F(Φ)

∂Φa∂Φb
(6.9)

K(Φ,Φ) = − i

32π
Φa
∂F(Φ)

∂Φa
+ h.c. = − i

32π
ΦaFa(Φ) +

i

32π
Fa(Φ)Φa . (6.10)

This is the very non-trivial statement that the σ-model action is uniquely determined

by a single holomorphic function, the prepotential F(Φ). The end result reads

LN=2
eff =

1

64πi

∫
d2θFab(Φ)WαaW b

α +
1

32πi

∫
d2θd2θ̄

(
Φe2gV

)aFa(Φ) + h.c.

=
1

32π
Im

[∫
d2θFab(Φ)WαaW b

α + 2

∫
d2θd2θ̄

(
Φe2gV

)aFa(Φ)

]
. (6.11)

Using eqs. (6.9)-(6.10) one can compute the Kähler metric and see its relation with

the complexified gauge coupling which is

Kb
a(φ, φ) =

∂2K(φ, φ)

∂φa∂φb
= − i

32π

(
∂2F(φ)

∂φa∂φb
− ∂2F(φ)

∂φa∂φb

)
=

1

16π
ImFab(φ) . (6.12)

Therefore, we finally get for the potential (recall that W = 0)

V (φ, φ) = − 1

2π
(Im Fab(φ))−1 [φ,Fc(φ)T c

]a [
φ,Fd(φ)T d

]b
. (6.13)

A Kähler manifold where the Kähler potential can be written in terms of a holomor-

phic function as in eq. (6.10) is called special Kähler manifold. From a geometric

point of view this corresponds to a Kähler manifold endowed with a symplectic

structure (a 2nv symplectic bundle, where nv is the number of vector multiplets).

The renormalizable Lagrangian (6.1) is recovered just taking F(Φ) = 1
2
τ TrΦ2.

This is not the end of the story, though. To the σ-model action we have con-

structed one can add hypermultiplets. This will be a (very) special version of the
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Lagrangian (5.43). We refrain to present its precise structure here and just make

two comments. Hypermultiplets contain two complex scalars. What one finds is

that the corresponding σ-model is defined on a quaternionic manifold, known as

HyperKähler manifold, which is, essentially, the quaternionic extension of a Kähler

manifold (in particular, there are three rather than just one complex structures).

To sum-up, in N = 2 supersymmetry, due to the existence of two sets of scalars,

those belonging to matter multiplets and those belonging to gauge multiplets, the

most general scalar manifold is (classically) of the form

M =MV ×MH , (6.14)

where MV is a special Kähler manifold and MH a HyperKähler manifold. Notice

that, once renormalizability is relaxed, quartic superpotential couplings (and higher,

if SU(2)R singlets) are possible. We will have much more to say about N = 2 σ-

models in later lectures.

6.2 N=4 supersymmetric actions

Let us now discuss the structure of the N = 4 Lagrangian. In this case there is only

one kind of multiplet, the vector multiplet. So, from a N = 4 perspective, we speak

of pure SYM theories. The decomposition of the N = 4 vector superfield in terms

of N = 1 representations is as follows

[N = 4 vector multiplet] : V = (λα, vµ, D) ⊕ ΦA =
(
φA, ψAα , F

A
)

A = 1, 2, 3 .

The propagating degrees of freedom are a vector field, six real scalars (two for each

complex scalar φA) and four gauginos. The Lagrangian is a special instance of the

Lagrangian (5.79) and very much constrained by N = 4 supersymmetry. First, the

chiral superfields ΦA should transform in the adjoint representation of the gauge

group, since internal symmetries commute with supersymmetry. Moreover, we have

now a large R-symmetry group, SU(4)R. The four Weyl fermions transform in the

fundamental of SU(4)R, while the six real scalars in the two times anti-symmetric

representation, which is nothing but the fundamental representation of SO(6) (the

fact that the scalar fields transform under the fundamental representation of SO(6),

which is real, makes the R-symmetry group of theN = 4 theory being at most SU(4)

and not U(4)). Finally, the auxiliary fields are singlets under the R-symmetry group.
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Using N = 1 superfield formalism the Lagrangian reads

LN=4
SYM =

1

32π
Im

(
τ

∫
d2θ Tr WαWα

)
+

∫
d2θd2θ̄ Tr

∑

A

ΦA e
2gV ΦA

−
∫
d2θ
√

2g Tr Φ1 [Φ2,Φ3] + h.c. , (6.15)

where, similarly to the N = 2 Lagrangian (6.1), the commutator in the third term

appears because the three chiral superfields ΦA transform in the adjoint represen-

tation of the gauge group. Notice that in writing the expression (6.15) we made

a choice of a specific N = 1 supersymmetry generator out of the four QI ’s. This

breaks the full SU(4)R R-symmetry to SU(3) × U(1)R, meaning that the full non-

abelian R-symmetry is not manifest using N = 1 superspace formalism. The three

complex scalars belonging to the chiral superfields ΦA are related to the six real

scalars of the N = 4 vector multiplet as

φ1 =
1√
2

(X1 + iX2) , φ2 =
1√
2

(X3 + iX4) , φ3 =
1√
2

(X5 + iX6) . (6.16)

They transform in the 3 of SU(3) and have R-charge R = 2/3 under the U(1)R.

In N = 1 language the four gauginos λI get split as one gaugino and three Weyl

fermions transforming in the adjoint representation of the gauge group

λI = (λ, ψ1, ψ2, ψ3) . (6.17)

The gaugino λ is a singlet of SU(3) and has R-charge R = 1 under the U(1)R, while

the three ψA transform as a triplet of SU(3) and have U(1)R R-charge R = −1/3.

Note that from the point of view of the N = 1 supersymmetry which is manifest in

the Lagrangian (6.15), the SU(3) symmetry acts as a flavor (non-R) symmetry.

It is an easy but tedious exercise to perform the integration in superspace and

get an explicit expression in terms of ordinary fields. Then, one can solve for the

auxiliary fields and get an expression where only propagating degrees of freedom

are present and where, in terms of the N = 4 basis λI , Xi, see eqs. (6.16)-(6.17),

SU(4)R invariance is manifest. We refrain to perform the calculation here and just

report the end result which reads

L = Tr
[
− 1

4
FµνF

µν − iλIσµDµλI +
1

2
DµX

iDµXi

]
+
θYM

32π2
g2TrFµνF̃

µν +

+
1

2
gfabc ΣIJ

i X
i
a λIb λJc −

1

2
g2 Tr

6∑

i,j=1

[Xi, Xj]
2 , (6.18)
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where sum on dummy indexes is understood, the scalar potential is

V =
1

2
g2 Tr

6∑

i,j=1

[Xi, Xj]
2 , (6.19)

and the six 4×4 matrices Σi are the structure constants of the SU(4)R R-symmetry

group.

From eq. (6.19) we see that N = 4 SYM enjoys a large moduli space of vacua.

At a generic point, very much like pure N = 2 SYM, the gauge group is broken as

G→ U(1)r, where r is the rank of G, and the dynamics is that of r copies of N = 4

U(1) gauge theory. At the origin, and more generally whenever some VEVs become

degenerate the theory gets partially unhiggsed and non-abelian gauge factors may

survive at low energy.

One might ask whether a N = 4 version of non-linear σ-model exists. After all,

we are plenty of scalar fields, actually 3n complex scalars, if n is the dimension of

G. The answer is that there is only one possible σ-model compatible with N =

4 supersymmetry (the stringent constraint comes from the SU(4)R R-symmetry),

which is nothing but the trivial one,M = R6n. So, the Lagrangian (6.15) is actually

the only possible N = 4 Lagrangian one can build. This also implies that, unlike

pure N = 2 SYM, the moduli space of vacua has a trivial topology. As we will

see, this is related to the very much constrained dynamics N = 4 SYM enjoys at

quantum level.

6.3 On non-renormalization theorems

One of the advantages, in fact the advantage of supersymmetry is that it makes

quantum corrections much better behaved with respect to ordinary field theories.

Many relevant results about UV properties of supersymmetric field theories were

obtained back in the 1980’s and can be summarized in terms of powerful non-

renormalization theorems. At that time, a very efficient approach was developed

to deal with supersymmetric quantum field theories, a version of Feynman rules,

known as supergraph techniques, which let one work directly with superfields in su-

perspace with no need to expand into component fields. Most non-renormalization

theorems were proved using such techniques whose description, however, is beyond

the scope of these lectures. Here I just want to mention what is possibly the main

result thus obtained: in a N = 1 supersymmetric quantum field theory containing
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chiral and vector superfields, the most general term that can be generated by loop

diagrams has only one Grassman integral over all superspace
∫
d4x1 . . . d

4xn d
2θd2θ̄ G(x1, . . . , xn)F1(x1, θ, θ̄) . . . Fn(xn, θ, θ̄) , (6.20)

where G(x1, . . . , xn) is a translationally invariant function and the Fi’s are products

of superfields and their covariant derivatives. Such term is a D-term and does not

contribute to superpotential terms, which are F-terms, implying that the superpo-

tential is tree-level exact, i.e. it is not renormalized at any order in perturbation

theory! The only possible corrections may arise at the non-perturbative level (and in

some cases, namely when only chiral superfields are present, the latter also vanish,

as we will see later). On the contrary, because of eq. (6.20), the Kähler potential is

renormalized and generically receives corrections at any order in perturbation theory

(and non-perturbatively).

Let us try and see what non-renormalization theorems imply for theories with

different number of supersymmetries.

Let us first focus on a renormalizable N = 1 action describing a chiral superfield

Φ (the generalization to many chiral superfields is straightforward and does not

present any relevant difference). There are three supersymmetric contributions to

the action. One, the kinetic term, is a D-term, and undergoes renormalizations. Two

are F-terms (the mass term and the cubic term) and are hence exact, perturbatively.

Concretely
∫
d4xd2θd2θ̄ ΦΦ → ZΦ

∫
d4xd2θd2θ̄ ΦΦ (6.21)

m

∫
d4xd2θ Φ2 + h.c. → m

∫
d4xd2θ Φ2 + h.c. (6.22)

λ

∫
d4xd2θ Φ3 + h.c → λ

∫
d4xd2θ Φ3 + h.c. . (6.23)

This means that m and λ do get renormalized but only logarithmically at one loop,

instead of quadratically and linearly, respectively. Indeed, from the above equations

one concludes that

ZmZΦ = 1 which implies m→ Z−1
Φ m

ZλZ
3/2
Φ = 1 which implies λ→ Z

−3/2
Φ λ .

Something similar happens for the renormalization of the factor e2gV . However,
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things are more subtle, here. Notice that
∫
d2θd2θ̄Φe2gV Φ (6.24)

is a D-term and therefore it do renormalize. However, what one can see using

for example the background field method is that gV does not renormalize. An

independent renormalization for g and V leading to a kinetic term of the form

Φ e2ZggZ
1/2
V V Φ (6.25)

would correspond to counterterms of the form

ΦV egV Φ (6.26)

which are not gauge invariant and cannot be generated by loop diagrams. This

implies that the integral (6.24) should renormalize as the kinetic term (6.21) (not

because of supersymmetry, but just due to gauge invariance!), meaning that g and V

compensate each other upon renormalization. In other words, gV is not renormal-

ized. Another way to see this is the following. Consider pure SYM. In this theory

the only possible counterterm would correspond to something proportional to the

action itself ∫
d2θ Tr WαWα + h.c. , (6.27)

which would then correspond to a wave-function renormalization of the full La-

grangian (this is certainly there since the integral above is not a F-term, but rather

a D-term, as already noticed). This means that one should multiply by the same

function both the kinetic terms dV dV as well as the interaction terms gV V dV and

g2V 4 to keep gauge invariance (recall we are considering a non-abelian gauge group).

In order for this to be the case one needs that if

V → Z
1/2
V V , (6.28)

then

g → Z
−1/2
V g , (6.29)

which implies that gV is not renormalized, as anticipated, namely that Zg = Z
−1/2
V .

The conclusion is that in renormalizable theories with N = 1 supersymmetry there

are only two independent renormalization, ZΦ and ZV , which are just logarithmically

divergent at one-loop, and correspond to wave-function renormalization of chiral and

vector superfields, respectively.
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Notice, in passing, that the fact that ZV 6= 1 means that the integral (6.27)

is renormalized. This does not contradict non-renormalization theorems, since, as

already observed, (6.27) is not a F-term, really, but actually a D-term. That ZV 6= 1

also implies that Zg 6= 1, meaning that in N = 1 SYM theories the gauge coupling

runs, and can get corrections at all loops, in general.

What about higher supersymmetry? All what we said, so far, still applies, since

any extended supersymmetry model is also N = 1. However, extended supersym-

metry imposes further constraints. In what follows, we stick to the notation we

have used in sections 6.1 and 6.2 when discussing N = 2 and N = 4 Lagrangians,

respectively.

Let us start from N = 2 supersymmetry. For one thing, since V and Φ belong

now to the same multiplet, we have that

ZV = ZΦ . (6.30)

As for the hypermultiplets, from the cubic interaction gH1ΦH2 which appears in

the superpotential (and which is then tree level exact, being a F-term) we get the

following condition

Z2
gZΦZH1ZH2 = 1 . (6.31)

The first two contributions cancel since ZΦ = ZV and since gV is not renormalized,

Z2
g = Z−1

V . So we get in the end

ZH1ZH2 = 1 . (6.32)

Hence the wave-functions of the two chiral superfields making up an hypermultiplet

are not independent. All in all, we have then only two independent renormalizations

in N = 2 supersymmetry, ZV and, say, ZH1 . In fact, for massless representations

there is the SU(2)R symmetry rotating the scalar components of H1 and H2 into

each other. Hence, they should have the same renormalization, which means, using

eq. (6.32), that ZH1 = ZH2 = 1. The same holds for massive (BPS) representations.

In this case the existence of a non-trivial central charge does break the R-symmetry

group to USp(2); however, the algebra of such group is the same as that of SU(2)

and one can again conclude that ZH1 = ZH2 = 1.

It turns out that because of the relation between ZΦ and Zg, not only N = 2

SYM has a unique renormalization but it is one-loop exact in perturbation theory.

In other words, the gauge coupling β-function gets only one-loop contributions, per-

turbatively. We will derive this important result in a later lecture, when discussing
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the dynamics of supersymmetric gauge theory. There, we will use a very powerful

approach which is based on a crucial property of supersymmetry, known as holo-

morphy. For the time being let us just stress that this one-loop exactness of N = 2

SYM gauge coupling does not hold for N = 1 SYM, whose physical gauge coupling

receives corrections at all orders in perturbation theory.

Let us finally consider N = 4 supersymmetry. Here we have a single superfield,

the vector superfield which, in N = 1 language, can be seen as one vector superfield

V and three chiral superfields ΦA (all transforming in the adjoint representation of

the gauge group). The SU(3) symmetry rotating the three chiral superfields implies

that the latter should have all and the same wave-function renormalization

ZΦ1 = ZΦ2 = ZΦ3 = Z . (6.33)

The N = 4 Lagrangian can be thought as a N = 2 SYM Lagraingian coupled

to a hypermultiplet transforming in the adjoint representation of the gauge group,

with one of the three ΦA playing the role of Φ and belonging to the N = 2 vector

multiplet. Then, using eq. (6.30), one concludes that Z should equal ZV , the wave-

function of the vector superfield. Plugging this into eq. (6.31), which for the N = 4

Lagrangian (6.15) is

Z2
gZΦ1ZΦ2ZΦ3 = Z2

gZ
3 = 1 , (6.34)

and recalling that Zg = Z
−1/2
V it follows that

ZV = ZΦ1 = ZΦ1 = ZΦ1 = 1 , (6.35)

meaning that N = 4 SYM is perturbatively finite; in other words, the theory does

not exhibit ultraviolet divergences in the correlation functions of canonical fields!

Though we are not going to prove it here, it turns out that in fact N = 4 is finite

also once non-perturbative corrections are taken into account. More precisely, the

latter give finite contributions only, and therefore the theory is believed to be UV

finite.

There is yet another important property ofN = 4 SYM we would like to mention:

the theory is superconformal invariant, and it is so at the full quantum level. Let

us see how this goes. A theory whose Lagrangian contains only dimension four

operators, like the N = 4 Lagrangian (and many others, in fact) is classically

scale invariant. For any relativistic field theory this implies a larger symmetry

algebra, the conformal Poincaré algebra which, besides Poincaré generators, includes

also dilations and special conformal transformations, the corresponding group being
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SO(2, 4) ' SU(2, 2). The generators associated to dilations and special conformal

transformations, D and Kµ, respectively, act as follows

D : xµ −→ λxµ

Kµ : xµ −→ xµ + aµx2

1 + 2xνaν + a2x2
,

and have the following commutation relations between themselves and with the

generators of the Poincaré algebra

[Pµ, D] = iPµ , [D,Mµν ] = 0 , [Kµ, D] = −iKµ , [Kµ, Kν ] = 0

[Pµ, Kν ] = 2i (Mµν − ηµνD) , [Kµ,Mρσ] = i (ηµρKσ − ηµσKρ) . (6.36)

Supersymmetry enlarges further the symmetry group. A conformal invariant su-

persymmetric theory enjoys an even larger algebra, the superconformal algebra,

which includes, besides dilations and special conformal transformations, also con-

formal supersymmetry transformations SIα, S
I

α̇ (which appear in the commutator of

the supersymmetry charges QI
α with the generators of special conformal transfor-

mations Kµ), and the generators associated to R-symmetry transformations, T IJ
(where I, J = 1, . . . , N), which are now part of the algebra and do not act just as

external automorphisms (they appear in the anti-commutator of the supersymmetry

charges with the SIα’s). The associated supergroup is SU(2, 2|N). The non-vanishing

(anti)commutators involving the new generators are

[
Kµ, Q

I
α

]
= 2iσµαβ̇S

β̇I
, {SIα, Sβ̇ J} = 2σµ

αβ̇
Kµδ

I
J ,

[
D,QI

α

]
= − i

2
QI
α ,

[
D,SIα

]
=
i

2
SIα

{QI
α, SβJ} = εαβ

(
δIJD + T IJ

)
+

1

2
δIJσ

µν
αβMµν ,

[
Pµ, S

I
α

]
= σµαβ̇Q

β̇I
. (6.37)

The N = 4 SYM action is invariant under this larger symmetry algebra, SU(2, 2|4)

in this case, but it is certainly not the only theory having this property, at the

classical level. Classical superconformal invariance is shared by any supersymmet-

ric Lagrangian made solely by dimension four operators (in other words, with di-

mensionless, hence classically marginal couplings), well-known examples being the

massless WZ model, and in fact any SYM theory, like N = 1 SQCD discussed in

the previous lecture.

What makes N = 4 SYM special is that, as we have observed above, the La-

grangian does not renormalize (recall that essential to this proof was the use of

the SU(3) subgroup of the R-symmetry group rotating the three scalar superfields
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ΦA). In particular, as we have seen before, Zg = 1. In other words, the N = 4

β-function vanishes identically: the theory remains scale invariant at the quantum

level, and the superconformal symmetry SU(2, 2|4) is then an exact symmetry of

the theory. An equivalent conclusion can be reached by observing that N = 4 SYM

is a (very special) N = 2 theory. The N = 2 gauge coupling is one-loop exact

and since in N = 4 SYM this is the only coupling appearing in the Lagrangian, it

is enough to compute the one-loop β-function for g. One can easily see that such

one-loop coefficient vanishes, concluding that the theory is superconformal also at

the quantum level. In fact, the equivalence of these proofs lies in the fact that the

gauge coupling β-function and the R-symmetry are in the same supermultiplet, the

(N = 4) supercurrent multiplet.

This non-renormalization property is not shared by other theories, in general:

typically, the superconformal algebra is broken by quantum corrections and cou-

plings run. For instance, in the massless WZ model, the coupling, which is classically

marginal, becomes irrelevant quantum mechanically (i.e., it flows to zero and the

theory becomes free in the IR). On the contrary, UV-free supersymmetric gauge the-

ories, like pure N = 1, 2 SYM, enjoy dimensional transmutation and a dynamically

scale is generated at the quantum level.

What we said above about the finiteness of N = 4 does not mean that any

operator has protected dimension. The scaling dimension of canonical fields (gauge

fields, gauginos and adjoint scalars) is unaffected by quantum corrections, but this

does not happen, in general, to composite gauge invariant operators. Yet, in a su-

perconformal theory there are special operators whose dimension is protected. To

see how this comes, let us start considering the conformal algebra (6.36). In unitary

theories there is a lower bound for the scaling dimension ∆ of a field (e.g. ∆ ≥ 1

for a scalar field in four dimensions). Since Kµ lowers the scaling dimension of a

field, any representation of the conformal algebra should admit an operator with

minimal dimension ∆ which is annihilated by Kµ (at xµ = 0). Such states are called

conformal primary operators. Since the conformal algebra is a subalgebra of the su-

perconformal algebra, representations of the latter decompose into representations

of the former. By definition, a superconformal primary operator is an operator

which is annihilated (at xµ = 0) both by Kµ and SIα, S
I

α̇. From the commutator[
Kµ, Q

I
α

]
in (6.37) it also follows that any operator which is obtained from a super-

conformal primary by the action of QI
α, and hence sits in the same supermultiplet,

is a primary operator of the conformal algebra. Superconformal primary operators
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which are annihilated by some of the supercharges are called chiral primaries and,

most importantly, their dimension is fixed by their R-symmetry representation, and

as such are protected against quantum corrections. This can be proven from the

next-to-last commutation relation in eqs. (6.37), which lets express the scaling di-

mension ∆ of a chiral primary operator (for which the left hand side is zero) in

terms of Lorentz and R-symmetry representations which are quantum numbers and

as such does not renormalize. By supersymmetry, this implies that in a supercon-

formal theory operators belonging to supersymmetry representations which include

a chiral primary operator do not renormalize. For instance, in N = 4 SYM, a class

of superconformal primaries are all operators made of symmetric traceless products

of the scalar fields Xi’s, e.g. Tr (X{iXj}) = Tr (X iXj)− 1
6
δijTr (XkXk).

As a final comment, let us notice that in N = 4 SYM superconformal invariance

is/is not realized depending on the point of the moduli space one is sitting. The

phase where all scalar field VEVs 〈Xi〉 vanish is called superconformal phase since at

the origin of the moduli space the gauge group remains unbroken and superconformal

invariance is preserved. In other words, physical states are not only gauge invariant,

but carry unitary representations of SU(2, 2|4). On the contrary, at any other

point of the moduli space, where gauge symmetry is broken, also superconformal

symmetry is broken since scalar VEVs 〈Xi〉 set a dimension full scale in the theory.

6.4 Exercises

1. Derive the potential (6.6) starting from the matter Lagrangian (6.5).

2. Starting from the expression (6.15), compute the off-shell N = 4 Lagrangian

and derive, upon integrating out auxiliary fields, the on-shell one, eq. (6.18).

For scalars and fermion fields use bases Xi and λI , which carry faithful repre-

sentations of SU(4)R, defined in eqs. (6.16) and (6.17), respectively.
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7 Spontaneous supersymmetry breaking

If supersymmetry is at all realized in Nature, it must be broken at low enough

energy: we do not see any mass degeneracy in the elementary particle spectrum, at

least at energies of order 102 GeV or lower. The idea is then that supersymmetry

is broken at some scale Ms, such that at energies E > Ms the theory behaves as a

supersymmetric theory, while at energies E < Ms it does not. On general ground,

there are two ways supersymmetry can be broken, either spontaneously or explicitly.

• Spontaneous supersymmetry breaking: the theory is supersymmetric but has

a scalar potential admitting (stable, or metastable but sufficiently long-lived)

supersymmetry breaking vacua. In such vacua one or more scalar fields acquire

a VEV of order Ms, which then sets the scale of supersymmetry breaking.

• Explicit supersymmetry breaking: the Lagrangian contains terms which do not

preserve supersymmetry by themselves. In order for them not to ruin the nice

and welcome UV properties of supersymmetric theories, these terms should

have positive mass dimension, in other words they should be irrelevant in the

far UV. In this case we speak of soft supersymmetry breaking. In such scenario,

the scale Ms enters explicitly in the Lagrangian.

As we will show later, soft supersymmetry breaking models can (and typically do)

actually arise as low energy effective descriptions of models where supersymmetry is

broken spontaneously. Therefore, we will start focusing on spontaneous supersym-

metry breaking. Only after we will discuss supersymmetry breaking induced by soft

terms.

7.1 Vacua in supersymmetric theories

We have already seen that supersymmetric vacua are in one-to-one correspondence

with the zero’s of the scalar potential. In other words, the vacuum energy is zero

if and only if the vacuum preserves supersymmetry. Hence, non-supersymmetric

vacua correspond to minima of the potential which are not zero’s. In this case

supersymmetry is broken in the perturbative theory based on these positive energy

vacua.

Notice how different is spontaneous supersymmetry breaking with respect to

spontaneous breaking of ordinary internal symmetries (being them global or local).
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There, what matters is the location of the minima of the potential in field space,

while here it is the absolute value of the potential at such minima. This implies that

in, e.g. a supersymmetric gauge theory there can be minima which preserve both

gauge symmetry and supersymmetry, others which break both, and others which

preserve gauge symmetry and break supersymmetry, or viceversa. A schematic

picture of these different situations is reported in figure 7.1.

GAUGE        SUSY
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Figure 7.1: A schematic picture of possible patterns of spontaneous gauge symmetry

and supersymmetry breakings. The potential on the upper left does not admit any

symmetry breaking vacuum. The one on the lower right, instead, admits two vacua

breaking both gauge symmetry and supersymmetry. The other two represent mixed

situations where either supersymmetry or gauge symmetry are broken.

While non-supersymmetric vacua can be either global or local minima of the po-

tential (corresponding to stable or metastable vacua, respectively), supersymmetric

vacua, if present, are obviously global minima of the potential, since in a supersym-

metric theory the scalar potential is a semi-positive definite quantity.
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Recall the expression (5.82), that is

V (φ, φ) = FF +
1

2
D2 , (7.1)

where

F i =
∂W

∂φi
, Da = −g

(
φi(T

a)ij φ
j + ξa

)
(7.2)

(we focus here on models with canonical Kähler potential; later we will also discuss

situations where the Kähler potential is not canonical).

Supersymmetric vacua are described by all possible set of scalar field VEVs

satisfying the D and F-term equations

F i(φ) = 0 , Da(φ, φ) = 0 . (7.3)

If there exist more than one solution, it means there are more supersymmetric vacua,

generically a moduli space of vacua, if these are not isolated. If there does not exist

a set of scalar field VEVs for which eqs. (7.3) are satisfied, then supersymmetry is

broken and the minima of the potential are all necessarily positive, Vmin > 0.

Notice, on the contrary, that on any vacuum, supersymmetric or not, global or

local, the following equations always hold

∂V (φ, φ)

∂φi
= 0 ,

∂V (φ, φ)

∂φi
= 0 , (7.4)

which simply say that vacua sit at extrema of the scalar potential.

An equivalent statement about supersymmetric vacua is that on supersymmetric

vacua the supersymmetric variations of fermion fields vanish. This can be seen as

follows. Due to Lorentz invariance, on a vacuum any field’s VEV or its derivative

should vanish, but scalar fields. Recalling how the different field components of

a chiral or vector superfield transform under supersymmetry transformations, it

follows that on a vacuum state we have

δ〈φi〉 = 0 , δ〈F i〉 = 0 , δ〈ψiα〉 ∼ εα〈F i〉

δ〈F a
µν〉 = 0 , δ〈Da〉 = 0 , δ〈λaα〉 ∼ εα〈Da〉 . (7.5)

Therefore, in a generic vacuum the supersymmetric variations of the fermions is not

zero: it is actually proportional to the vacuum expectation values of the auxiliary

fields. A supersymmetric vacuum state is by definition supersymmetric invariant

(!). Hence, from the above equations it follows that on a supersymmetric vacuum

also the supersymmetric variations of the fermions should be zero, the latter being

equivalent to the D and F-term equations (7.3), as anticipated.
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7.2 Goldstone theorem and the goldstino

When a global symmetry is spontaneously broken, Goldstone theorem says that

there is a massless mode in the spectrum, the Goldstone field, whose quantum num-

bers should be related to the broken symmetry. We should expect this theorem to

work also for spontaneously broken supersymmetry. In fact, given that supersym-

metry is a fermionic symmetry, the Goldstone field should be in this case a Majorana

spin 1/2 fermion, the so-called goldstino.

Consider the most general supersymmetric Lagrangian with gauge and matter

fields, eq. (5.81), and suppose it admits some vacuum where supersymmetry is bro-

ken. In this vacuum eqs. (7.4) hold, while (some of) eqs. (7.3) do not. Recalling

eqs. (5.80) and (5.82) we have in this vacuum that

∂V (φ, φ)

∂φi
= F j(φ)

∂2W

∂φi∂φj
− gDaφj(T

a)ji = 0 . (7.6)

On the other hand, since the superpotential is gauge invariant, we have that

δaW =
∂W

∂φi
δaφi = F i(T

a)ijφ
j = 0 . (7.7)

Combining the former equation with the complex conjugate of the latter evaluated

in the vacuum, we easily get a matrix equation

M

(
〈F j〉
〈Da〉

)
= 0 where M =

(
〈 ∂2W
∂φi∂φj

〉 −g〈φl〉(T a)li
−g〈φl〉(T b)lj 0

)
. (7.8)

The above equation implies that the matrix M has an eigenvector with zero eigen-

value. Now, this matrix is nothing but the fermion mass matrix of the Lagrangian

(5.81)! This can be seen looking at the non-derivative fermion bilinears of (5.81),

which on the vacuum get contributions also from the cubic coupling between scalar

fields, their superpartners and gauginos, and which can be written as

· · · − 1

2

(
ψi ,

√
2iλb

)
M

(
ψj√
2iλa

)
+ h.c.+ . . . (7.9)

Hence, on the supersymmetry breaking vacuum the spectrum necessarily admits a

massless fermion, the goldstino. It is easy to see that in terms of spin 1/2 particles

belonging to the different multiplets, the goldstino ψGα corresponds to the following

linear combination

ψGα ∼ 〈F i〉ψiα + 〈Da〉λaα . (7.10)
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The proof we have provided of the goldstino theorem has been based on the

Lagrangian (5.81). In fact, one can provide a similar proof using properties of the

supercurrent and Ward identities, which does not rely on the existence of an explicit

classical Lagrangian. The supersymmetry Ward identity reads

〈∂µSµα(x)Sνβ̇(0)〉 = −δ4(x)〈δαSνβ̇〉 = −2σµ
αβ̇
〈Tµν〉 δ4(x) , (7.11)

where the last equality follows from the current algebra, see eq. (4.71) (Schwinger

terms cannot have a non-vanishing VEV in a Lorentz invariant vacuum, while this

is possible for the energy-momentum tensor, Tµν ∼ ηµν). Integrating eq. (7.11), one

gets for the two-point function of the supercurrent that

〈Sµα(x)Sνβ̇(0)〉 = · · ·+ (σµσ̄
ρσν)αβ̇

xρ
x4
〈T 〉 , (7.12)

where 〈T 〉 = ηµν〈Tµν〉 and the . . . are terms which are not relevant to the present

discussion. Upon Fourier transforming we finally get

〈Sµα(k)Sνβ̇(−k)〉 = · · ·+ (σµσ̄
ρσν)αβ̇ kρ

〈T 〉
k2

, (7.13)

which shows the presence of a massless pole (the goldstino), proportional to the

vacuum energy density, in the supercurrent two-point function. The above equation

shows that the goldstino is the lowest energy excitation of the supercurrent, and it is

so if and only if the vacuum energy is non-vanishing. This shows, as anticipated, that

the goldstino theorem holds universally, i.e. also for vacua where supersymmetry

is broken in a strongly coupled phase of the theory, where classical arguments may

not apply.

7.3 F-term breaking

From our discussion it is clear that given a generic Lagrangian, there are two a

priori independent ways we can break supersymmetry: either giving a non vanishing

expectation value to (some) F-terms or to (some) D-terms. We will consider both

options in turn.

In this section we will start considering F-term breaking and therefore we assume,

for the time being to deal with a theory with chiral superfields, only.

The most general renormalizable Lagrangian of this sort reads

L =

∫
d2θd2θ̄ΦiΦ

i +

∫
d2θW (Φi) +

∫
d2θ̄ W (Φi) , (7.14)
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where

W (Φi) = aiΦ
i +

1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk . (7.15)

The equations of motions for the auxiliary fields read

F i(φ) =
∂W

∂φi
= ai +mijφ

j + gijkφ
jφk , (7.16)

and the potential is

V (φ, φ) =
∑

i

|ai +mijφ
j + gijkφ

jφk|2 . (7.17)

Supersymmetry is broken if and only if there does not exist a set of scalar field VEVs

such that all F-terms vanish, 〈F i〉 = 0. This implies that in order for supersymmetry

to be broken, it is necessary some ai to be different from zero. If not, the trivial

solution 〈φi〉 = 0 solves all F-equations. So, any model of F-term supersymmetry

breaking needs a superpotential admitting linear terms

Notice that this conclusion applies also for a superpotential with higher non-

renormalizable couplings. In fact, it does also in presence of a non-canonical Kähler

potential! This can be seen recalling the expression of the scalar potential when a

non-canonical Kähler metric is present

V (φ, φ) =
(
K−1

)i
j

∂W

∂φi
∂W

∂φj
. (7.18)

From this expression it is clear that unless it were singular (something signalling,

as already discussed, an inconsistency of the effective theory analysis), a non-trivial

Kähler metric could not influence the existence/non existence of supersymmetric

vacua, which is still dictated by the possibility/impossibility to make the first deriva-

tives of the superpotential vanish. What gets modified by a non-trivial Kähler po-

tential, instead, is the value of the vacuum energy (for non-supersymmetric vacua,

only!) and the particle spectrum around a given vacuum (for both supersymmetric

and non-supersymmetric vacua).

In what follows we will consider several examples of F-term breaking.

Example 1 : The Polonyi model.

Let us consider the theory of a single chiral superfield with canonical Kähler

potential and a linear superpotential

K = XX , W = λX . (7.19)
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This is the most minimal set-up one can imagine for a F-term supersymmetry break-

ing model. The potential reads

V =
∣∣∣∂W
∂X

∣∣∣
2

= |λ|2 , (7.20)

Supersymmetry is clearly broken for any |X|, and the latter is in fact a flat direction.

The supersymmetry breaking scale is set by the modulus of λ itself, |λ| = M2
s . In

Figure 7.2 we report the (trivial) shape of the scalar potential.
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Figure 7.2: The potential of the Polonyi model.

A few comments are in order. First notice that the theory possesses an R-

symmetry, the R-charge of X being R(X) = 2. At a generic point of the moduli

space, then, both supersymmetry and R-symmetry are broken. Second, notice that

although supersymmetry is broken, the spectrum is degenerate in mass: |X|, its

phase α, and ψX are all massless. The fermion field has a good reason to be mass-

less: it is the goldstino predicted by Goldstone theorem. Seemingly, the phase of X

is expected to be massless: it is nothing but the goldstone boson associated to the

broken R-symmetry. Finally, the modulus of the scalar field |X| is massless since it

parametrizes the (non-supersymmetric) moduli space. However, there are no rea-

sons to expect this moduli space to be protected, in principle, against quantum

corrections, since supersymmetry is broken. Hence, generically, one would expect it

to be lifted at the quantum level and |X| to get a mass. This is not the case in this

simple theory, since it is a non-interacting theory, and there are no quantum correc-

tions whatsoever. In general, however, things are different: a non-supersymmetric

moduli space gets typically lifted at one or higher loops, and the putative moduli

get a mass. For this reason, non-supersymmetric moduli spaces are dubbed pseudo-

moduli spaces, and the moduli parametrizing them, pseudo-moduli. We will see

examples of this sort soon.
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Let us now consider the following innocent-looking modification of the model

above. Let’s add a mass term to X,

∆W =
1

2
mX2 . (7.21)

Things drastically change, since supersymmetry is now restored. Indeed, the F-term

equation now reads

F (X) = mX + λ = 0 , (7.22)

which admits the solution 〈X〉SUSY = − λ
m

. Hence, there is a choice of scalar field

VEV which makes the potential V = |λ+mX|2 vanish, as illustrated in figure 7.3.
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Figure 7.3: The potential of the massive Polonyi model.

The spectrum is supersymmetric and massive: all fields have mass m. This agrees

with physical expectations: ψX is no more the goldstino, since this is not expected to

be there now; |X| is no more a (pseudo)modulus since the supersymmetric vacuum

is isolated (the VEV of |X| is not a flat direction); finally, α is not anymore the

goldstone boson associated to the broken R-symmetry since the superpotential term

∆W breaks the R-symmetry explicitly. More precisely, W = λX + 1
2
mX2 does not

admit any R-charge assignment for X such that R(W ) = 2, meaning that the theory

does not admit a R-symmetry to start with.

Things might also change (both qualitatively and quantitatively) if one allows

the Kähler potential not being canonical. Suppose we keep W = λX but we let the

Kähler metric be non-trivial, that is

V = (KXX)−1 |λ|2 with KXX =
∂2K

∂X∂X
6= 1 . (7.23)
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A non-trivial Kähler metric can deform sensibly the pseudo-moduli space of figure

7.2. A sample of possible different behaviors, which depend on the asymptotic

properties (or singularities) of the Kähler metric, is reported in Figure 7.4.
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Figure 7.4: Qualitatively different potentials of non-canonical Polonyi-like models.

Physically, the different behaviors reported in figure 7.4 should be understood as

follows. In presence of a classical pseudomoduli space like the one in figure 7.2, the

lifting of the pseudomoduli at quantum level occurs because the massless particles

which bring from a vacuum to another get a mass at one loop. Sometime, such effect

can be mimicked by a non-canonical Kähler potential. In fact, these seemingly ad-

hoc theories can and sometime do arise at low energies as effective theories of more

complicated UV-renormalizable theories: the mass scale entering the non-canonical

Kähler potential is nothing but the UV cut-off of these low energy effective theories.

Let us try to make the above discussion more concrete by considering an explicit

example.
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Example 2 : A Polonyi model with quartic Kähler potential.

Let us consider the following model

K = XX − c

Λ2

(
XX

)2
, W = λX , (7.24)

where c > 0. Notice that the R-symmetry is not broken by the non-canonical

Kähler potential (7.24), which is R-symmetry invariant. So the U(1)R symmetry is

a symmetry of the theory. The Kähler metric and the scalar potential now read

KXX = 1− 4c

Λ2
XX , V = KXX |λ|2 =

|λ|2
1− 4c

Λ2XX
. (7.25)

The Kähler potential is an instance of models like those in the upper-left diagram of

Figure 7.4: the Kähler metric KXX vanishes for large enough |X|, |X| → |Λ|/2√c,
which is order the natural cut-off of the theory. The potential, which is depicted

in figure 7.5, admits a (unique) mimimum at 〈X〉 = 0. Therefore, there is an
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Figure 7.5: The potential of a Polonyi model with quartic Kähler potential (7.24).

isolated vacuum now and it is a supersymmetry breaking one. One can compute the

spectrum around such vacuum and find that ψX is consistently massless (it is the

goldstino), while now the scalar field is massive, m2
X ∼ c|λ|2/Λ2.

Example 3 : Supersymmetry restoration by new degrees of freedom.

Let us now deform the basic Polonyi model by adding a new superfield, Y , while

keeping the Kähler potential canonical. The superpotential reads

W = λX +
1

2
hXY 2 . (7.26)

Notice that this model has an R-symmetry, with R-charge assignment R(X) =

2 , R(Y ) = 0. From the F-equations one can compute the potential which reads

V = |hXY |2 + |1
2
hY 2 + λ|2 , (7.27)
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implying that there are two supersymmetric vacua at

〈X〉SUSY = 0 , 〈Y 〉SUSY = ±
√
−2

λ

h
. (7.28)

So we see that the additional degrees of freedom have restored supersymmetry.

Interestingly, there are other local minima of the potential, a pseudo-moduli space

in fact, where supersymmetry is broken

〈X〉SB = any , 〈Y 〉SB = 0 where V = |λ|2 . (7.29)

The physical interpretation is as follows. For large 〈X〉, the superfield Y gets a

large mass and affects the low energy theory lesser and lesser. The theory reduces

effectively to the original Polonyi model, which breaks supersymmetry and whose

vacuum energy is indeed V = |λ|2. It is a simple but instructive exercise to compute

the mass spectrum around the non-supersymmetric minima. The chiral superfield

X is obviously massless while Y gets a mass. There is a first (obvious) contribution

to both the scalar and the fermion components of Y from h〈X〉, and a second

contribution which affects only the scalar component of Y coming from FX , which

is non-vanishing. The end result is

m2
Y = |h〈X〉|2 ± |hλ| , mψY = h〈X〉 . (7.30)

From the above expressions, we see that the supersymmetry breaking pseudomoduli

space has a tachyonic mode which develops (and destabilizes the vacuum) for

|X|2 < |λ/h| ≡ |Xc|2 . (7.31)

In such region the potential decreases along the 〈Y 〉 direction towards the super-

symmetry vacua. A qualitative picture of the potential is reported in Figure 7.6.

Example 4 : Runaway behavior.

A minimal modification of the above theory gives a completely different dynam-

ics. Let us suppose that the cubic term of the superpotential (7.26) has the square

shifted from Y to X. In this case we would have for the superpotential the following

ewxpression

W = λX +
1

2
hX2Y . (7.32)

The F–equations are

FX = λ+ hXY , F Y =
1

2
hX2 , (7.33)
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Figure 7.6: The potential of the model of Example 3: supersymmetry restoration.

and the scalar potential

V = |1
2
hX2|2 + |hXY + λ|2 . (7.34)

Differently from previous example, it is not possible to satisfy both F-equations and

so there are no supersymmetric ground states now. Notice, in passing, that the

R-symmetry is preserved by the superpotential as in the previous example, with

charge assignment R(X) = 2 and R(Y ) = −2 this time.

Now the question is: where is the minimum of this supersymmetry breaking

potential? An analysis of V shows that the global minimum is reached for Y →∞.

A quick way to see it is to set X = − λ
hY

, which kills the second contribution to the

potential, the FX-equation. By plugging this back into V one gets

V =
∣∣∣ λ2

2hY 2

∣∣∣
2

−→
Y→∞

0 . (7.35)

In other words, there is no stable vacuum but actually a runaway behavior and

supersymmetry is restored at infinity in field space.

A more physical way to reach the same conclusion is as follows. For large |Y | the

amount of supersymmetry breaking gets smaller and smaller and X mass larger and

larger. Hence the theory can be described by a theory where X is integrated out

solving its equation of motion, which for large enough mass reduces to ∂W/∂X = 0.
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This sets X = −λ/(hY ) and the Y -dependent only superpotential becomes

Weff = − λ2

2hY
, (7.36)

which gives the runaway behavior described by the potential (7.35).

Notice that within all models discussed so far, the only renormalizable one which

breaks supersymmetry in a stable vacuum is the original Polonyi model (in fact there

is an all pseudo-moduli space). This model is however rather uninteresting per sé,

since it describes a non-interacting theory. One might wonder whether there exist

reasonably simple models which are renormalizable, interacting and break super-

symmetry in stable vacua. The simplest such model is the re-known O’Raifeartaigh

model, which we now describe.

Example 5 : The O’Raifeartaigh model.

Let us consider the theory of three chiral superfields with canonical Kähler po-

tential and a superpotential given by

W =
1

2
hXΦ2

1 +mΦ1Φ2 − µ2X . (7.37)

The superpotential respects the R-symmetry, the R-charge assignment beingR(X) =

2, R(Φ1) = 0 and R(Φ2) = 2. The F-term equations read





FX = 1
2
hφ2

1 − µ2

F 1 = hXφ1 +mφ2

F 2 = mφ1

(7.38)

Clearly the first and the third equations cannot be solved simultaneously. Hence

supersymmetry is broken. Let us try to analyze the theory a bit further. There are

two dimensionful scales, µ and m. Let us choose in what follows |µ| < |m| (nothing

crucial of the following analysis would change choosing a different regime). In this

regime one can show that the minimum of the potential is at

φ1 = φ2 = 0 , X = any (7.39)

and the vacuum energy is V = |µ2|2. Again, we find a pseudo-moduli space of vacua

since X is not fixed by the minimal energy condition. In Figure 7.7 we depict the

potential as a function of the scalar fields.

Let us compute the (classical) spectrum around the supersymmetry breaking

vacua. The full chiral superfield X is massless, right in the same way as for the
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Figure 7.7: The (classical) potential of the O’Raifeartaigh model.

Polonyi model (notice that for larger and larger |X| the model gets closer and closer

to the Polonyi model since all other fields get heavier and heavier). The massless

fermion mode ψX is nothing but the goldstino. The only non vanishing F-term

in the vacuum is FX , so that the goldstino gets contribution only from ψX agrees

with eq. (7.10). The phase α of the scalar field X = |X|eiα is the Goldstone boson

associated to R-symmetry, which is spontaneously broken in the vacuum. Note that

while Φ2 is charged under the R-symmetry, the phase of φ2 does not contribute to

the R-axion since the VEV of φ2 is vanishing in the supersymmetry breaking vacua

(7.39). Finally, |X| is massless since it is a modulus (at least at classical level).

One can easily compute the (|X|-dependent) mass spectrum of all other fields

and get

m2
0(|X|) = |m|2 +

1

2
η|hµ2|+ 1

2
|hX|2

±1

2

√
|hµ2|2 + 2η|hµ2||hX|2 + 4|m|2|hX|2 + |hX|4

m2
1/2(|X|) =

1

4

(
|hX| ±

√
|hX|2 + 4|m|2

)2

. (7.40)

where η = ±1, giving different masses to the four real scalar modes belonging to Φ1

and Φ2. As expected, the spectrum is manifestly non-supersymmetric. Notice that

m2
1/2(|X|) = m2

0(|X|)|µ2=0. Note that these infinitely many (degenerate in energy)

vacua are in fact physically inequivalent, since the mass spectrum depends on |X|.

Example 6 : A modified O’Raifeartaigh model.
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Let us end this overview by considering a modification of the previous model.

Let us add a (small) mass perturbation for Φ2

∆W =
1

2
εmΦ2

2 with ε << 1 . (7.41)

Notice that this term breaks the R-symmetry enjoyed by the original O’Raifeartaigh

model. The only F-equation which gets modified is the one for Φ2 which now reads

F 2 = mφ1 + εmφ2 . (7.42)

The presence of the second term removes the conflict we had before between this

equation and the F-equation for X. Hence we can solve all F-term equations simul-

taneously and supersymmetry is not broken anymore. The (two) supersymmetric

vacua are at

X =
m

hε
, φ1 = ±

√
2µ2

h
, φ2 = ∓1

ε

√
2µ2

h
. (7.43)

For ε << 1 these vacua are far away, in field space, from where the supersymmetry

breaking vacua of the O’Raifeartaigh model sit (the VEV of φ2 becomes larger and

larger and hence very far from φ2 = 0, the value of φ2 in O’Raifeartaigh model

supersymmetry breaking vacua). In fact, near the origin of field space the potential

of the present model is practically identical to the one of the original O’Raifeartaigh

model and one can show by direct computation that a classically marginal pseudo-

moduli space of supersymmetry breaking minima is present, there.

Computing the mass spectrum near the origin one gets now

m2
0(|X|) =

1

2

{
|hX|2 + |m|2

(
2 + |ε|2

)
+ η|hµ2|

±
√

[|hX|2 + |m|2 (2 + |ε|2) + η|hµ2|]2 − 4|m|2 [|hXε−m|2 + η|hµ2| (1 + |ε|2)]
}

m2
1/2(|X|) = m2

0(|X|)|µ2=0 . (7.44)

A close look to the above spectrum shows that in order for mass squared eigenvalues

being all positive, the following inequality should be satisfied

∣∣∣1− εhX

m

∣∣∣
2

> (1 + |ε|2)
∣∣∣hµ

2

m2

∣∣∣ . (7.45)

For small ε and µ/m, the marginally stable region described by the above inequality

includes a large neighborhood around the origin, and the tachyonic mode develops

only for |X| (parametrically) larger than a critical value |Xc|

|X| < |Xc| . (7.46)
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Notice that this is quite the opposite of what we got in Example 4, where the

marginally stable region was above a critical value; as we will see, this difference has

crucial consequences at the quantum level. For ε→ 0 one gets that Xc, XSUSY →∞
and the supersymmetric vacua are pushed all the way to infinity. This is consistent

with the fact that for ε = 0 one recovers the original O’Raifeartaigh model where

supersymmetric vacua are not present. A rough picture of the potential is given in

Figure 7.8.
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Figure 7.8: The (classical) potential of the modified O’Raifeartaigh model.

For future reference, let me notice the following interesting fact. In all models

we have been considering so far, the existence of (stable) supersymmetry breaking

vacua was always accompaigned by the existence of an R-symmetry in the theory

(think of the original Polonyi model in Example 1, the model in Example 2, the

O’Raifeartaigh model of Example 5 and, to some extent, the model of Example 4).

Its presence, however, does not seem to be a sufficient condition for supersymmetry

breaking: think of the model of Example 3 which does possess an R-symmetry but

does not break supersymmetry. On the contrary, whenever superpotential terms

explicitly breaking the R-symmetry were introduced (the massive Polonyi model of

Example 1 or Example 6), supersymmetric vacua were found. Finally, every time we

found locally stable supersymmetry breaking vacua (again Example 6), in the vicin-

ity of such vacua an approximate R-symmetry, which the theory does not possess

as an exact symmetry, was recovered (essentially, in Examples 6 the superpotential

perturbation responsible for the explicit breaking of the R-symmetry becomes neg-

ligible near the marginally stable supersymmetry breaking vacua). All this suggests
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some sort of relation between R-symmetry and supersymmetry breaking. We will

discuss this issue later in this lecture, and put such apparent connection on a firm

ground.

7.4 Pseudomoduli space: quantum corrections

In most supersymmetry breaking models we discussed, we found a pseudo-moduli

space of non supersymmetric vacua. Associated to this, we found a massless scalar

mode |X|. While the masslessness of the goldstino and of the Goldstone boson

associated to R-symmetry breaking are protected by symmetries, there are no sym-

metries protecting the pseudo-modulus from getting a mass There isn’t any sym-

metry relating the (degenerate in energy) non supersymmetric vacua. Therefore, by

computing quantum corrections, one might expect this field to get a mass, some-

how. Let us stress the difference with respect to a moduli space of supersymmetric

vacua. Think about the harmonic oscillator. When we quantize the bosonic har-

monic oscillator, the energy of the ground state gets a 1
2
~ω contribution. On the

contrary, if the ground state is fermionic, the contribution is the same in modulus

but with opposite sign (fermions tend to push the energy down). In a supersymmet-

ric situation, the mass degeneracy between bosonic and fermionic degrees of freedom

provides equal but opposite contribution to the vacuum energy and the total energy

hence remains zero. In a non-supersymmetric vacuum the degeneracy is not there

anymore (think about the spectrum we computed in the O’Raifeartaigh model) so

one expects things to change. In what follows we will try to make this intuition con-

crete by computing the one-loop Coleman-Weinberg effective potential for both the

O’Raifeartaigh and the modified O’Raifertaigh models. In practice, what we have

to do is to compute corrections in the coupling h at one loop in the background

where the pseudo-modulus |X| has a non-vanishing VEV.

For a supersymmetric theory the Coleman-Weinberg potential reads

Veff =
1

64π2
STr M4 log

M2

Λ2
=

1

64π2

(
Tr m4

B log
m2
B

Λ2
− Tr m4

F log
m2
F

Λ2

)
, (7.47)

where M = M(|X|) is the full tree level mass matrix, mB and mF correspond to

boson and fermion masses respectively, and Λ is a UV cut-off.

There are a few terms missing in the expression (7.47) of the effective potential,

if compared to a generic non-supersymmetric theory. Let us consider them in turn.
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First, we miss the cosmological constant term

∼ Λ4 . (7.48)

This term is missing since it only depends on the spectrum, and not on the masses

of the different modes. In a supersymmetric theory the spectrum admits an equal

number of bosonic and fermionic degrees of freedom, no matter whether one is

in a supersymmetric or non supersymmetric vacuum. Since bosons and fermions

contribute opposite to this term, this degeneracy ensures this term to be vanishing.

A second term which is missing is the one proportional to

∼ Λ2 STr M2 . (7.49)

This is not expected to vanish in our supersymmetry breaking vacuum since particles

have different masses. In other words, the mass spectrum is not supersymmetric

along the pseudo-moduli space, recall for instance eqs. (7.40) describing the non-

supersymmetric mass spectrum of the O’Raifeartaigh model. However, an explicit

computation shows that also this term is vanishing. This is not specific to this

model. As we will show later, every time supersymmetry is broken spontaneously

at tree level, provided the Kähler potential is canonical and in the absence of FI

terms, cancellations occur so to give STr M2 = 0.

The only divergent term present in the expression (7.47) is proportional to

∼ log Λ2 STr M4 . (7.50)

This term does not vanish in general but it does not depend on |X|. As such, as we

will see momentarily, it can be reabsorbed in the renormalization of the tree level

vacuum energy |µ2|2. The upshot is that the only non-trivial |X|-dependent term

in (7.47) is the finite term

∼ STr M4 logM2 . (7.51)

Let us start considering the O’Raifertaigh model. We should simply plug the tree

level masses (7.40) into formula (7.47). A lengthy but straightforward computation

shows that Veff is a monotonic increasing function of |X| and can hence be expanded

in a power series in |X|2. For small |X| we get

Veff(|X|) = V0 +m2
X |X|2 +O(|X|4) (7.52)

where

V0 = |µ2|2
[
1 +

|h|2
32π2

(
log
|m|2
Λ2

+ v(y) +
3

2

)
+O(h4)

]
, (7.53)
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with

y =
∣∣∣hµ

2

m2

∣∣∣ < 1 and v(y) = −y
2

12
+O(y4) , (7.54)

and

m2
X =

1

32π2

∣∣∣h
4µ4

m2

∣∣∣z(y) where z(y) =
2

3
+O(y2) . (7.55)

The minimum of the potential is at |X| = 0, and besides the tree level contribu-

tion |µ2|2 it gets a contribution proportional ∼ |h2| which is just a constant, |X|-
independent shift. As anticipated, the UV cut-off dependence can be reabsorbed in

a renormalization of the vacuum energy. Indeed, we can define a running coupling

µ2(E) ≡ µ2
bare

[
1 +

|h|2
64π2

(
log

E2

Λ2
+

3

2

)
+O(h4)

]
(7.56)

getting

V0 = |µ2(E = m)|2
(

1 +
|h|2
32π2

v(y) +O(h4)

)
(7.57)

and the Λ-dependence has disappeared from the potential.

The upshot of this analysis is that loop corrections have lifted the classical

pseudo-moduli space, leaving just one isolated non supersymmetric vacuum. In this

vacuum the scalar field X gets a (one-loop) mass while ψX , which is the goldstino,

remains massless (notice, in passing, that in the unique supersymmetry breaking

vacuum R-symmetry is preserved, as in Example 2). The shape of the potential in

the X-direction becomes at all similar to that of Figure 7.5.

Let us now see what quantum corrections say about the marginally stable super-

symmetry breaking vacua of the modified O’Raifeartaigh model, the one including

the superpotential perturbation (7.41). We will just briefly sketch the main results.

The interested reader could try to work out all data in detail. One should again eval-

uate the Coleman-Weinberg potential using the tree level spectrum computed near

the origin of field space, where the putative marginally stable vacua live, eqs. (7.44).

Plugging the latter into formula (7.47), what one finds is that, again, the vacuum

degeneracy is lifted and a (locally) stable non-supersymmetric vacuum survives at

|X| = |Xmin| where in our regime, ε << 1, Xmin is near the origin and very far,

in field space, from the two supersymmetric vacua sitting at |X| = |XSUSY |. More

precisely we get

Veff(|X|) = V0 +m2
X |X −Xmin|2 +O(ε2, |X −Xmin|4) , (7.58)

where Xmin ∼ εm
h
f(y) + O(ε3). The spectrum in the supersymmetry breaking

vacuum enjoys a massless fermion, ψX , the goldstino, while the X-field gets a (ε-
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independent) mass, as in the original O’Raifeartaigh model. The effective potential,

once projected into X-direction, looks roughly like that in Figure 7.9.
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⇤

Figure 7.9: The effective potential of the modified O’ Raifeartaigh model project

onto the |X| direction.

One might ask whether such locally stable supersymmetry breaking minimum is

of any physical relevance. An estimate of its lifetime τ can be given looking at the

decay rate

Γ ∼ e−SB (7.59)

(recall that τ ∼ 1/Γ) where SB is the so-called bunch action, the difference between

the Euclidean action of the tunneling configuration and that of remaining in the

metastable vacuum. Its exact form depends on the details of the potential, but

a simple estimate can be given in the so-called thin wall approximation, which is

justified when |XSUSY − XMax|4 >> VMeta, and which is the case here. In this

approximation the bunch action reads

SB ∼
〈∆X〉4

∆V
where 〈∆X〉 = 〈X〉SUSY−〈X〉Meta , ∆V = VMeta−VSUSY = VMeta .

(7.60)

An explicit computation shows that SB ∼ ε−α where α > 0. This implies that

for ε << 1 the bunch action can be made arbitrary large so, in this limit, the

locally stable vacuum can be made parametrically long-lived. The upshot of this

analysis is that at the quantum level the classically marginal pseudo-moduli space

of the modified O’Raifertaigh model is lifted but a local, parametrically long-lived

supersymmetry breaking vacuum survives. It is an instructive exercise, which is left

to the reader, to repeat this quantum analysis for the classically marginal pseudo-

149



moduli space of Example 3. In this case, the pseudo-moduli space gets completely

lifted, and no locally stable supersymmetric minimum survives quantum corrections.

Let us close this section stressing that nothing we said (and computed) about

quantum corrections, pseudomoduli lifting, etc... affects the supersymmetry break-

ing mechanism itself. All models we have been discussing so far, if breaking super-

symmetry, were doing it at tree level. We have not encountered examples where

supersymmetry was unbroken at tree level and one-loop quantum corrections in-

duced supersymmetry breaking. Everything coming from the one-loop potential

can and does modify the classical supersymmetry breaking vacua (which are not

protected by supersymmetry), while it leaves completely unaffected the supersym-

metric ones, if any. This agrees with non-renormalization theorems and our claims

about the robustness of supersymmetric moduli spaces against (perturbative) quan-

tum corrections.

We will have more to say about F-term breaking in due time. Let us pause a

bit now, and consider the other possibility we have alluded to, i.e. spontaneous

supersymmetry breaking induced at tree level by D-terms.

7.5 D-term breaking

In a generic theory, where chiral and vector superfields are present, in absence of

FI terms it is F-term dynamics which governs supersymmetry breaking. This is

because it so happens that whenever one can set all F-terms to zero, using (global)

gauge invariance acting on the scalar fields one can set to zero all D-terms, too. So,

if one wants to consider genuine D-term breaking, one should consider FI terms,

hence abelian gauge factors. In what follows, we will review the most simple such

scenario, where two massive chiral superfields with opposite charge are coupled to

a single U(1) factor, and a FI term is present in the Lagrangian. The Lagrangian

reads

L =
1

32π
Im

(
τ

∫
d2θWαWα

)
+

∫
d2θ d2θ̄

(
ξV + Φ+e

2eV Φ+ + Φ−e
−2eV Φ−

)

+ m

∫
d2θΦ+Φ− + h.c. , (7.61)

where under a gauge transformation the two chiral superfields transform as Φ± →
e±ieΛΦ±. There is also an anomaly free R-symmetry under which the chiral super-

fields Φ± have R(Φ±) = 1 (this implies that fermion fields have vanishing R-charge

and so they do not contribute to the ABJ anomaly).
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The equations of motion for the auxiliary fields read

{
F± = mφ∓

D = −1
2

[ξ + 2e (|φ+|2 − |φ−|2)]
(7.62)

It is clearly impossible to satisfy all auxiliary fields equations, due to the presence

of the FI parameter ξ. Hence supersymmetry is broken, as anticipated. The scalar

potential reads

V =
1

8

[
ξ + 2e

(
|φ+|2 − |φ−|2

)]2
+m2

(
|φ+|2 + |φ−|2

)

=
1

8
ξ2 +

(
m2 − 1

2
e ξ

)
|φ−|2 +

(
m2 +

1

2
e ξ

)
|φ+|2 +

+
1

2
e2
(
|φ+|2 − |φ−|2

)2
. (7.63)

The vacuum structure and the low energy dynamics depends on the sign of m2− 1
2
e ξ.

There is a qualitative difference between the depending on such sign

• m2 > 1
2
e ξ. All terms in the potential are positive and the minimum of V is

at 〈φ±〉 = 0, where V = 1
8
ξ2. Supersymmetry is broken but gauge symmetry

is preserved. The only auxiliary field which gets a non-vanishing VEV is D,

so in this case one speaks of pure D-term breaking. We are in a situation like

the one depicted in the upper right diagram of Figure 7.1.

One can compute the mass spectrum and find agreement with expectations.

The two fermions belonging to the two chiral multiplets have (supersymmetric)

mass m and hence form a massive Dirac fermion. The two scalar fields φ+ and

φ− have masses
√
m2 + 1/2eξ and

√
m2 − 1/2eξ, respectively. Finally, both

the photon Aµ and the photino λ remain massless. The former, because gauge

symmetry is preserved, the latter because supersymmetry is broken and a

massless fermionic mode, the goldstino, is expected (in this case the goldstino

gets contribution from the photino only, since the only non-vanishing auxiliary

field VEV is that of the D-field, ψGα ∼ 〈D〉λα).

• m2 < 1
2
e ξ. Now the sign of the mass term for φ− is negative. The minimum

of the potential is at 〈φ+〉 = 0 , 〈φ−〉 =
√

ξ
2e
− m2

e2
≡ h. Hence both supersym-

metry and gauge symmetry are broken. Both the D-field and F+ get a VEV:

in this case we have a so-called mixed D and F-term breaking. The value of
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the potential at its minumum is V = 1
8
ξ2− 1

2
e2h4. We are in a situation of the

type depicted in the lower right diagram of Figure 7.1.

In order to compute the mass spectrum one should expand the potential

around 〈φ+〉 = 0 and 〈φ−〉 = h. A lengthy but simple computation gives

the following answer. The complex scalar field φ+ has mass mφ+ =
√

2m. The

real part of φ− gets a mass mφR−
=
√

2eh, while the imaginary part disappears

from the spectrum (in fact, it is eaten by the photon, which becomes massive,

with mass mAµ =
√

2eh). The three fermions mix between themselves (there

is a mixing induced from Yukawa couplings). One eigenfunction is massless,

and is nothing but the goldstino ψGα ∼ 〈D〉λα + 〈F+〉ψ+α. The other two, ψ̃±,

get equal mass mψ̃±
=
√

2e2h2 +m2 =
√
eξ −m2.

Since one of the scalar fields gets a non-vanishing VEV, in this regime, one

would naively expect to find an R-axion in the spectrum, the goldstone boson

of the broken R-symmetry. The spectrum we derived, however, does not have

such a massless scalar. The reason is that in fact the vacuum 〈φ+〉 = 0, 〈φ−〉 =

h does preserve an R-symmetry, a linear combination of the (broken) UV

R-symmetry and of the global part of the (broken) U(1) gauge symmetry

under which the chiral superfields have charges R(Φ+) = 2, R(Φ−) = 0. So,

consistently, there should not be a R-axion in the spectrum.

Figure 7.10 gives a summary of the mass spectrum of the FI model as a function

of 1
2
eξ which, at fixed m, is the order parameter of the supersymmetry breaking

transition.

One of the most attractive features of supersymmetric fields theories is the stabil-

ity of masses under quantum corrections. In models where the FI mechanism plays

a role, the physical mass spectrum depends on ξ which is not protected, a priori,

since it appears in a D-term. This is different from models where F-terms are re-

sponsible for the supersymmetry breaking dynamics, since these are superpotential

terms and protected by non-renormalization theorems. Therefore, it is important to

investigate the circumstances under which the FI term does not get renormalized.

It can be shown that the contribution renormalizing the FI term is proportional to

the trace of the U(1) generator taken over all chiral superfields present in the model.

This trace is proportional to the gravitational anomaly. Therefore, we can conclude

that the FI term does not renormalize for theories free of gravitational anomalies.
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Figure 7.10: The mass spectrum of the Fayet-Iliopoulos model as a function of the

FI parameter ξ.

7.6 Indirect criteria for supersymmetry breaking

We have already alluded to some possible relation between supersymmetry breaking

and R-symmetry. In what follows, we will try to make this intuition precise and,

more generally, present a few general criteria one can use to understand whether a

theory might or might not break supersymmetry, without having a precise knowl-

edge of the details of the theory itself. These criteria might be useful as guiding

principles when trying to construct models of supersymmetry breaking in a bottom-

up approach and, at the same time, they allow to have a handle on theories which

are more involved than the simple ones we analyzed in previous sections. Finally,

having some general criteria, possibly being valid also beyond the realm of pertur-

bative physics might also be useful when one has to deal with theories in strongly

coupled phases, where a perturbative, semi-classical approach is not possible, and

where the direct study of the zero’s of the potential is not easy or even not possible.

7.6.1 Supersymmetry breaking and global symmetries

Let us consider a supersymmetric theory which has a spontaneously broken global

symmetry and which does not admit (non compact) classical flat directions. This

theory, generically, breaks supersymmetry. This can be easily proven as follows.

Since there is a broken global symmetry, the theory admits a goldstone boson (a

massless particle with no potential). If supersymmetry were unbroken then one
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should expect a scalar companion of this goldstone boson, which, being in the same

multiplet of the latter, would not admit a potential either. But then, the theory

would admit a flat direction, contrary to one of the hypotheses. This is a sufficient

condition for supersymmetry breaking.

In the above reasoning we have assumed that the second massless scalar corre-

sponds to a non-compact flat direction. This is typically the case since the Goldstone

boson is the phase of the order parameter, and its scalar companion corresponds to

a dilation of the order parameter, and therefore represents indeed a non-compact

flat direction.

Consider now a theory of F chiral superfields Φi with superpotential W . Super-

symmetry is unbroken if

F i =
∂W

∂φi
= 0 , ∀i = 1, 2, . . . , F . (7.64)

These are F holomorphic conditions on F complex variables. Therefore, if the su-

perpotenital W is generic, one expects (typically distinct) solutions to exist. Hence,

supersymmetry is unbroken. By the superpotential being generic we mean the fol-

lowing. The superpotential is, in general, a function of the Φi’s of degree, say, n.

It is generic if all possible polynomials of degree n or lower compatible with the

symmetries of the theory are present.

Suppose now that W preserves some global non-R symmetry. Hence, W is a

function of singlet combinations of the Φi’s. It is easy to see that in terms of these

reduced number of variables, eqs. (7.64) impose an equal number of independent

conditions. Suppose, for definiteness, that the global symmetry is a U(1) symmetry

and call qi the corresponding charge of the i-th chiral superfield Φi. Hence, we can

rewrite the superpotential as e.g.

W = W (Xi) where Xi = ΦiΦ
−qi/q1
1 , i = 2, 3, . . . , F . (7.65)

If we now consider eqs. (7.64) we have
{
j 6= 1 ∂W

∂φj
= φ

−qj/q1
1

∂W (Xi)
∂Xj

= 0

j = 1 ∂W
∂φ1 = ∂W (Xi)

∂Xk

∂Xk
∂φ1

= 0 , k = 2, . . . , F .
(7.66)

We see that the equation for F 1 is automatically satisfied if the others F − 1 are

satisfied. Hence, having a system of F −1 holomorphic equations in F −1 variables,

generically the system allows for solutions. The same reasoning holds for a generic

global symmetry. A global symmetry (under which the superpotential is a singlet)
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diminishes the number of independent variables, but it diminishes also the number

of independent F-equations by the same amount. Hence, again, if W is generic,

eqs. (7.64) can be solved and supersymmetry is unbroken.

Suppose now that the global symmetry under consideration is a R-symmetry.

The crucial difference here is that the superpotential is charged under this symmetry,

R(W ) = 2. Let us call ri the R-charge of the i-th superfield Φi. We can now rewrite

the superpotential as

W = Φ
2/r1
1 f(Xi) where Xi = ΦiΦ

−ri/r1
1 , i = 2, 3, . . . , F . (7.67)

If we now compute eqs. (7.64) we get




j 6= 1 ∂W

∂φj
= φ

2−rj
r1

1
∂f(Xi)
∂Xj

= 0

j = 1 ∂W
∂φ1 = 2

r1
φ

2
r1
−1

1 f(Xi) + φ
2
r1
1

∂f(Xi)
∂Xk

∂Xk
∂φ1

= 0 .
(7.68)

Once the first F −1 equations are satisfied, the remaining one reduces to f(Xi) = 0,

which is not at all trivial. So now we have F independent equations in F−1 variables

and hence, generically, solutions do not exist. So we conclude that supersymmetry

is broken, generically. The upshot is that the existence of an R-symmetry is a

necessary condition for supersymmetry breaking, if the potential is generic (and, if

it is then spontaneously broken, it is a sufficient condition if there are no classical

flat directions).

This is known as the Nelson-Seiberg criterium. The O’Raifeartaigh model meets

this criterium. It possesses an R-symmetry (which is then spontaneously broken

along the pseudo-moduli space), the superpotential is generic, and it breaks su-

persymmetry. The modified O’Raifeartaigh model instead admits supersymmetry

preserving vacua. Indeed, the R-symmetry is absent since the mass perturbation

∆W breaks it explicitly. So, one would expect the model not to break supersym-

metry. And in fact it doesn’t. We have noticed, though, that somewhere else in

the space of scalar field VEVs this model admits non-supersymmetric vacua which,

if the mass perturbation is small enough, we have proven to be long-lived. In this

region the R-breaking perturbation is negligible and an approximate R-symmetry

(the O’Raifeartaigh model’s original one) is recovered. This property is in fact not

specific to the modified O’Raifeartaigh model, but is a generic feature of supersym-

metry breaking metastable vacua.

Summarizing, a rough guideline in the quest for supersymmetry breaking theories
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can be as follows:

No R-symmetry −→ SUSY unbroken

R-symmetry −→ SUSY (maybe) broken

Approximate R-symmetry −→ SUSY (maybe) broken locally,

restored elsewhere

Since necessary conditions are quite powerful tools, let me stress again one im-

portant point. The existence of an R-symmetry is a necessary condition for super-

symmetry breaking under the assumption that the superpotential is generic. If this

is not the case, supersymmetry can be broken even if the R-symmetry is absent. An-

other possibility, which typically occurs when gauge degrees of freedom are present

in the Lagrangian, is that R-symmetry is absent, but then it arises as an accidental

symmetry in the low energy effective theory. Also in this case supersymmetry can be

broken even if R-symmetry was absent in the UV Lagrangian. We will see examples

of this sort later in this course.

7.6.2 Topological constraints: the Witten Index

Another powerful criterium exists which helps when dealing with theories with com-

plicated vacuum structure and for which it is then difficult to determine directly

whether supersymmetry is broken, i.e. to find the zero’s of the potential. This cri-

terium, which provides a necessary condition for supersymmetry breaking, has to do

with the so-called Witten index, which, for a supersymmetric theory, is a topological

invariant quantity.

The Witten index, let us dub it IW , is an integer number which measures the

difference between the number of bosonic and fermionic states, for any given en-

ergy level. In a supersymmetric theory, for any positive energy level there is an

equal number of bosonic and fermionic states. This is obvious if supersymmetry is

unbroken, but it also holds if supersymmetry is broken: every state is degenerate

with the state obtained from it by adding a zero-momentum goldstino (which is

certainly there, if supersymmetry is broken). In other words, a state |Ω〉 is paired

with |Ω + {pµ = 0 goldstino}〉. On the contrary, zero energy states can be un-

paired since, due to the supersymmetry algebra, such states are annihilated by the

supercharges. Therefore, in a supersymmetric theory the Witten index can get con-

tribution from the zero energy states only, regardless the vacuum one is considering

preserves supersymmetry or it does not.

156



Strictly speaking the above argument holds only if we put the theory in a finite

volume. In an infinite volume, when supersymmetry is broken one has to deal with

IR singularity issues. In particular, the (broken) supercharge diverges and acting

with it on a physical state gives a non-normalizable state. This can be seen as

follows. From the current algebra (4.71) one sees that

E ηµν = 〈T µν〉 =
1

4
σ̄µ α̇α〈{Qα, S

ν

α̇}〉 . (7.69)

This shows that if the vacuum energy is non vanishing, the vacuum is transformed

into one goldstino states if acted with Qα (recall that the supercurrent creates a gold-

stino when acting on the vacuum). In an infinite volume a non-vanishing vacuum

energy density corresponds to an infinite total energy, implying that the supercharge

diverges and that the zero-momentum goldstino state is not defined (the correspond-

ing state does not exist in the Hilbert space). Putting the theory in a finite volume

is a way to regularize (to preserve supersymmetry and translational invariance one

should impose periodic boundary conditions on all fields). Therefore, in what fol-

lows we will start considering the theory in a finite volume V and only later take

the infinite volume limit. As we will see, what is relevant for the argument we want

to convey is not affected by these issues and holds true also when V →∞. Our goal

is to discuss whether supersymmetry is or is not broken. Working at finite volume

could then be worrisome since ordinary global symmetries are typically unbroken in

a finite volume, regardless their fate in the infinite volume limit (in a finite volume

states can mix and this usually ensures that the ground state is invariant under all

internal symmetries). Supersymmetry behaves differently, though, since its breaking

just depends on whether the energy of the ground state is positive or zero, and in a

finite volume the ground state energy can certainly be positive.

A theory in a finite volume has a discrete energy spectrum, all states in the

Hilbert space are discrete and normalizable and can be counted unambiguously.

Our goal is to compute the Witten index in such finite volume theory. For this, we

just need to count the number of zero energy states (more precisely, the difference

between bosonic and fermionic zero energy states), and we can then restrict to the

zero three-momentum subspace of the Hilbert space. In a supersymmetric theory

the energy of any state is semi-positive definite hence, from the relativistic equation

m2 = E2−|~p|2, it follows that the energy is larger or equal than the three-momentum,

so zero energy states have ~p = 0. Setting |~p| = 0 we are excluding from the counting

massless states with E > 0. These states, though, do not contribute to the Witten

index. Massive states, on the other hand, never contribute to it since they necessarily
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have E > 0, regardless the value of |~p|. So only massless states with |~p| = 0

contribute to the Witten index. The upshot is that restricting the Hilbert space

to the subspace |~p| = 0 does not hart and so this is what we will do in what

follows. Nicely, in such subspace the supersymmetry algebra simplifies. Going to a

basis of appropriately rescaled hermitian linear combination of the supersymmetry

generators the supersymmetry algebra (2.61) reduces to

{Qi,Qj} = δijP0 , i, j = 1, . . . , 4 , (7.70)

where

Q1 =
1

2

(
Q1 +Q1̇

)
, Q2 =

i

2

(
Q1 −Q1̇

)

Q3 =
1

2

(
Q2 +Q2̇

)
, Q4 =

i

2

(
Q2 −Q2̇

)
. (7.71)

This implies that Q2
1 = Q2

2 = Q2
3 = Q2

4 = H, where H = P0 is the Hamiltonian of

the system.

Suppose to have a bosonic state |b〉 for which Q2|b〉 = E|b〉, where Q is one of

the Qi’s. Then the fermionic state obtained from |b〉 as

|f〉 ≡ 1√
E
Q|b〉 , (7.72)

has also energy E. This does not apply to zero-energy states since they are annihi-

lated by Q, and hence are not paired. So, as anticipated, the Witten index receives

contributions only from zero energy states. In Figure 7.11 we report the general

form of the spectrum of a supersymmetric theory.

In order to appreciate its topological nature, let us define the index a bit more

rigorously. A supersymmetric theory is a unitary representation of the Poincaré

superalgebra on some Hilbert space H. Let us assume that

H = ⊕
E≥0
HE . (7.73)

The Witten index is defined as

IW (β) = STrHe
βH ≡ TrH(−1)F eβH , β ∈ R+ . (7.74)

It follows that

IW (β) =
∑

E≥0

eβE TrHE(−1)F =
∑

E≥0

eβE [nB(E)− nF (E)] =

= nB(0)− nF (0) = TrH0(−1)F = IW (0) . (7.75)
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Energy

Figure 7.11: The spectrum of a supersymmetric theory in a finite volume. Circles

indicate bosons, squares indicate fermions. The zero energy level is the only one

where there can exist a different number of circles and squares.

We have been rewriting what we have already shown to hold. The point is that this

way it is clear that the index does not depend on β: its value does not vary if we

vary β. More generally, one can prove that the Witten index does not depend on

any parameter, like in particular coupling constants, and can then be computed in

appropriate corners of the parameter space (say at weak coupling) and the result

one gets is exact. In other words, the Witten index is a topological invariant.

Suppose one starts from a situation like the one depicted in Figure 7.11. Varying

the parameters of the theory, like masses, couplings, etc..., it may very well be that

some states move around in energy. The point is that they must do it in pairs, in a

supersymmetric theory. Hence, it can happen that a pair of non-zero energy states

moves down to zero energy; or, viceversa, that some zero energy states may acquire

non-zero energy. But again, this can only happen if an equal number of bosonic and

fermionic zero energy states moves towards a non-zero energy level. The upshot is

that the Witten index does not change. This is summarized pictorially in Figure

7.12.

What is this useful for? The crucial point is that the Witten index measures

the difference between zero-energy states only. Suppose it is different from zero,

IW 6= 0. This means that there exists some zero-energy state, hence supersymmetry

is unbroken. But, because of the topological nature of IW , this conclusion holds

at any order in perturbation theory and even non-perturbatively! A theory with

non vanishing Witten index cannot break supersymmetry. Suppose instead that

IW = 0. Now one cannot conclude anything, just that the number of bosonic and

fermionic zero-energy state is the same; but one cannot tell whether this number is
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<latexit sha1_base64="x4IkQN+41DXabsLrJ0qllppOuM4=">AAAB7HicdVBNSwMxEJ31s9avqkcvwSJ4WrLFoh6Eohe9VXDbQruUbJptQ7PZJckKpfQ3ePGgiFd/kDf/jdl+gIo+GHi8N8PMvDAVXBuMP52l5ZXVtfXCRnFza3tnt7S339BJpijzaSIS1QqJZoJL5htuBGulipE4FKwZDq9zv/nAlOaJvDejlAUx6UsecUqMlfzbbvPS65bK2PUuciDsVrBFdUEqyHPxFGWYo94tfXR6Cc1iJg0VROu2h1MTjIkynAo2KXYyzVJCh6TP2pZKEjMdjKfHTtCxVXooSpQtadBU/T4xJrHWozi0nTExA/3by8W/vHZmovNgzGWaGSbpbFGUCWQSlH+OelwxasTIEkIVt7ciOiCKUGPzKdoQFp+i/0mj4npVF9+dlmtX8zgKcAhHcAIenEENbqAOPlDg8AjP8OJI58l5dd5mrUvOfOYAfsB5/wJFsY5W</latexit>

IW = 1
<latexit sha1_base64="x4IkQN+41DXabsLrJ0qllppOuM4=">AAAB7HicdVBNSwMxEJ31s9avqkcvwSJ4WrLFoh6Eohe9VXDbQruUbJptQ7PZJckKpfQ3ePGgiFd/kDf/jdl+gIo+GHi8N8PMvDAVXBuMP52l5ZXVtfXCRnFza3tnt7S339BJpijzaSIS1QqJZoJL5htuBGulipE4FKwZDq9zv/nAlOaJvDejlAUx6UsecUqMlfzbbvPS65bK2PUuciDsVrBFdUEqyHPxFGWYo94tfXR6Cc1iJg0VROu2h1MTjIkynAo2KXYyzVJCh6TP2pZKEjMdjKfHTtCxVXooSpQtadBU/T4xJrHWozi0nTExA/3by8W/vHZmovNgzGWaGSbpbFGUCWQSlH+OelwxasTIEkIVt7ciOiCKUGPzKdoQFp+i/0mj4npVF9+dlmtX8zgKcAhHcAIenEENbqAOPlDg8AjP8OJI58l5dd5mrUvOfOYAfsB5/wJFsY5W</latexit>

IW = 1

Figure 7.12: Supersymmetric theory dynamics. Upon modifications of parameters

of the theory, the number of zero energy states can change, but the Witten index

remains the same.

zero (broken supersymmetry) or different from zero (unbroken supersymmetry).

So we conclude that having a non-vanishing Witten index is a sufficient condition

for the existence of supersymmetric vacua, and that having it vanishing is a necessary

condition for supersymmetry breaking. And a robust one, since IW is an exact

quantity.

Few comments are in order at this point.

First, the fact that we have been working in a finite volume does not question

our main conclusions. If supersymmetry is unbroken in an arbitrary finite volume

it means the ground state energy E(V ) is zero for any V. Since the large-V limit

of zero is still zero, supersymmetry is unbroken also in the infinite volume limit. If

one can explicitly compute the Witten index at finite volume and find that it is not

vanishing, one can safely conclude that supersymmetry is not broken even in the

actual theory, i.e. at infinite volume. On the contrary, the converse is not necessarily

true. It might be that supersymmetry is broken at finite volume and restored in the
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infinite volume limit. Suppose that IW = 0 and that one knows that supersymmetry

is broken, that is the minimal energy states have positive energy. The energy density

goes as E(V )/V and it may very well be that for V → ∞ the increase of E is not

enough to compensate for the larger and larger volume. So the energy density can

very well become zero in the infinite volume limit and supersymmetry restored. But

this does not hurt much, since all what the vanishing of the Witten index provides

is a necessary condition for supersymmetry breaking, not a sufficient one.

A second comment regards the relation between classical and quantum results.

Suppose one can explicitly check at tree level that a given theory has non-vanishing

Witten index, IW 6= 0. For what we said above, this implies that supersymmetry is

unbroken classically and that it cannot be broken whatsoever, neither perturbatively

nor non-perturbatively. On the contrary, if IW = 0 at tree level and we know that

supersymmetry is unbroken classically, it can very well be that (non-perturbative)

quantum effects may break it.

The theorem we have discussed may find very useful applications. For one thing,

it turns out that pure SYM theories have non-vanishing Witten index (for SYM with

gauge group G, the index equals the dual Coxeter number of G, which for SU and Sp

groups is just r + 1, where r is the rank of G). So pure SYM theories cannot break

supersymmetry. As a corollary, SYM theories with massive matter (like massive

SQCD) cannot break supersymmetry either. This is because for low enough energy

all massive fields can be integrated out and the theory flows to pure SYM, which

has non-vanishing index. More generally, non-chiral theories, for which a mass term

can be given to all matter fields, are not expected to break supersymmetry.

What about chiral theories, instead? Chiral theories behave differently. In this

case some chiral superfield cannot get a mass anyway, and so these theories cannot

be obtained from deformation of vector-like theories, as massive SQCD. Hence,

one cannot conclude that these theories cannot break supersymmetry. As we will

see when discussing models of dynamical supersymmetry breaking, most known

examples of theories breaking supersymmetry are, in fact, chiral theories.

There is a subtlety in all what we said so far, which is sort of hidden in some of

our claims. We said that the Witten index is robust against any continuous change

of parameters. But it turns out that a perturbation that changes the asymptotic

behavior of the potential may induce a change in IW . This is related to the topolog-

ical nature of the index, which makes it depending on boundary effects. Consider
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the following simple potential for a scalar field φ,

V (φ) =
(
mφ− gφ2

)2
. (7.76)

For g = 0 low energy states correspond to φ ∼ 0. For g 6= 0 low energy states may

correspond to φ = 0 but also to φ ∼ m/g (no matter how small g is). So we see here

that IW (g = 0) 6= IW (g 6= 0). What is going on? The point is that switching on and

off g changes the asymptotic behavior of V for large φ (that is, at the boundary of

field space): in the large φ region, for g = 0 V ∼ φ2 while for g 6= 0 V ∼ φ4. The

punchline is that the Witten index is invariant under any change in the parameters

of a theory in which, in the large field regime, the potential changes by terms no

bigger than the terms already present. If this is not the case, the Witten index

can change discontinuously. In other words, IW is independent of numerical values

of parameters as long as these are non-zero. When sending a set of parameters

to zero, or switching on some couplings which were absent, one should check that

the asymptotic behavior of the potential is unchanged, in order to avoid new states

coming in from (or going out to) infinity. Coming back to our SQCD example, we see

that for massive SQCD the potential in the large field regime is quadratic, while for

massless SQCD is flat: the two theories do not have a priori the same Witten index.

Therefore, while massive SQCD is expected to be in the same equivalence class of

pure SYM (as far as supersymmetry breaking is concerned), this is not guaranteed

for massless SQCD. In other words, no conclusions can be drawn for the massless

regime by the analysis in the massive regime. We will see explicit examples of this

phenomenon in later chapters.

7.6.3 Genericity and metastability

Before concluding this section, there is yet another important conclusion we can

draw from all what we have learned. Both the Nelson-Seiberg criterium and Witten

index argument seem to favor, at least statistically, supersymmetry breaking into

metastable vacua.

For one thing, thinking about R-symmetry one might have the impression to

fall into a vicious circle. Having an R-symmetry (which is a necessary condition for

supersymmetry breaking, if the superpotential is generic) forbids a mass term for the

gaugino which, being a fermion in a real representation and having R-charge R(λ) =

1, would have a R-symmetry breaking mass term. But we do not see any massless

gauginos around, so gauginos should be massive. If we have an R-symmetry which is
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spontaneously broken, we could generate a mass for gauginos but we should also have

an R-axion, which is not observed. This suggests that R-symmetry should be broken

explicitly. But then, generically, we cannot break supersymmetry! The conclusion is

that asking for stable vacua compatible with phenomenological observations implies

one should look for non-generic theories, which are obviously much less than generic

ones. If one accepts, instead, that supersymmetry might be broken in metastable

vacua, then R-symmetry would not be an exact symmetry but only an approximate

one. In this case gaugino mass and supersymmetry breaking would be compatible, at

least in the metastable vacuum, and also the R-axion would be massive. It is worth

noticing that in concrete models there is, not unexpectedly, some tension between

the magnitude of gaugino mass and the lifetime of such supersymmetry breaking

vacua. A long lifetime would imply massive but light gauginos and R-axion and, on

the positive side, a parametrically long-lived lightest supersymmetric particle, i.e.

a valuable dark matter candidate.

Regardless the R-axion problem mentioned above (which in fact can also get a

mass by gravitational effects), there exists another argument favoring metastability.

This is related with the computations we performed in section 7.4 when we studied

one-loop corrections of the O’Raifeartaigh model. We have seen that quantum

corrections lift the classical pseudomoduli space, leaving one unique supersymmetry

breaking vacuum. However, such vacuum is (the only) one where R-symmetry is in

fact not broken, so gauginos cannot get a mass! This is not a specific feature of the

O’Raifeartaigh model but applies to any model where the R-charges of superfields

are either 0 or 2. It has been proven that a necessary condition for having the

true vacuum to break the R-symmetry is to have fields in the Lagrangian having R-

charge different from 0 and 2. Models of this kind exist and have been constructed.

However, in all such models supersymmetry preserving vacua also exist. Hence,

supersymmetry breaking vacua where also R-symmetry is in the end broken, are

actually metastable.

Also Witten index argument favors metastability, statistically. If accept we leave

in a metastable vacuum, it means we allow for the existence of supersymmetry pre-

serving vacua elsewhere in field space. Hence, all theories with non-vanishing Witten

index would not be anymore excluded from the landscape of possible supersymmetry

breaking and phenomenologically sensible theories. For example, non-chiral theories

would be back in business. A notable such example will be presented in section 11.

The punchline is that, generically, it may be more likely we leave in a metastable
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vacuum rather than in a fully stable one. Just... we need to ensure that its lifetime

is long enough to be safe!

7.7 Exercises

1. Consider a theory of n chiral superfields Φi with superpotential (7.15). Prove

that, for an interacting theory (that is, some gijk should be non-vanishing), in

order to have spontaneous supersymmetry breaking one needs at least three

chiral superfields. Derive the generic form of the corresponding three-superfield

superpotential.

2. Compute the one-loop effective potential on the classically marginal non-

supersymmetric vacua of the model in Example 3. What is the fate of these

vacua after quantum corrections are taken into account?

3. Compute the mass spectrum of the FI model both in the pure D-term as well

as in the mixed D and F-terms breaking phases, and check explicitly that the

spectrum satisfies the so-called supertrace mass formula, that is STr M2 = 0.

4. Consider a theory of three chiral superfields with canonical Kähler potential

and superpotential

W =
1

2
h1XΦ2

1 +
1

2
h2Φ2Φ2

1 + fX

Show the existence of a classical moduli space of supersymmetry breaking

vacua. Compute the one-loop corrections to the tree-level result and show

that the moduli space is not lifted at one-loop. Can you find a simple reason

to explain such a behavior?

5. Consider all models of F-term breaking of section 7.3 and discuss whether and

how the Nelson-Seiberg criterium applies or not.
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8 Supersymmetry breaking and the Standard Model

In this chapter we will elaborate a little bit on how the machinery we have been

constructing can be used to describe physics beyond the Standard Model, under the

hypothesis that this is described by a supersymmetric theory.

The basic idea is that the Standard Model should be viewed as an effective theory,

valid only up to some scale, and that Nature, at energy above such scale, is described

by some suitableN = 1 supersymmetric extension of the Standard Model itself. The

most economic option we can think of would be a N = 1 Lagrangian which just

includes known particles (gauge bosons, Higgs fields, leptons and quarks) and their

superpartners. In fact, strictly speaking this does not apply to the Higgs sector,

which should be doubled, not to spoil the anomaly-free properties of the Standard

Model, since the Higgs fermionic partner, the higgsino, would introduce SU(2)L

gauge anomalies. Therefore, two Higgs multiplets are needed, having opposite U(1)Y

charge. Another way to realize the need of two Higgs doublets in supersymmetric

extensions of the Standard Model is to notice that the Higgs field H gives mass to

down quarks (and charged leptons) and H to up quarks. Due to holomorphy of the

superpotential, H cannot enter W and so one needs a second, independent doublet

to give up quarks a mass. These two chiral superfields are dubbed Hu and Hd and

the minimal extension of the Standard Model, MSSM.

Within such minimal supersymmetric extension, one might then ask whether

is it possible to break supersymmetry spontaneously and be consistent with phe-

nomenological constraints and expectations. Addressing this question will be our

main concern, in this lecture.

So far we have discussed possible supersymmetry breaking scenarios at tree level:

the Lagrangian is supersymmetric but the classical potential is such that the vac-

uum state breaks supersymmetry (or at least there exist metastable but sufficiently

long-lived supersymmetry breaking vacua, besides supersymmetric ones). Can these

scenarios, i.e. either F or D-term supersymmetry breaking at tree level, occur in

such a minimal extension of the Standard Model? In what follows, we will claim the

answer is no: things cannot be as simple as that.
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8.1 Towards dynamical supersymmetry breaking

From a purely theoretical view point there is at least one point of concern as far as

tree level supersymmetry breaking. As discussed in the first lecture, there are several

reasons to prefer sparticle masses around the TeV scale or so. This scale is not much

different from the electro-weak scale and as such much smaller than any natural UV

cut-off one can think of, like the Planck mass. If supersymmetry is broken at tree

level, the mass setting the scale of supersymmetry breaking would be some mass

parameter entering the bare Lagrangian. For instance, in the O’Raifeartaigh model

that we discussed in previous chapter this scale is µ, the coefficient of the linear term

in the superpotential. This way, we would have a scenario where an unnaturally

small mass scale has been introduced in a theory in order to solve the unnatural

hierarchy between the electro-weak scale and, say, the Planck scale, and avoid a

fine-tuning problem for the Higgs mass. What we gain introducing supersymmetry

would then just be that this small parameter, put by hand into the Lagrangian,

would be protected against quantum corrections. Is this a satisfactory solution of

the hierarchy problem?

It would be much more natural for this small mass parameter to be explained in

some dynamical way. This is possible, in fact. In order to understand how it comes,

we should first recall two facts.

First, recall that due to non-renormalization theorems, in a supersymmetric the-

ory the superpotential is tree-level exact in perturbation theory, meaning that its

full structure looks like

Weff = Wtree +Wnp , (8.1)

where the subscript np stands for non-perturbative. As we already observed, this

implies that if supersymmetry is unbroken at tree level, then it cannot be broken at

any order in perturbation theory, but only non-perturbatively.

The second piece of knowledge we need comes from a well-known property that

many gauge theories share, i.e. dimensional transmutation. Due to the running of

the gauge coupling, which becomes bigger and bigger towards the IR, any UV-free

gauge theory possesses an intrinsic scale, Λ, which governs the strong-coupling IR

dynamics of the theory, is RG-invariant and is exponentially suppressed with respect

to the scale MX at which the theory is weakly coupled. Its one-loop expression reads

Λ ∼MXe
− #

g2(MX ) << MX , (8.2)
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where # is a number which depends on the details of the specific theory, but is

roughly of order 1.

Suppose now we have some complicated supersymmetric gauge theory which does

not break supersymmetry at tree level (so all F-terms coming from Wtree are zero),

but whose strong coupling dynamics generates a contribution to the superpotential

Wnp which does provide a non-vanishing F-term. This F-term will be order the

dynamical scale Λ, since it should vanish in the classical limit Λ → 0, and so will

the scale of supersymmetry breaking. This would imply

Ms ∼ Λ << MX , (8.3)

hence giving a natural hierarchy between Ms and the UV scale MX (which can be

the GUT scale or any other scale of the UV-free theory under consideration). This

idea is known as Dynamical Supersymmetry Breaking (DSB) and can be regarded as

the most natural way we can think of supersymmetry breaking in a fully satisfactory

way.

We will discuss several DSB models in a subsequent chapter. For now, let me

just anticipate that what we learned about tree-level supersymmetry breaking in

previous chapter will be of great help also as far as DSB is concerned. As we will

see, in DSB models the effective superpotential has typically an O’Raifeartaigh-

like structure: at low enough energy gauge degrees of freedom typically disappear

from the low energy spectrum (because of confinement, higgsing and alike) and the

effective theory ends-up being a theory of chiral superfields, only. The analysis will

then follow the one of the previous chapter, but with the great advantage that the

mass parameter setting the scale of supersymmetry breaking and sparticle masses

has been dynamically generated (and with the complication that in general the

Kähler potential will be non-canonical, of course).

8.2 The Supertrace mass formula

There is yet another reason making tree-level supersymmetry breaking not welcome

in the MSSM. This is more phenomenological in nature, and related to the so-called

supertrace mass formula.

Let us consider the most general N = 1 renormalizable Lagrangian (5.79) and

suppose that supersymmetry is spontaneously broken at tree level. Suppose we want

to compute the trace over all bosonic and fermionic fields of the mass matrix squared
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in an arbitrary supersymmetry breaking vacuum. To this aim, let us suppose that,

generically, all F andD auxiliary fields have some non-vanishing vacuum expectation

value.

• Vectors

If F and D-fields are non vanishing, it means that some scalar fields φi

have acquired a non-vanishing VEV. If such fields are charged under the

gauge group, a mass for some vector fields will be induced since DµφiDµφ
i ⊃

g2φT aT bφ va,µv
µ
b . Hence, we have for the mass matrix squared of vector bosons

[
(M1)2

]ab
= 2g2〈φT a〉〈T bφ〉 = 2〈Da

i 〉〈Dbi〉 , (8.4)

where the lower index on the mass matrix refers to the spin, which is one for

vectors and we have defined Da
i = ∂Da/∂φi, Dai = ∂Da/∂φi.

• Fermions

The fermion mass matrix can be easily read from the Lagrangian (5.79) to be

M1/2 =

(
〈F ij〉

√
2i〈Db

i 〉√
2i〈Da

j 〉 0

)
, (8.5)

where, as usual, F ij = ∂2W/∂φj∂φi. The matrix squared reads

M1/2M†
1/2 =

(
〈F il〉〈F lj〉+ 2〈Db

i 〉〈Dj
b〉 −

√
2i〈F il〉〈Dl

b〉√
2i〈Da

l 〉〈F lj〉 2〈Da
l 〉〈Dl

b〉

)
(8.6)

with F ij = ∂2W/∂φj∂φi.

• Scalars

The scalar mass matrix squared is instead

(M0)2 =

(
〈 ∂2V
∂φi∂φk

〉 〈 ∂2V
∂φi∂φl

〉
〈 ∂2V
∂φj∂φk

〉 〈 ∂2V
∂φj∂φ

l 〉

)
. (8.7)

Recalling that V = F iF
i + 1

2
DaDa, one can write it as

(M0)2 =

(
〈F ip〉〈F kp〉+ 〈Dak〉〈Da

i 〉+ 〈Da〉Dak
i 〈F p〉〈F ilp〉+ 〈Da

i 〉〈Da
l 〉

〈F p〉〈F jkp〉+ 〈Daj〉〈Dak〉 〈F lp〉〈F jp〉+ 〈Daj〉〈Da
l 〉+ 〈Da〉Daj

l

)
,

(8.8)

where Dai
j = −gT aij , F ijk = ∂3W/∂φi∂φj∂φk and F ijk = ∂3W/∂φi∂φj∂φk.
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Taking the trace over gauge and flavor indexes of the three matrices (8.4), (8.6) and

(8.8) we get

Tr (M1)2 = 2〈Da
i 〉〈Dai〉

Tr M1/2M†
1/2 = 〈F il〉〈F li〉+ 4〈Da

i 〉〈Di
a〉

Tr (M0)2 = 2〈F il〉〈F il〉+ 2〈Dai〉〈Da
i 〉 − 2g〈Da〉TrT a

and finally for the supertrace

STrM2 = 3Tr (M1)2 + Tr (M0)2 − 2Tr (M1/2)2 = −2g〈Da〉TrT a . (8.9)

This formula puts severe phenomenological constraints. First notice that, because

of the trace on gauge generators, the rhs is non vanishing only in presence of U(1)

factors. If this is the case, then one needs non trivial FI terms to let it being

non-vanishing, since we know that if ξ = 0 then also 〈Da〉 = 0. Now, suppose

supersymmetry were broken spontaneously at tree level in the MSSM. We have only

two U(1) factors we can play with, the hypercharge generator U(1)Y and, eventually,

U(1)em. The latter cannot be of any use since if the corresponding FI parameter ξ

were non-vanishing, some squarks or sleptons would get a VEV and hence would

Higgs U(1)em (comparing with the FI model we discussed in the previous lecture,

being all MSSM scalars massless at tree level, we will be in the mixed F and D-term

phase, and hence the potential would have a minimum at non-vanishing value of

some scalar field VEV). As for the hypercharge, this again cannot work, since the

trace of U(1)Y taken over all chiral superfields vanishes in the Standard Model (this

is just telling us that the Standard Model is free of gravitational anomalies). The

upshot is that within the MSSM, formula (8.9) reduces to

STr M2 = 0 . (8.10)

It is easy to see that this formula is hardly compatible with observations. Since

supersymmetry commutes with internal quantum numbers, the vanishing of the

supertrace would imply that for any given Standard Model set of fields with equal

charge we should observe at least a real component of a sparticle with a mass smaller

than all particles with the same charge. Take for instance a charged SU(3) sector.

Gluons are massless, since SU(3) is unbroken. From (8.4) it then follows that

〈Da
i 〉 = 〈Dbi〉 = 0, which, by (8.5), implies that the corresponding gluinos are also

massless. Then, in such charged sector, only quarks and squarks can contribute non-

trivially to eq. (8.10). Since they contribute with opposite sign, the squarks cannot
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all be heavier than the heaviest quark, and some must be substantially lighter. Take,

for instance, the color-triplet sector with electric charge e = −1/3, to which down,

strange and bottom quarks belong. We get m2
d + m2

s + m2
b ' (5GeV)2. In order

to satisfy eq. (8.10) we need scalar partners to satisfy
∑

im
2
φi
' 2(5GeV)2, which

implies that a charged scalar with mass smaller than 7 GeV should exist. This is

clearly excluded experimentally.

The upshot of this discussion is that we should give up with the idea that the

whole story is as simple as just tree level supersymmetry breaking in the MSSM.

8.3 Beyond the MSSM

The supertrace mass formula derived above comes from at tree-level analysis and,

for one thing, we know that masses get modified by loop effects. So one might hope

that at quantum level things could sensibly change. However, within the MSSM such

modifications are small since the Standard Model is a weakly interacting theory at

the electro-weak scale, so this would not help much.

A way to avoid the supertrace mass formula severe constraints, while still keeping

the MSSM, would be to allow for supersymmetry breaking beyond tree-level, that is

dynamical supersymmetry breaking. We do have a dynamical scale we can play with

in the Standard Model, the SU(3) strong coupling scale ΛQCD. This would provide

violations of eq. (8.10) of order ΛQCD. These violations would then be of order

300 MeV, which is by far too low for accommodating any sensible phenomenology.

Hence, this option could not work either.

The punchline is that in order to describe beyond the Standard Model physics

we need something more than just the MSSM . We might need new particles and

fields and/or new strong interactions. The options one can play with are many, and

understanding the correct path of supersymmetry breaking beyond the Standard

Model has been, and still is, a matter of concern and great challenge for theo-

retical physicists. There are, however, at least two basic properties a competitive

model should have. Supersymmetry should be broken dynamically, so to generate

the low scale we need in a natural way. Second, in order to avoid the unpleas-

ant constraints coming from the supertrace mass formula, we should better rely

on non-renormalizable couplings, or loop effects, to transmit this breaking to the

MSSM. Indeed, as we will see shortly, in both cases this would provide corrections

to MSSM kinetic terms which could provide, in turn, large violations of eq. (8.10),
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hence allowing for phenomenologically meaningful sparticle spectra. Moreover, be-

sides invalidating formula (8.10), such an option would also have the free-bonus of

providing an extra suppression between the supersymmetry breaking scale of the un-

derlying UV theory and the scale of MSSM sparticle masses. Hence, the primordial

supersymmetry breaking scale would not need to be comparable with electro-weak

scale. It could be sensibly higher.

8.4 Spurions, soft terms and the messenger paradigm

Let us deviate, for a while, from what we have been saying so far, and come back to

what we said at the very beginning of previous lecture about possible mechanisms

for supersymmetry breaking. We have a second option we have not yet considered:

explicit supersymmetry breaking by soft terms. Let us suppose we add explicit su-

persymmetry breaking terms to the MSSM Lagrangian. In order to save the nice UV

properties of supersymmetry, these terms should be UV irrelevant. For instance, if

we were to add non-supersymmetric dimensionless couplings, like Yukawa couplings

and scalar quartic couplings, we would certainly destroy the pattern of UV cancel-

lations which makes supersymmetry solving, e.g. the hierarchy problem. We can

instead add mass terms, and more generally, positive dimension couplings, like cubic

scalar couplings. These would simply tell us below which scale UV cancellations will

stop working. Such soft supersymmetry breaking Lagrangian will schematically be

of the form

Lsoft = mλλλ−m2φφ+ b φφ+ a φ3 + h.c. , (8.11)

where λ represents gauginos and φ any possible scalar of the MSSM. The first two

terms provide masses for gauginos (wino, zino, photino, gluino) and scalar particles

(squarks, sleptons and Higgs particle), respectively. The third term, known as B-

term, may arise in the Higgs sector and couples the up and down scalar Higgs Hu

and Hd. Finally the fourth, known as A-term, corresponds to cubic gauge and flavor

singlet combinations of MSSM scalars, e.g. Higgs and left and right squark com-

ponents. A-terms are in one-to-one correspondence with Yukawa couplings (which

belong to the supersymmetric part of the MSSM Lagrangian): each quark and lepton

is just substituted by its scalar partner.

All terms appearing in eq. (8.11) are UV irrelevant and renormalizable, and it

was indeed shown time ago that the full Lagrangian

L = LMSSM + Lsoft (8.12)
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is free of quadratic divergences to all orders in perturbation theory. Notice that such

a Lagrangian would automatically solve the supertrace mass formula problem. A

Lagrangian like the one above would violate eq. (8.10) precisely by terms of order

the sparticle masses, see the expression (8.11), which is, by construction, compatible

with observations.

There is a number of very important issues one should discuss regarding the

Lagrangian (8.12), including a number of potential problems some of the soft terms

could pose, like the so-called supersymmetry flavor, CP and fine-tuning problems,

to name a few. These put severe constraints on the precise form of Lsoft, but we

will not discuss any such issues here. What we want to do instead, is to reconnect

to our previous discussion and show how such a rather ad hoc Lagrangian as (8.12),

where supersymmetry is broken explicitly, can actually be generated by spontaneous

supersymmetry breaking in a larger theory, which includes fields and interactions

beyond the MSSM ones.

First, let us recall the idea of spurion fields. In a supersymmetric theory any

constant, non-zero value for the lowest component of a superfield (a VEV) does

not break supersymmetry. Hence, in a supersymmetric Lagrangian each coupling

constant can be promoted to a background superfield, a spurion, with non-vanishing

such lowest component VEV. Let us take, for instance, the WZ model

L =

∫
d2θd2θ̄ ZΦΦ +

∫
d2θ

(
1

2
MΦ2 +

1

6
yΦ3

)
+ h.c. , (8.13)

and think of Z as a real background superfield while M and y as chiral background

superfields. If only their lowest components have a non-vanishing VEV, this is

nothing but the WZ model itself.

Interestingly, one can include supersymmetry breaking terms in the above La-

grangian by allowing these superfields having higher (scalar) component VEVs. We

can set in general

〈Z〉 = 1 + θ2B + h.c.+ c θ2θ̄2

〈M〉 = µ− θ2FM

〈y〉 = y − θ2Fy .

Plugging these expressions into the Lagrangian (8.13), after integrating out the

auxiliary field FΦ we find for the potential

V = VSUSY −
(
c− |B|2

)
φφ+

[
(FM +Bµ)φ2 +

(
1

3
Fy +

1

2
By

)
φ3 + h.c.

]
, (8.14)
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where VSUSY =
∣∣∣µφ + 1

2
yφ2
∣∣∣
2

. We see that the non-supersymmetric contribution

to the potential exactly reproduces the second, third and fourth soft terms of the

Lagrangian (8.11), upon the trivial identifications

m2 = c− |B|2

b = FM +Bµ

a =
1

3
Fy +

1

2
By .

Following the same logic for the SYM action

L =

∫
d2θ τ Wα

aW
a
α , (8.15)

one can seemingly reproduce gaugino masses by promoting the complexified gauge

coupling τ to a chiral superfield and provide a non-vanishing VEV for its F-term

〈τ〉 = τ + θ2mλ . (8.16)

Applying this logic to the Lagrangian (8.12), one can actually write all soft terms

by means of spurion couplings, and rewrite (8.12) using a pure supersymmetric

formalism. This turns out to be a very convenient thing to do when it comes to

compute the divergence structure of the theory and prove, e.g. the absence of

quadratic divergences.

Although phenomenologically viable and logically consistent, this picture is still

not completely satisfactory. The Lagrangian (8.12) has more than 100 free parame-

ters (masses, phases, mixing angles, etc...), meaning that there are few unambiguous

predictions one can really make. One might want to find some organizing principle,

where these many parameters could be naturally explained in terms of some simpler

underlying theory.

Here is where we can close the gap between soft term breaking and sponta-

neous supersymmetry breaking. It is enough to promote spurions to fully fledged

superfields with their own Lagrangian and kinetic terms. By some suitable and for

the time being unspecified mechanism, they acquire non-vanishing F and D-terms

spontaneously, and then generate soft terms by their interactions with the MSSM

fields via couplings of the kind (8.13)/(8.15). This is the basic idea of the so-called

messenger paradigm: one imagines a fully renormalizable theory where supersym-

metry is broken spontaneously in some hidden sector and then communicated to
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the MSSM fields by non-renormalizable interactions and/or loop effects. After inte-

grating out heavy fields, this will generate effective couplings precisely as those in

the Lagrangian (8.13) and (8.15), with non-vanishing F and D-components for some

fields. These F and D-terms will then give rise to soft terms through a procedure

like the one above. This way, all specific properties that MSSM supersymmetric

breaking soft terms should have, will be ultimately generated (and explained) by a

larger theory in which supersymmetry breaking occurs spontaneously.

Interactions

Hidden  
(SUSY breaking)  

sector

Visible  
MSSM  
sector

Figure 8.1: The messenger paradigm: supersymmetry is broken in a hidden sector

and then communicated to the visible MSSM sector (or any viable supersymmetric

extension of the Standard Model) via interactions felt by the MSSM particles.

8.5 Mediating the breaking

What are the possible ways in which a scenario as the one outlined above can actually

be realized?

An obvious candidate as messenger of supersymmetry breaking is gravity, since

any sort of particle couples universally to it. Gravity is inherently non-renormalizable,

at least as it manifests itself at energies lower than the Planck scale. Hence, cou-

plings like those appearing in eqs. (8.13) and (8.15) are precisely what one expects,

in this scenario.

Another possibility is that supersymmetry breaking is mediated by gauge inter-

actions. We can imagine that supersymmetry is broken in the hidden sector and that

some fields, known as messenger fields, feeling (or directly participating in, this is a

model-dependent property) supersymmetry breaking are also charged under Stan-

dard Model gauge interactions. Gauginos will directly couple to such messenger

fields and get a mass at one-loop. Scalar sparticles, instead, would get mass at two
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loops, interacting with messenger fields via intermediate MSSM vector superfields,

to which gauginos belong to. In this scenario, soft terms will be generated after inte-

grating out heavy fields, ending-up again with effective couplings of the kind (8.13)

and (8.15). Obviously, the main source of mediation can be gauge interactions only

in a regime where the always present gravity mediation is suppressed.

In what follows, we are not going to discuss these two mediation mechanisms

in detail, nor any of their diverse phenomenological benchmarks, neither the many

variants of the basic models which have appeared in the literature, with their pros

and cons. What we want to do is just to give a rough idea on how these two mediation

mechanisms work and show, in particular, how they can naturally generate, at low

energy, spurion-like couplings with MSSM fields and, eventually, give rise to soft

terms.

8.5.1 Gravity mediation

From a low energy point of view, one can parameterize the effect of unknown physics

at the Planck scale MPl by higher order operators, suppressed by MPl. Suppose that

some hidden sector field X gets a non-vanishing F -term, that is

〈X〉 = 0 , 〈FX〉 6= 0 . (8.17)

The most general form of the Lagrangian describing the gravitational interaction

between X and the visible sector fields will be something like

Lint =

∫
d2θd2θ̄

(
c

M2
Pl

XXQiQ
i +

b′

M2
Pl

XXHuHd +
b

MPl

XHuHd + h.c.

)

+

∫
d2θ

(
s

MPl

XWα
aW

a
α +

a

MPl

XQiHuQ̃i + h.c.

)
(8.18)

plus, possibly, higher order operators. In the above expression Qi’s represent all

matter superfields as well as the two Higgs doublets, while Hu and Hd obviously refer

to the up and down Higgs only. For the sake of simplicity, we have taken all order

one dimensionless coefficients in each term to be the same, that is i-independent.

Plugging the values (8.17) into the above Lagrangian one gets all possible MSSM

soft terms! The first term on the rhs of eq. (8.18) gives rise to non-supersymmetric

masses for all sfermions (squarks, sleptons and scalar Higgs particles), while the

second and third terms provide mass terms for the scalar Higgs only (more below).

The first term of the second line provides gaugino masses. Finally, the last term
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generates all A-terms. We see that we get a rather simple pattern of soft terms. Up

to order one coefficients, they share one and the same mass scale

msoft ∼
〈FX〉
MPl

. (8.19)

Imposing msoft to be order the TeV scale we see that in a gravity mediated scenario

the primordial supersymmetry breaking scale, the so-called intermediate scale, is

order

Ms =
√
〈FX〉 ∼

√
msoftMPl ∼ 1011 GeV , (8.20)

somewhat in between the electro-weak scale and the Planck scale (as anticipated,

sensibly higher than msoft, the scale of MSSM sparticle masses).

In the general framework outlined in section 8.4, a gravity mediation scenario

can be visualized as the following steps, from a theory of quantum gravity (let us

assume, for definiteness, this theory to be string theory whose field theory limit is

reached by sending the string scale α′ to 0, but this choice does not make a difference

in the general logic) down to a (M)SSM low energy effective Lagrangian

LQG −−−→
α′→0

Lnon−ren
SUSY

integrate out−−−−−−−→
heavy fields

Lnon−ren
spurion

spurion (SUSY−−−−−−−−→
breaking) VEVs

LMSSM + Lsoft , (8.21)

where the mass scale in Lsoft is given by (8.19).

Let us spend a few more words on Higgs mass terms. From the Lagrangian

(8.18) we see three contributions to scalar Higgs mass . The first gives rise to mass

terms for the up and down Higgs, respectively (they are proportional to HuHu and

HdHd). The second term is a B-term, which gives rise to a quadratic term mixing

Hu and Hd. Finally, as for the third term, notice that it can be re-written as

∫
d2θd2θ̄

b

MPl

XHuHd = b
〈FX〉
MPl

∫
d2θHuHd . (8.22)

This contribution is a so-called µ term contribution and upon integration in chiral

superspace it gives a quadratic contribution similar in structure to the first term.

Notice that all these three couplings are needed in order to trigger electro-weak

symmetry breaking (and should all be of the same order of magnitude). The first

such terms gives masses to scalar Higgs particle, and it can actually give a negative

mass square to some of them, something we certainly need to trigger spontaneous

symmetry breaking. The second one is also necessary. One can show the B term to

be proportional to sin 2β where tan β is the ratio between the VEVs of the up and
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down Higgs, tan β = 〈Hu〉/〈Hd〉. Clearly, if B = 0, either the up or the down Higgs

do not get a VEV, and therefore one cannot provide masses to all Standard Model

particles. Finally, the µ-term is the only possible contribution which can provide

higgsino a mass, and therefore should certainly be there.

The way we have re-written the µ-term makes it clear that it can also be (and

generically is) generated from a perfectly supersymmetric superpotential coupling

in the MSSM Lagrangian

W = µSUSYHuHd . (8.23)

There is no a priori reason why the above term, which comes from a supersym-

metric contribution and is then not related to the dynamics driving the breaking of

supersymmetry, should come to be the same scale of the soft terms, as it should.

In principle, it could be any scale between msoft and MPl. This is the famous µ

(or µ/Bµ) problem: how to avoid large µ-terms and at the same time have them

the same order of magnitude of B-terms. Gravity mediation provides an elegant

and simple way to solve this problem. First, one can impose some PQ-like discrete

symmetry on the MSSM Lagrangian which forbids a tree level µ term in the super-

potential, µSUSY = 0. This is achieved giving charge 1 under this symmetry to Hu

and Hd and charge -1/2 to all other chiral superfields (quarks and leptons). This

way, both the µ- and the B-terms are generated radiatively. The non-trivial thing is

to make them be the same order of magnitude. However, as we have seen above, this

is exactly what happens in a gravity mediation scenario: up to coefficients of order

unity, all soft terms, including B- and µ-terms, are of the same order, eq. (8.19)!

A typical problem of gravity mediation scenarios is instead the so-called super-

symmetry flavor problem. In order not to spoil the excellent agreement between

flavor changing neutral current (FCNC) effects predicted by the Standard Model

and known experimental bounds, any sort of new physics should not induce extra

(relevant) FCNC contributions. In order for this to be the case the interactions

mediating supersymmetry breaking better be flavor-blind. Gravity as seen at low

energy is certainly flavor blind. However, general relativity is just an effective theory

and there is no guaranty that a UV completed quantum theory of gravity is flavor

blind (actually quite the opposite, given that global symmetries are believed not to

be possible in quantum gravity). Therefore, in general, in gravity mediation sce-

narios one has to confront with the flavor problem. We will not discuss this further

here and refer to the references at then end of the chapter for details. Let us just

remark that there exist different proposals on how to overcome this problem, the
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most compelling and natural one being the so-called anomaly mediation scenario.

8.5.2 Gauge mediation

Any gauge mediation model is characterized by the assumption that there exist

messenger fields. The latter, by definition, are those hidden sector fields which are

charged under the Standard Model gauge group. The basic idea of gauge mediation

is as follows.

Messengers couple (in a model-dependent way) to hidden sector supersymmetry

breaking dynamics and this affects their mass matrix which, besides a supersym-

metric contribution (which is supposed to be large enough not to make messengers

appear at energies of order the electro-weak scale), receives a non-supersymmetric

contribution. By coupling radiatively with MSSM fields, supersymmetry breaking

is communicated to MSSM fields and provides all desired soft terms, as we are going

to show next. For instance, gaugini get a mass at one-loop while squarks, slep-

tons and Higgs fields feel supersymmetry breaking at two loops through ordinary

SU(3) × SU(2) × U(1)Y gauge boson and gauginos interactions. One of the beau-

ties of gauge mediation as opposed to gravity mediation, is that gauge mediation

supersymmetry breaking can be understood entirely in terms of loop effects in a

renormalizable framework. Hence, it has a high level of reliability and calculability.

There are different schemes for gauge mediation, e.g. minimal, direct and semi-

direct gauge mediation, which differ, ultimately, by the way the messenger mass

matrix is affected by the hidden sector supersymmetry breaking dynamics. This

provides different patterns for the MSSM soft terms texture. As an exemplification,

in what follows we will briefly discuss minimal gauge mediation (MGM) which is

a simple, still rich enough scenario to let one get a feeling on how things work.

In MGM all complicated hidden sector dynamics is parameterized in terms of a

single chiral superfield X which couples to the messenger sector through a tree-level

superpotential coupling. The messenger sector is made of two set of chiral superfields

Φ and Φ̃ transforming in complex conjugate representation of the SM gauge group,

so not to generate gauge anomalies. The interaction term is as simple as

W = XΦ̃Φ . (8.24)

A rough scheme of MGM is depicted in Figure 8.2.

The spurion-like field X inherits non-vanishing F and lower component term
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Figure 8.2: Minimal gauge mediation. Messengers feel supersymmetry breaking via

a cubic coupling with a spurion-like chiral superfield X which has a non-vanishing

F-term VEV inherited from the hidden sector non-supersymmetric dynamics.

VEVs from the hidden sector,

〈X〉 = M + θ2〈FX〉 . (8.25)

Once plugged into the messenger Lagrangian, this gives a splitted messenger mass

spectrum

m2
φ,φ̃

= M2 ± 〈FX〉 , mψ,ψ̃ = M . (8.26)

While fermions receive only the supersymmetric contribution, scalars receive both

supersymmetric and non-supersymmetric contributions. Recalling that messenger

fields are charged under the SM gauge group we see there is a stability bound which

forces us to take M2 > 〈FX〉 (if not, some messenger scalars would get a non-

vanishing VEV and would break part of the SM gauge group). If M is large enough

we can then integrate the messengers out and the effective low energy theory at

scale lower than M breaks supersymmetry.

The net low energy effect boils down to radiative corrections to gaugini propa-

gator, which get a mass at one loop, while gauge bosons remain massless since they

are protected by gauge invariance. Via intermediate Standard Model gauge coupling

interactions, also MSSM scalar fields get a non-supersymmetric mass contribution,

though at two-loop order. Feynman diagrams contributing to gaugino and scalar

masses are reported in Figures 8.3 and 8.4, respectively.

The gaugino mass computation is rather easy, since only one type of diagram

contributes. In the limit of small 〈FX〉/M2 the end result can be organized in a
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Figure 8.3: The one-loop diagram providing gaugino mass. Grey lines are MSSM

fields (just gauginos in this case), green lines are messenger fields. Dashed lines

correspond to scalar fields and continuous lines to fermion fields.

series expansion and reads, to leading order in 〈FX〉/M2

mλ ∼
g2

16π2

〈FX〉
M

[
1 +O(

∣∣∣〈FX〉
M2

∣∣∣
2

)

]
. (8.27)

Summing-up all two-loop contributions renormalizing scalar masses is instead quite

laborious even if conceptually straightforward. However, the end result is surpris-

ingly simple and, again in the limit of small 〈FX〉/M2, reads

m2
sf ∼

(
g2

16π2

)2 ∣∣∣〈FX〉
M

∣∣∣
2
[
1 +O(

∣∣∣〈FX〉
M2

∣∣∣
2

)

]
. (8.28)

In principle, there is also a one-loop contribution to sfermion masses originating

from the quartic scalar coupling involving two sfermions and two scalar messengers,

the same vertex which gives raise to the two-loop contribution in the last diagram

of figure 8.4. Due to contraction on gauge indexes, this can be non-vanishing for

abelian factors only, like e.g. U(1)Y . This contribution would be proportional to

the hypercharge of the corresponding sfermions and therefore may induce tachyonic

mass contributions which would be problematic, phenomenologically. Therefore, a

symmetry in the messenger sector is usually imposed in order to avoid such danger-

ous one-loop contributions.

A-terms are also generated radiatively, via the insertion of the renormalized

gaugino propagator of Figure 8.3 inside a fermion-higgsino-gaugino loop to which a

Higgs field and two sfermions can be attached as external legs, as shown in figure

8.5. Overall, this is again a two-loop effect.

Note, finally, that B- and µ-terms cannot be generated by any of the diagrams

in Figure 8.4 and require a separate discussion, as we will see shortly.

In agreement with the general philosophy advocated in section 8.4, one can get

these same results working within the effective low energy theory valid at scales

181



sfermion-gluon loop

gluon loop

fermion-gluino loop sfermion loop

Figure 8.4: Two-loops diagrams providing sfermion masses. There are four different

class of diagrams, the first three originating from a specific MSSM scalar field one-

loop diagram by inserting messenger loop corrections, as indicated. The last is

a two-loop diagram which comes from D-terms and mixes MSSM and messenger

scalars. Conventions are as in Figure 8.3.

smaller than M , which is obtained by integrating messenger fields out. At E < M

the effect of the messengers is taken care of in the wave function renormalization of

gauge and matter kinetic terms of the MSSM fields. Soft terms arise from derivatives

in the X-field of the renormalized gauge and matter kinetic functions, ZV (X,µ) and

ZQ(X,X, µ), which can be evaluated at a scale µ by solving the RG equations. For

example, soft masses read

mλ ∼
∂ lnZV (X,µ)

∂ lnX

∣∣∣
X=M

〈FX〉
M

(8.29)

m2
sf ∼

∂2 lnZQ(X,X, µ)

∂ lnX∂ lnX

∣∣∣
X=M

∣∣∣〈FX〉
M

∣∣∣
2

, (8.30)

and similar formulae hold for the A-terms. This powerful method, originally pro-

posed by Giudice and Rattazzi, is not specific to gauge mediation but works when-

ever supersymmetry breaking is communicated by renormalizable perturbative in-

teractions. We refer to the bibliography at the end of the chapter for more details.
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Figure 8.5: The two-loop diagram generating A-terms in gauge mediation.

We see from eqs. (8.27)-(8.28) that in MGM all soft terms come naturally of the

same order of magnitude

msoft ∼
g2

16π2

〈FX〉
M

. (8.31)

Imposing again that soft masses are order the TeV scale and setting g2/16π2 ∼ 10−2

one then gets
〈FX〉
M
∼ 105GeV , (8.32)

which implies that in MGM the primordial supersymmetry breaking scale Ms is

bounded from below as

Ms =
√
〈FX〉 ∼ 10

√
msoftM ≥ 105 GeV , (8.33)

where in the last inequality we used that M2 ≥ 〈FX〉 and eq. (8.32) (the lower bound

for Ms is reached for M2 ∼ 〈FX〉).
The analogous of the structure (8.21) is now

Lren
SUSY

integrate out−−−−−−−→
heavy fields

Lnon−ren
spurion

spurion (SUSY−−−−−−−−→
breaking) VEVs

LMSSM + Lsoft , (8.34)

where the mass scale in Lsoft is given in this case by (8.31).

As we have already observed, gravity mediation is an always present contribu-

tion to supersymmetry breaking mediation mechanisms (i.e. the field X would also

interact gravitationally with the visible sector via a Lagrangian like (8.18), in gen-

eral). Hence, it is only when its contribution is suppressed with respect to that of

gauge mediation that the latter can play a role. In order for gravity effects to be

negligible, say to contribute no more than 1/1000 to soft mass squared, one gets an

upper bound for the scale M

g2

16π2

〈FX〉
M
≥ 103/2 〈FX〉

MPl

−→M ≤ g2

16π2
10−3/2MPl ∼ 1015 GeV . (8.35)
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Using the relation Ms ∼ 10
√
msoftM this gives an upper bound for Ms of order

1010 GeV. Together with the lower bound (8.33) this implies that the supersymme-

try breaking scale Ms can range from 105 to up to 1010 GeV, in gauge mediation

scenarios.

Let us close this brief overview on gauge mediation saying a few words about

flavor and µ problems. We are in a sort of reversed situation with respect to gravity

mediation. Gauge interactions are intrinsically flavor-blind. Hence, gauge mediation

does not provide any further FCNC contribution to the Standard Model and the

flavor problem is then automatically solved in this framework. On the contrary,

the µ problem is much harder. One can again avoid a supersymmetric µ term by

means of some discrete symmetry to be imposed on the Higgs sector supersymmetric

Lagrangian. What is problematic, though, is to generate radiatively µ and B terms

of the same order of magnitude. The two-loop diagrams in Figure 8.4 do not provide

B and µ terms and one should then argue for a direct coupling between the Higgs

and the messenger sectors. The simplest possible model one can think of, does not

work. Allowing a cubic coupling between Hu, Hd and the field X

WH = λHXHuHd , (8.36)

one could in principle generate both a µ- and a B-term from supersymmetry breaking

dynamics but they do not come of the same order of magnitude. In order for the

µ-term being of the order of other soft masses, as it should be, we need

µ = λHM ∼ 1 Tev . (8.37)

This implies that λH is order 10−2 or smaller. This enhances the B-term. Indeed,

recalling that 〈FX〉 ≤ M2, the non-supersymmetric to supersymmetric mass ratio

contribution coming from the superpotential coupling (8.36) is

B

µ2
∼ λH〈FX〉

λ2
HM

2
∼ 〈FX〉

µM
∼ 102 , (8.38)

where in the last step we used the fact that 〈FX〉/M ∼ 105GeV. This gives an

unacceptably large B-term. This problem is not specific to MGM nor to the actual

way we have generated µ and B-terms here. It is a problem which generically plagues

any gauge mediation scenario. Even though several proposals has been put forward

to solve the µ-problem in gauge mediation, it is fair to say that a fully satisfactory

and natural framework to solve this problem is not yet available.
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It is finally worth stressing that the simple mass pattern (8.27)-(8.28) is not a

generic feature of gauge mediation but specific to MGM only. Indeed, in another

popular scheme, direct gauge mediation, the soft spectrum tends to be split, that is

gauginos are typically suppressed with respect to scalar particles.

A generic, model-independent prediction of gauge mediation scenarios, instead,

is that the gravitino is the lightest supersymmetric particle. Gravitinos interact

only gravitationally and get a mass due to higgsing of order m3/2 ∼ 〈FX〉/MMp.

Therefore, while in a gravity mediation scenario gravitonos have a mass of the same

order of magnitude of all other soft terms, in gauge mediation they are suppressed,

since

m3/2 ∼
〈FX〉
MPl

=
〈FX〉
M

M

MPl

<<
〈FX〉
M

= msoft , (8.39)

and they can as light as few eV.

Let me conclude this brief overview stressing again what is the main point of

this all business. What all these mediation models are about is to provide a theory

of the soft terms, a predictive pattern for these extra terms that one can (and has

to) add to the MSSM Lagrangian or any desired supersymmetric extension of the

Standard Model. We have been trying to give an idea on how things might work,

and reviewed few aspects of the most basic mediation mechanisms. A throughout

analysis of the phenomenology of these schemes and their variants is not our goal

here and we refer to the bibliography at the end of the chapter for a more detailed

analysis. In the remainder of these lectures we will instead focus on the hidden

sector dynamics, trying to deepen our understanding of supersymmetric dynamics

at strong coupling. Besides its intrinsic interest (and the far reaching consequences

in our understanding of strong coupling regimes of gauge theories in general), this

will also allow us to study concrete models of dynamical supersymmetry breaking.

8.6 Exercises

1. Derive the gaugino mass formula (8.27) from the Feynman diagram of Figure

8.3.

2. Compute the contribution of two diagrams arbitrarily chosen out of those

depicted in Figure 8.4 to the sfermion mass formula (8.28).
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9 Non-perturbative effects and holomorphy

In this lecture we will start looking at the non-perturbative regime of supersym-

metric field theories. The main point here will be to introduce holomorphy, or better

put holomorphy, which is an intrinsic property of supersymmetric theories, at work.

Before doing that, however, there are a few standard non-perturbative field theory

results we need to review.

9.1 Instantons in a nutshell

Gauge theories might contain a so-called θ-term, which is

Sθ =
θYM

32π2

∫
d4x TrFµνF̃

µν where F̃ µν =
1

2
εµνρσFρσ . (9.1)

This term is locally a total space-time derivative, since

1

2

∫
d4x TrFµνF̃

µν =

∫
d4x εµνρσ∂µTr

[
Aν∂ρAσ +

2

3
AνAρAσ

]
. (9.2)

This implies that the θ-term does not have any effect on the classical equations of

motion. However, when quantizing a theory one has to average over all fluctuations,

not just those satisfying the classical equations of motions and therefore the θ-term

can in fact be relevant in some cases.

In quantum field theory all information about physical observable (the spectrum

and the S-matrix) can be obtained from correlation functions of operators, which are

defined by the Feynman path integral. The most convenient formulation is where

these quantities are analytically continued in Euclidean space. Feynman rules can be

derived from the path integral but the latter is believed to contain more information,

including effects which are non-perturbative in the coupling constant. For a generic

gauge theory, the generating functional in Euclidean space reads, schematically

Z[J ] =

∫
DΦ exp

(
− 1

g2
S[Φ] +

∫
d4xJ Φ

)
, (9.3)

where Φ represents a set of fields with source J , S[Φ] is the Euclidean action and

g the dimensionless gauge coupling. The basic idea of semi-classical approximation

(which corresponds to the limit of weak coupling, g2 → 0) is that the path integral is

dominated by configurations of lowest Euclidean action and one should proceed ex-

panding around these confugurations. The simplest are perturbative vacua, namely
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minima of the classical potential, and the expansion is just the loop expansion.

However, there can exist other minima with finite action and one should expand in

fluctuations around them, too. Note that for a configuration of finite action, if it ex-

ists, the leading semi-classical contribution goes as e−S/g
2

so it is highly suppressed

at weak coupling (and fluctuations lead to corrections which are further suppressed

by further powers of g2).

A class of configurations of this kind, to which the term (9.1) is sensitive to, are

instantons. Instantons are classical solutions of the Euclidean action that - as any

configuration with finite YM action - approach pure gauge as |x| → ∞. Recall that

under a gauge transformation by a group element U(x) = exp[λa(x)Ta] the gauge

connection Aµ(x) = gAaµ(x)Ta and the field strength Fµν(x) = ∂µAν(x)− ∂νAµ(x) +

[Aµ(x), Aν(x)] transform as follows

Aµ → UAµU
−1 + U∂µU

−1 (9.4)

Fµν → UFµνU
−1 , (9.5)

where x-dependence is everywhere understood. Note that if Fµν vanishes then Aµ

is a gauge-transform of 0, meaning that for some U we have that Aµ = U∂µU
−1. In

order to make the YM action finite Fµν should go to 0 at infinity faster than 1/r2.

For this to happen Aµ does not need to go as O(1/r2) but is enough it is a pure

gauge, that is

Aµ → U∂µU
−1 +O(1/r2) . (9.6)

For these configurations the integral (9.2) turns out to be an integer, the so-called

instanton number of the configuration, that is

Sθ =
θYM

32π2

∫
d4x TrFµνF̃

µν = n θYM where n ∈ Z . (9.7)

One way to see that this is an integer is to notice that since (9.2) is a total derivative,

it can be expressed as an integral on S3 at infinity, meaning that the configuration

involves a map U(x) : S3
∞ → G. This is nothing but the third homotopy group of G,

which for simple groups is π3(G) = Z, as advocated above. The integer n in (9.7)

tells us the number of times that U(x) winds around the three-sphere at infinity

and, for this reason, the instanton number is also known as winding number.

The instanton number is a topological quantity, in the sense that it does not

change upon continuous deformations of the gauge field configuration. Moreover,

since the action enters the path integral as
∫
DφeiSθ , the θ-angle indeed behaves as
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an angle, in the sense that the shift

θYM → θYM + 2π , (9.8)

is a symmetry of the theory.

An instanton field configuration, i.e. a configuration for which n 6= 0 in (9.7),

interpolates between two vacua of the gauge theory. These vacua are gauge equiv-

alent to the usual vacuum with zero gauge potential but the corresponding gauge

transformation cannot be deformed to the identity (it a so-called large gauge trans-

formations). Because if that were the case it would have been possible to let the

field strength vanish in all space-time, contradicting eq. (9.7). The fact that Fµν

cannot vanish identically for configurations with n 6= 0 implies that there is an en-

ergy associated with such interpolating gauge field configuration, an energy barrier

and an associated quantum mechanical amplitude proportional to e−SE where SE is

the Euclidean action of the field configuration. Finite action solutions in Euclidean

space have the interpretation of mediating quantum tunneling effects. Instantons

are nothing but just such interpolating field configurations.

It should be said that the wording we have used could be somewhat misleading.

We have been speaking about different but gauge equivalent (!) vacua. Since gauge

transformations describe a redundancy of the theory, there are no different vacua

that the instantons can interpolate between. What one should more properly say

is that whenever a gauge group has a non-trivial third homotopy group, there exist

non-trivial gauge field configurations, the instantons, which interpolate between

vacua which are gauge equivalent to the trivial one but they are so by a large

gauge transformation and, because of this, carry a finite energy. A nice quantum

mechanical analogue is that of a particle moving on a vertically oriented circle and

subject to a constant gravitational force, i.e. the quantum pendulum.

Instantons have an intrinsic non-perturbative nature. Recall that the RG-equation

for the gauge coupling g reads

µ
∂g

∂µ
= − b1

16π2
g3 +O(g5) , (9.9)

where b1 is a numerical coefficient which depends on the theory. The solution of this

equation at one loop is
1

g2(µ)
= − b1

8π2
log

Λ

µ
. (9.10)

where the scale Λ is defined as the scale where the one-loop coupling diverges. It

sets the scale where higher-loop and non-perturbative effects should be taken into
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account. For any scale µ0 we have that

Λ ≡ µ0e
− 8π2

b1g
2(µ0) . (9.11)

It is important to stress that Λ does not depend on the energy scale: it is a RG-

invariant quantity. Indeed

∂Λ

∂µ0

= e
− 8π2

b1g
2(µ0) + µ0

[
− 8π2

b1g3(µ0)

2

µ0

(
b1

16π2
g3(µ0) +O(g5)

)]
e
− 8π2

b1g
2(µ0)

= e
− 8π2

b1g
2(µ0) + µ0(− 1

µ0

)e
− 8π2

b1g
2(µ0) = 0 . (9.12)

up to higher-order corrections. This can be reiterated order by order in perturbation

theory, getting the same result, namely that ∂Λ/∂µ0 = 0.

An important point regarding instantons is that there exists a lower bound on

their Euclidean action. Indeed, we have that

0 ≤
∫
d4xTr

(
Fµν ± F̃µν

)2

=

∫
d4x

[
2 TrFµνF

µν ± 2 TrFµνF̃
µν
]

(9.13)

which implies
∫
d4xTrFµνF

µν ≥
∣∣∣
∫
d4xTrFµνF̃

µν
∣∣∣ = 32π2n , (9.14)

where the last equality holds for an instanton configuration with instanton number

n. This implies that there is a lower bound to an instanton action: instanton

contributions to amplitudes are suppressed at least by (just multiply above equation

by 1/4g2)

e−Sinst =

(
e
− 8π2

g2(µ)

)n
=

(
Λ

µ

)n b1
(9.15)

where in the last step we have used eq. (9.10). This shows that instantons are

inherently non-perturbative effects, since they vanish for Λ→ 0, and are very weak,

if not negligible, in the perturbative regime.

9.2 Anomalies in a nutshell

Anomalies are classical symmetries of the action which are broken by quantum

effects. In other words, we have

∂µj
µ = 0

quantum−−−−−−−−→
corrections

∂µj
µ 6= 0 , (9.16)
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where jµ is the current associated to the anomalous symmetry.

In what follows we will focus on chiral anomalies, that is anomalies associated to

chiral currents. These arise in field theories in which fermions with chiral symmetries

(symmetries under which opposite chirality fermions transform in complex conjugate

representations) are coupled to gauge fields. Let us consider, e.g. a Weyl fermion ψ

coupled to a gauge field Aµ with action

S =

∫
d4xψ σµ(∂µ + iAµ)ψ . (9.17)

This action is invariant under a U(1) global symmetry which rotates ψ → eiαψ and

ψ → e−iαψ. The corresponding conserved current can be computed by Nöether

method. Considering a x-dependent transformation, that is α = α(x), we get for

the action

S −→ S −
∫
d4x ∂µα(x) · (ψσµψ) = S +

∫
d4xα(x) · ∂µ(ψσµψ) , (9.18)

where in the second step we have integrated by parts. Since the functional variation

of the action with respect to α(x) should vanish, it follows from the last expression

above that ∂µ(ψσµψ) = 0.

The point is that the current jµ = ψσµψ is conserved classically, as shown

above, but it is not so quantum mechanically. This can be seen by computing

loop diagrams involving three external currents. Let us consider a set of free Weyl

fermions transforming in some representation R of some global symmetry group G

and call jµA the associated currents. Let us compute the three-point function of the

currents jA at one loop, diagram a of Figure 9.1. This will give something like

〈jµA(x1)jνB(x2)jρC(x3)〉 = Tr (tAtBtC) fµνρ(xi) , (9.19)

where the trace comes from contraction of the group generators around the loop.

As we are going to see in the following, this correlator has important properties but

it does not provide by itself any anomaly: the corresponding classical conservation

law is not violated quantum mechanically.

Suppose now to gauge some (or all) global currents, by coupling the original

Lagrangian to gauge fields as

L = Lfree +
∑

B

ABµ j
µ
B , (9.20)
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Figure 9.1: One-loop diagrams contributing to correlators of one global current

with two global or two local currents. Diagram a does not provide any anomaly.

Diagrams b, instead, contribute to the anomaly of the global current jA.

and let us compute the correlator 〈jAABAC〉. The one-loop diagrams contributing

to such correlator are now diagrams b of Figure 9.1. By differentiating the result

one gets

∂µ j
µ
A ∼ Tr (tA {tB, tC})F µν

B F̃C,µν , (9.21)

which says that the current is not anymore conserved (notice, on the contrary,

that as anticipated the rhs would vanish if none of the symmetries were gauged).

Remarkably, it turns out that this result is exact meaning that it is not corrected at

higher loops, so the anomaly can be entirely evaluated by a one-loop computation!

This same result can be derived following the approach pioneered by Fujikawa,

in which the anomaly arises from the non-invariance of the measure of the fermionic

path integral under chiral rotations. This is also the approach which makes more

manifest the geometrical and topological nature of anomalies (and the connection

with the Atiyah-Singer index theorem).

An important fact about anomalies is that local currents cannot be anomalous,

since they would imply violation of unitarity of the theory (we know how to couple

spin-1 fields in a way respecting unitarity to conserved currents, only). Hence a

quantum field theory, in order to make sense, should not have any gauge anomaly.

On the contrary, global chiral currents can be anomalous. So the currents jµA in

eq. (9.21) should be global currents, since if this were not the case we would have

had a violation of unitarity in the quantum theory.

One other important thing one can learn looking at eq. (9.21) is that the anomaly

coefficient vanishes for real and pseudoreal representations. Indeed, for real or pseu-

doreal representations we have that tA = −(tA)T and it then easily follows that

Trr (tA {tB, tC}) = −Trr (tA {tB, tC}) . (9.22)
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Therefore, only massless chiral fermions can contribute to the anomaly coefficient

(massive fermions always transform in the R + R representation, in order for the

mass term to be invariant under the symmetry). This result, once applied to local

currents, which cannot be anomalous, provides severe restrictions on the massless

fermion content of a quantum field theory.

Finally, from the above computation it is also clear that only abelian symmetries

can be anomalous. Suppose to have a theory with gauge group G with generators

tA, a global symmetry group G̃ with generators t̃A, and a set of Weyl fermions ψiα,

transforming in the representations (ri, r̃i) of the gauge and global symmetry groups,

respectively. In this case, the anomaly computation gives

∂µ j
µ
A ∼

∑

i

Trr̃i t̃A Trri (tBtC)F µν
B F̃Cµν . (9.23)

Since Trr̃i t̃A = 0 for any simple algebra, only abelian factors U(1) ⊂ G̃ can be

anomalous. On the other hand, Trri (tBtC) = C(ri)δBC , where C(ri) is the quadratic

invariant (Casimir) of the representation ri. Working everything out (and paying

attention to numerical coefficients!), one finally gets for an abelian group

∂µ j
µ = − A

16π2
F µν
B F̃B

µν , (9.24)

where A =
∑

i qiC(ri) is the anomaly coefficient, qi being the U(1) global charges

of fermionic fields ψi.

This result makes it manifest the connection between anomalies and instantons.

Integrating eq. (9.24) in space-time we get

∫
d4x ∂µ j

µ =

∫
dt d3x

(
∂0 j

0 − ∂i ji
)

=

∫
dt∂0Q = ∆Q ,

∫
d4x

A

16π2
F µν
B F̃B

µν = 2An ,

(9.25)

from the left and right hand sides, respectively. In the first relation we have used the

definition of charge Q and the fact that
∫
d3x∂ij

i = 0, while in the second relation

we have used eq. (9.7). Putting everything together we finally get

|∆Q| = 2An , (9.26)

where n is the instanton number and ∆Q the amount of charge violation due to the

anomaly. So we see that anomalous symmetries are violated by a specific amount,

given by eq. (9.26), in an instanton background. This also shows that anomalies are

IR effects, since the violation is very mild at weak coupling.

193



From eq. (9.18) one sees that the effect of the anomalous U(1) symmetry corre-

sponds to a shift in the θ-angle as

ψi → eiqiαψi =⇒ θYM → θYM − 2αA . (9.27)

So the anomalous breaking can be seen as an explicit breaking: a term in the action,

the θ-term in fact, is not invariant under the anomalous symmetry.

Notice that if we perform a U(1) transformation but promote θYM to a spurion

field and assign to it transformation properties as to compensate for the shift, then

the anomalous U(1) is promoted to an actual symmetry of a larger theory (where

the complexified gauge coupling is promoted to a dynamical field). This symmetry,

however, is spontaneously broken by the coupling constant VEV (θYM in this case).

As we will later see, this way of looking at anomalous symmetries can be efficiently

used to put constraints on the construction of low-energy effective Lagrangians.

9.3 ’t Hooft anomaly matching condition

The correlator (9.19) does not provide any anomaly if only global currents are in-

volved. However, it does contain very important information, as originally pointed

out by ’t Hooft. This is because, as we review below, correlators as (9.19) compute

scale independent information about a quantum field theory and as such provide a

powerful tool to understand some of its non-perturbative properties.

Let us consider a Lagrangian L defined at some scale µ, with some non-anomalous

global symmetry group G generated by currents jµA. Compute the triangle diagram

for three global currents (which is not an anomaly) and call AUV the result. Now

weakly gauge the global symmetry group G by adding new gauge fields AAµ and

define a new Lagrangian

L′ = L − 1

4g2
TrFµνF

µν + jµAA
A
µ . (9.28)

This theory is inconsistent since it has a gauge anomaly, AUV, because we have

gaugedG. We can make the theory consistent by adding some spectator free massless

fermion fields ψs (spectator in the sense that they couple only through the G-gauge

coupling) transforming in representations of G so to exactly cancel the anomaly, i.e.

As = −AUV. The resulting theory

L′′ = L − 1

4g2
TrFµνF

µν + ψs 6∂ ψs +
(
jµs,A + jµA

)
AAµ , (9.29)
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where js,A are the currents associated to the spectator fermions ψs, is non-anomalous,

and it is so for any value of the gauge coupling. Consider this anomaly-free theory at

some scale µ′ < µ. Since the spectator fermion fields and gauge fields can be made

arbitrarily weakly coupled by taking g → 0, the IR dynamics of the enlarged theory

(9.29) is just the IR dynamics of the original theory plus the arbitrarily weakly

coupled spectator theory. Therefore, As should be the same and since the theory is

anomaly free, we should have that AIR + As = 0, which implies

AIR = AUV . (9.30)

Taking g → 0 spectators fields completely decouple and (9.30) should still hold.

The punchline is that in a quantum field theory anomaly coefficients associated to

global currents are scale independent quantities, and their UV and IR values should

match. This is known as ’t Hooft anomaly matching condition.

A simple equation such as (9.30) puts severe constraints on the IR dynamics

of a quantum field theory, in particular as far as its massless spectrum: it implies

that a theory with global conserved currents but with ’t Hooft anomaly (that is,

a non-vanishing triangular anomaly associated to these global currents), does not

have a mass gap.

There exist two possible scenarios of this sort. If the global symmetry is pre-

served, a non-vanishing ’t Hooft anomaly implies the existence of massless (typically

composite) fermions in the effective IR theory, so to match the anomaly. But it

might happen that there does not exist any choice of quantum numbers for com-

posite states to match this anomaly. This suggests that the global symmetry is

spontaneously broken. But then the theory is again gapless since by Goldstone the-

orem massless scalars, the goldstone bosons, are expected to exist. In this case one

can match the anomaly (9.30) by coupling the theory to background gauge fields and

see that a term in the effective action can (and should) be added which reproduces

the UV anomaly. This is known as gauged Wess-Zumino-Witten term. It is worth

noting that it is precisely this latter argument which originally suggested that the

SU(3)L × SU(3)R global symmetry of QCD should be spontaneously broken, the

pions being the corresponding (pseudo) Goldstone bosons. In that case, rather than

a background gauge field, an abelian symmetry is weakly gauged, which is nothing

but the electromagnetic U(1) gauge symmetry, and a term proportional to π0F µνF̃µν

can and should be added to the pion Lagrangian which matches the anomaly.

Let us notice again that, quite remarkably, all these results can be claimed with-

out doing any sort of non-perturbative computation; just a one-loop one!
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9.4 Holomorphy

We now want to discuss a property of supersymmetric theories, known as holomor-

phy, which plays a crucial role when it comes to understand the quantum properties

of supersymmetric theories and to what extent they differ from non-supersymmetric

ones.

Let us first briefly recall the concept of Wilsonian effective action.

When dealing with effective theories we deal with effective actions. The transi-

tion from a fundamental (bare) Lagrangian down to an effective one, involves inte-

grating out high-momentum degrees of freedom. The effective action (aka Wilsonian

action) is defined from the bare action Sµ0 defined at some UV scale µ0, as

eiSµ =

∫

φ(p) , p>µ

Dφ eiSµ0 (9.31)

where Sµ is the effective action, of which we review below few basic properties.

The Wilsonian action correctly describes a theory’s degrees of freedom at energies

below a given scale µ (the cut-off). It is local on length scales larger than 1/µ, and

describes in a unitary way physical processes involving energy-momentum transfers

less than µ. As far as processes are concerned:

• at energies E ∼ µ, the effective couplings and masses are given by the tree-

level couplings in the effective action (effects of all higher energy degrees of

freedom have already been integrated out),

• at energies E << µ there will be quantum corrections due to fluctuations of

modes of the fields in Sµ with energies between E and µ.

The upshot is that the Wilsonian action Sµ is the action which describes the physics

at the scale µ by its classical couplings.

Supersymmetry puts severe restrictions on the structure of the Wilsonian action,

more specifically to the superpotential (i.e., the F-term part). One way to see this,

is as follows. Any parameter in a supersymmetric Lagrangian can be thought of

as a VEV of a superfield. This implies, in particular, that each coupling (masses,

Yukawa couplings, etc...) appearing in the classical superpotential can be thought

of as the lowest component VEV of a (very heavy) chiral superfield (in other words,

the theory one is considering can be viewed as an effective theory of a bigger theory

where these fields have been integrated out and they act as spurions at low energy).
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This implies that the superpotential is not only holomorphic in the fields but

also in the couplings and so is the effective superpotential in the Wilsonian action.

The couplings of the effective action will be functions of the couplings of the UV

theory, and these should be holomorphic functions of such UV couplings.

This important result can also be proven by means of supersymmetric Ward

identities. More specifically, they imply that all coupling constants appearing in the

tree level superpotential must only appear holomorphically in quantum corrections

to the superpotential (which is basically equivalent to what’s above).

This property is important since promoting coupling constants to chiral super-

fields one can often extend symmetries of the superpotential and put severe con-

straints on the form (and sometime the very existence) of quantum corrections.

Holomorphy makes the restrictions on possible quantum corrections allowed by su-

persymmetry apparent. It provides a supersymmetric version of selection rules.

In the forthcoming sections we will see how much a prominent role does holo-

morphy plays in constraining the dynamics of supersymmetric filed theories. Before

moving on, however, let us discuss a toy model to make it more concrete the above

idea about supersymmetric selection rules. Suppose we have a given supersymmet-

ric theory where in the superpotential an operator O appears, namely Wtree ⊃ λO,

where λ is some coupling. If we promote λ to a spurion we gain an extra U(1) sym-

metry in the enlarged theory which includes the spurion superfield, the U(1) charge

of λ being Q(λ) = 1 and that of O being Q(O) = −1. This symmetry is however

spontaneously broken by the superpotential term in which the spurion enters with

its VEV.

Suppose we are interested in the appearance of a given operator of charge −10

among quantum corrections, O−10. In general, we expect it to appear at tenth or

higher order as

∆W ∼ λ10O−10 + λ11λO−10 + · · ·+ λ10e−1/|λ|2O−10 , (9.32)

where we have assumed that the classical limit, λ→ 0 is well defined and so we do

not allow any negative powers of λ to appear. Holomorphy implies that only the first

term can be generated. All other terms cannot be there since are non-holomorphic

in the coupling (both λ and λ appear). A corollary of the above discussion is that

any operator with positive U(1) charge is also disallowed. Indeed, we cannot have

negative powers of λ because we are supposing the theory is well defined in the

classical limit, while any power of λ is forbidden by holomorphy. Notice that the
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latter property is due to supersymmetry, and it is not shared by an ordinary field

theory.

What this toy model shows is that holomorphy in the coupling constants, usual

selection rules for symmetries under which coupling constants may transform and the

requirement of smoothness of physics in various weak-coupling limits, can provide

severe constraints on the structure of the effective superpotential of a supersymmet-

ric quantum field theory. In the remainder of this lecture we will discuss several

such examples.

Let us close this section by recalling that the Wilsonian effective action is not

what we usually call the effective action Γ. The latter is obtained by integrating

out all degrees of freedom down to µ = 0 and it is the generating functional of

1PI graphs and calculates the Green functions of the original UV theory. It is not

holomorphic in the coupling constants and suffers from holomorphic anomalies. It is

not the correct thing to look at in asymptotically free gauge theories since it is not

well defined. The two effective actions are the same only if there are no interacting

massless particles, which are those making the 1PI effective action Γ suffer from IR

divergences.

9.5 Holomorphy and non-renormalization theorems

Remarkably, using holomorphy one can prove many known non-renormalization the-

orems (and go beyond them, as we will see).

Example 1: the Wess-Zumino (WZ) model. The tree level superpotential of the WZ

model has the following structure

Wtree =
1

2
mΦ2 +

1

3
λΦ3 . (9.33)

The question one might ask is: what is the form of the effective superpotential Weff ,

once quantum corrections (both perturbative and non-perturbative) are taken into

account? Let us try to answer this question using holomorphy. First, promote m

and λ to spurion superfields. This makes the theory enlarging its symmetries by a

flavor U(1) symmetry and a R-symmetry, according to the table below

U(1)R U(1)

Φ 1 1

m 0 −2

λ −1 −3

(9.34)
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The superpotential has (correctly) R-charge 2 and flavor U(1) charge 0. Notice that

both symmetries are spontaneously broken whenever the spurion superfields, m and

λ, have a non-vanishing lower component VEV.

Because of what we discussed in the previous section, the effective (that is, exact)

superpotential should be a holomorphic function of Φ,m and λ, and have R-charge

equal to 2 and flavor charge equal to 0. Its most general form can be written as a

function of λΦ/m as follows

Weff = mΦ2f

(
λΦ

m

)
=

∞∑

n=−∞

anλ
nm1−n Φn+2 , (9.35)

where ffree = 1
2

+ 1
3
λΦ/m, and an are arbitrary coefficients. Note that due to holo-

morphy of the superpotential neither λ nor m appear in (9.35).

The form of f can be fixed as follows. First, in the classical limit, λ → 0, we

should recover the tree level result. This implies that there cannot appear negative

powers of λ; hence n ≥ 0 and, in order to agree with (9.33) at tree-level, a0 = 1
2

and

a1 = 1
3
. Taking also the massless limit at the same time, m→ 0, restricts n further,

i.e. n ≤ 1. The upshot is that the effective superpotential should be nothing but the

tree level one: holomorphy (plus some obvious physical requirements, more below)

tells us that the superpotential of the WZ model is not renormalized at any order

in perturbation theory and non-perturbatively!

The requirement about finiteness in the massless limit requires a few more com-

ments. Taking the massless limit at finite λ does not lead to a weakly-coupled

theory, so one could not use smoothness arguments so naively. However, taking

both m,λ→ 0 such that m/λ→ 0 we do achieve the result above, since the theory

is free in this case. One may still wonder whether this conclusion is correct since in

this limit there is a massless particle and so the effective theory should have some

IR divergences. This is not the case since we do not run the RG-flow down to µ = 0:

there are no IR divergences in the Wilsonian effective action, as opposed to the 1PI

effective action.

Another, equivalent way to see the absence of negative powers of m in the ef-

fective superpotential is to observe that all terms with n ≥ 0 are generated by

tree-level diagrams only, in the UV theory (it is a matter of number of vertices and

propagators), see Figure 9.2. All diagrams of the kind of the one depicted in Figure

9.2 are not 1PI for n > 1; they cannot be produced from loops, and they should

not be included in the effective action for finite m. So the integer n in eq. (9.35)
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Figure 9.2: Tree level (super)graph producing terms of the series (9.35) for n > 1.

is indeed restricted to be either 0 or 1. It is easy to get convinced that in a non-

supersymmetric context, where e.g. λ can enter the expansion (9.35), operators with

negative powers of λ can come from 1PI diagrams and hence appear in the effective

action.

What we have just proven, namely that the superpotential of the WZ model

is not renormalized at any order in perturbation theory and non-perturbatively, is

not specific to the WZ model. It actually applies to all models where only chiral

superfields are present: in these cases, that is in the absence of gauge interactions,

the tree-level superpotential is an exact quantity (regardless its specific form, which

might even contain classically irrelevant operators!).

Example 2: As a second example, we want to illustrate what holomorphy can tell

us about the running of gauge couplings in supersymmetric gauge theories. Let us

focus, for definiteness, on SQCD. Recall that this is a supersymmetric gauge theory

with gauge group SU(N), F flavors described by F pairs of chiral superfields (Q, Q̃)

transforming in the fundamental respectively anti-fundamental representation of

the gauge group and no tree-level superpotential. At the classical level, the global

symmetries are as detailed below

SU(F )L SU(F )R U(1)B U(1)A U(1)R0

Qi
a F • 1 1 a

Q̃b
j • F −1 1 a

λ • • 0 0 1

where the convention on indexes is the same as in lecture 5, see the discussion

below eq.(5.104), and the R-charges of Q and Q̃ are the same since under charge

conjugation (which commutes with supersymmetry), Q↔ Q̃. For later convenience,
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we have also written down the charges of the gaugino field. The axial current and

the R0 current are anomalous, the anomaly coefficients being

AA =
1

2
(+1)F +

1

2
(+1)F = F

AR0 =
1

2
[(a− 1)F + (a− 1)F ] +N = N + (a− 1)F

These two anomalous symmetries admit an anomaly-free combination (which is

obviously an R-symmetry) with current

jRµ = jR0
µ +

(1− a)F −N
F

jAµ , (9.36)

under which the matter fields have the following charges R(Qi
a) = R(Q̃b

j) = F−N
F

(note that the anomaly-free R-charge of matter fields does not depend on a, while the

gaugino has always R-charge equal to 1). Therefore, the group of continuos global

symmetries at the quantum level is GF = SU(F )L × SU(F )R × U(1)B × U(1)R.

Notice that for F = 0, namely for pure SYM, there do not exist an axial current

and in turn the R-symmetry is inevitably anomalous. This difference will play a

crucial role later on.

What we are interested in is the gauge coupling running, namely the β function

β = µ
∂g

∂µ
= − b1

16π2
g3 +O(g5) . (9.37)

The one-loop coefficient b1 can be easily computed from the field content of the

classical Lagrangian and reads b1 = 3N−F . The question we would like to answer is

whether holomorphy can tell us something about higher-loop (and non-perturbative)

corrections.

Let us consider pure SYM, first, whose action is

L =
1

16πi

∫
d2θ τ TrWαWα + h.c. , (9.38)

with τ the complexified gauge coupling, τ = θYM

2π
+ 4πi

g2 . Notice that τ appears holo-

morphically in the action above, but the gauge fields are not canonically normalized

(to go to a basis where gauge fields are canonically normalized one should shift

V → gV , as we did in lecture 5 when constructing matter-coupled actions).

One thing that will prove useful for what we want to do, is to trade the dynamical

generated scale Λ for a complex parameter. For G = SU(N) the one-loop running
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of the gauge coupling is

1

g2(µ)
= − 3N

8π2
log

( |Λ|
µ

)
, |Λ| = µ0 e

− 8π2

3Ng2(µ0) , (9.39)

where 3N is the one-loop coefficient of pure SYM β-function and |Λ| what we pre-

viously called Λ. We can then define a holomorphic scale Λ as

Λ = |Λ|ei
θYM
3N = µ e

2πiτ
3N , (9.40)

in terms of which the one-loop complexified gauge coupling reads

τ1-loop =
3N

2πi
log

Λ

µ
. (9.41)

What about higher order corrections? Suppose we integrate down to a scale µ, then

Weff =
τ(Λ;µ)

16πi
TrWαWα . (9.42)

Since the physics is periodic under θYM → θYM + 2π, the following rescaling

Λ→ e
2πi
3N Λ (9.43)

is a symmetry of the theory, under which τ → τ + 1. The most general form for τ

transforming this way under (9.43) is

τ(Λ;µ) =
3N

2πi
log

Λ

µ
+ f(Λ;µ) , (9.44)

with f a function of Λ (and not of Λ!) having the following properties:

• As already observed, under (9.43), τ should transform as τ → τ + 1. This is

already accounted for by the one-loop contribution (9.41), so the function f

should be invariant under (9.43).

• In the limit Λ→ 0, which is a classical limit, the function f must vanish since

we should get back the one-loop result. Given the previous requirement, this

implies that f should have a positive Taylor expansion in Λ3N .

These two properties imply that the effective coupling (9.44) should have the fol-

lowing form

τ(Λ;µ) =
3N

2πi
log

Λ

µ
+
∞∑

n=1

an

(
Λ

µ

)3Nn

. (9.45)
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Recalling that the instanton action is

e−Sinst =

(
Λ

µ

)3N

, (9.46)

we conclude that the function f receives only non-perturbative corrections and these

corrections come from n-instantons contributions. The upshot is that τ is one-loop

exact, in perturbation theory.

The one-loop exactness of the SYM gauge coupling can be equivalently proven

as follows. The θ-term is a topological term so it does not get renormalized pertur-

batively. Therefore the β-function, β = β(τ) can only involve Im τ . If β should be

a holomorphic function of τ this implies that it can only be a imaginary constant (a

holomorphic function f(z), which is independent of Re z, is an imaginary constant).

Therefore

β(τ) ≡ µ
d

dµ
τ = ia , (9.47)

which implies

µ
d

dµ
θYM = 0 , µ

d

dµ
g = − a

8π
g3 . (9.48)

So we see that, indeed, the gauge coupling does not receive corrections beyond

one-loop, in perturbation theory (for the theory at hand a = 3N/2π).

All what we said above applies identically to SQCD (again, working in the ba-

sis where gauge fields are not canonically normalized and the complexified gauge

coupling enters holomorphically in the action), the only difference being that the

one-loop coefficient of the β-function is now 3N − F , with F being the number of

flavors.

Remarkably, in some specific cases one can show that also non-perturbative cor-

rections are absent. One such instances is pure SYM, and the argument goes as

follows. As already noticed, the R-symmetry of pure SYM is anomalous

∂µj
µ
R = 0

quantum−−−−−−−−→
corrections

∂µj
µ
R = − 2N

32π2
F a
µνF̃

µν
a . (9.49)

The U(1)R, however, is not fully broken. This can be seen as follows. A R-symmetry

transformation with parameter α, under which the gaugino transforms as

λ→ eiαλ (9.50)

is equivalent to a shift of the θ-angle

θYM → θYM − 2Nα , (9.51)
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recall eqs. (9.24) and (9.27). The point is that the transformation θYM → θYM +2πk

where k ∈ Z, is a symmetry of the theory. So, whenever the U(1)R parameter α

equals πk/N , the theory is unchanged also at the quantum level. This implies that

a discrete subgroup of the original continuos abelian symmetry is preserved,

U(1)R −→ Z2N . (9.52)

Treating the complexified gauge coupling τ as a spurion field and assigning to it

transformation properties so to compensate for the shift, we can define a spurious

symmetry acting as

λ→ eiαλ , τ → τ +
Nα

π
. (9.53)

This constrains the coefficients an in the expansion (9.45). Indeed, under the spuri-

ous symmetry the holomorphic scale Λ = µ e
2πiτ
3N transforms as

Λ→ ei
2Nα
3N Λ . (9.54)

Hence we have

τ(Λ;µ)→ Nα

π
+

3N

2πi
log

Λ

µ
+
∞∑

n=1

an

(
Λ

µ

)3Nn

e2iNαn . (9.55)

Since whenever n 6= 0 then e2iNαn 6= 0, it follows that to match the spurious sym-

metry (9.53) we need to have

an = 0 ∀n > 0 . (9.56)

Hence in pure SYM also non-perturbative corrections to the gauge coupling are

absent! This does not hold in presence of matter, namely for SQCD, since there the

R-symmetry is not anomalous and running the above argument one would not get

any constraint on the coefficients an (the rhs of eq. (9.49) would be zero in this case

and θYM would be insensitive to R-symmetry transformations).

If we collect all what we have learned so far we might have the feeling that some-

thing wrong is going on. There are three apparently incompatible results regarding

the running of the SQCD gauge coupling.

• Due to holomorphy, the supersymmetric gauge coupling runs only at one-loop

in perturbation theory, and the full perturbative β-function hence reads

β = − g3

16π2
(3N − F ) , (9.57)
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• There exists a well known result in the literature which claims that the exact,

all-loops β-function of SQCD is

β = − g3

16π2

[
3N −∑F

i=1(1− γi)
]

1− Ng2

8π2

(9.58)

where γi = d logZi(µ)/d log µ are matter fields anomalous dimensions. This

result gets contribution at all loops and is in clear contradiction with the

previous result. Eq. (9.58) is sometime called NSVZ β-function (after Novikov,

Shifman, Vainshtein and Zakharov).

• Another well known fact about the β-function of SQCD (and, in general, of

any gauge theory) is that its one and two-loop coefficients are universal, in

the sense that are renormalization scheme independent. This can be easily

proven as follows. Changing renormalization scheme amounts to define a new

coupling g′ which is related to g as

g′ = g + ag3 +O(g5) . (9.59)

Suppose that the β-function for g is

βg = b1g
3 + b2g

5 +O(g7) . (9.60)

We get for the β-function for g′

βg′ = βg
∂g′

∂g
= βg

(
1 + 3ag2 +O(g4)

)
= b1g

3 + (b2 + 3ab1)g5 +O(g7) . (9.61)

We can invert the relation between g and g′ as

g = g′ − ag′3 +O(g′5) , (9.62)

and get finally

βg′ = b1g
′3− 3ab1g

′5 + (b2 + 3ab1) g′5 +O(g′7) = b1g
′3 + b2g

′5 +O(g′7) , (9.63)

which shows that the first two coefficients of the β-function are universal.

Given the universality of the β-function up to two loops, the discrepancy

between the two expressions (9.57) and (9.58), which only agree at one loop,

cannot just be a matter of renormalization scheme.

205



How can we reconcile this apparent contradiction? The answer turns out to be

surprisingly simple. Let us first consider pure SYM whose action is

L =
1

16πi

∫
d2θ τ TrWαWα + h.c. . (9.64)

As we already noticed, if one integrates in superspace one gets a space-time action

where gauge fields are not canonically normalized

L = − 1

4g2
TrFµνF

µν + . . . . (9.65)

Let us call the gauge coupling defined in this frame holomorphic gauge coupling

gh, defined via the complexified gauge coupling as τ = 4πi/g2
h. In order to get a

Lagrangian in terms of canonically normalized fields one should rescale the vector

superfield V as V → gV . In other words, we should perform the change of variables

Vh = gpVp. In terms of this physical gauge coupling gp the Lagrangian reads

L =
1

4

∫
d2θ

(
1

g2
p

− iθYM

8π2

)
TrWα(gpVp)Wα(gpVp) + h.c. , (9.66)

Notice that the Lagrangian above is not holomorphic in the physical coupling since gp

is real as gpVp should also be real. The crucial point now is that the two Lagrangians

(9.64) and (9.66) are not equivalent under the change of variables Vh = gpVp in the

path integral, since there is a rescaling anomaly (there is an anomalous Jacobian in

passing from Vh to Vp), that is D(gpVp) 6= DVp. In particular, one can show that

D(gpVp) = DVp exp

[
− i

4

∫
d2θ

(
2T (Adj)

8π2
log gp

)
TrWα(gpVp)Wα(gpVp) + h.c.

]
.

(9.67)

Hence we get for the partition function

Z =

∫
DVh exp

[
i

4

∫
d2θ

1

g2
h

TrWα(Vh)Wα(Vh) + h.c.

]
= [Vh = gpVp]

=

∫
D(gpVp) exp

[
i

4

∫
d2θ

1

g2
h

TrWα(gpVp)Wα(gpVp) + h.c.

]

=

∫
DVp exp

[
i

4

∫
d2θ

(
1

g2
h

− 2T (Adj)

8π2
log gp

)
TrWα(gpVp)Wα(gpVp) + h.c.

]
,

(9.68)

which implies

1

g2
p

= Re

(
1

g2
h

)
− 2T (Adj)

8π2
log gp = Re

(
1

g2
h

)
− 2N

8π2
log gp . (9.69)
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where in the last equality we used the fact that for SU(N) the Dynkin index for the

adjoint T (Adj) = N . Differentiating with respect to log µ, and using the expression

(9.57) for the holomorphic gauge coupling β-function, one gets for the physical gauge

coupling gp precisely the NSVZ β-function (9.58), where in both expressions we have

set F = 0.

One can repeat an identical reasoning for SQCD where the relation between the

physical and the holomorphic gauge couplings reads

1

g2
p

= Re

(
1

g2
h

)
− 2T (Adj)

8π2
log gp −

∑

i

T (ri)

8π2
logZi . (9.70)

Differentiating with respect to log µ (using again T (Adj) = N and taking matter

to be in the fundamental, for which T (r) = 1/2), one gets for the physical gauge

coupling exactly the expression (9.58).

We now see why there is no contradiction with the two-loops universality of

the β-function. The point is simply that the relation between the holomorphic and

the physical gauge coupling is not analytic. In other words, one cannot be Taylor-

expanded in the other, because of the log-term (it is a singular change of renor-

malization scheme: the so-called holomorphic scheme is not related continuously to

any other physical renormalization scheme). Furthermore, we now also understand

where higher-loop contributions to the physical β-function come from. This is just

because of wave function renormalization (both of the vector superfield as well as of

matter superfields): the physical gauge coupling differs from the holomorphic gauge

coupling by effects coming from wave-function renormalization, which get contribu-

tion at all loops. Consistently, the physical β-function can be expressed exactly in

terms of anomalous dimension of fields, once the one-loop coefficient (which agrees

with that of the holomorphic β-function) has been calculated.

One can repeat the same kind of reasoning for gauge theories with extended

supersymmetry which, after all, are just (very) special cases of N = 1 theories.

In doing so one immediately gets the result we anticipated when discussing non-

renormalization theorems in section 6.3. Let us start from N = 2 pure SYM. Using

N = 1 language we have a vector and a chiral multiplet, the latter transforming in

the adjoint of the gauge group. As we have already seen, due to N = 2 supersym-

metry, the kinetic terms of V and Φ are both changed according to the holomorphic

gauge coupling. Hence, going to canonical normalization for all fields we must rescale

them the same way, Vh = gpVp and Φh = gpΦp. The crucial point is that the Jacobian

for V cancels exactly that from Φ! In other words, D(gpVp)D(gpΦp) = DVpDΦp,
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implying that the holomorphic and physical gauge couplings coincide (basically, the

second and third terms in (9.70) cancel each other). Adding matter nothing changes

since, as we have already noticed, kinetic terms for hypermultiplets do not renor-

malize. Hence, N = 2 gauge theories, with and without matter, are (perturbatively)

one-loop finite. Applying this result to N = 4 SYM we conclude that the latter is

tree-level exact, since the N = 4 one-loop β-function vanishes. It’s that simple!

9.6 Holomorphic decoupling

Holomorphy helps also in getting effective superpotentials when one has to integrate

out some massive modes and study the theory at scales lower than the corresponding

mass scale.

Let us consider a model of two chiral superfields, L and Φ, interacting via the

following superpotential

W =
1

2
MΦ2 +

λ

2
L2Φ , (9.71)

This is a Wess-Zumino-like model, so this superpotential does not suffer from quan-

tum corrections, neither perturbatively nor non-perturbatively. The spectrum of

the theory is that of a massless chiral superfield and a massive one. If we want to

study the system at energies µ < M , we have to integrate Φ out. In order to do

so we can use holomorphicity arguments, and proceed as we did when proving the

exactness of the WZ superpotential. Let us first promote the couplings to spurion

fields and, consequently, enlarge the global symmetries as follows

U(1)a U(1)b U(1)R

L 0 1 1

Φ 1 0 0

M −2 0 2

λ −1 −2 0

(9.72)

The low energy effective superpotential, in which Φ should not enter, should be

a dimension-three function of λ,M and L respecting the above symmetries. In

particular it should have U(1)a,b charge 0 and U(1)R charge 2. The only possible

answer is

Weff = a
λ2L4

M
, (9.73)

where a is an undetermined constant of order one.
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The same result can be obtained by using the ordinary integrating out procedure.

At scales well below M , the chiral superfield Φ is frozen at its VEV (we do not have

enough energy to make it fluctuate). Therefore, we can integrate the field out by

solving its equation of motion, which is just an algebraic one, involving only the

F-term, since the kinetic term (the D-term) is trivially zero, that is

1

4
D

2
Φ +

∂W

∂Φ
= 0 −→ ∂W

∂Φ
= MΦ +

λ

2
L2 = 0 −→ Φ = − λ

2M
L2 . (9.74)

Substituting back into the superpotential we get

Weff = −1

8

λ2L4

M
, (9.75)

which is the same as (9.73) (with the undetermined coefficient being fixed). Notice

that the superpotential we have just obtained is the effective superpotential one

generates in perturbation theory, in the limit of small λ, see Figure 9.3.
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Figure 9.3: The tree level (super)graph which produces the effective superpotential

(9.73) in the weak coupling limit.

Let us emphasize that in this case, differently from the WZ model discussed in the

previous section, we have allowed for negative powers of M . In other words, we have

not required any smoothness in the M → 0 limit. The reason is that the effective

theory we are considering is valid only at energies lower than M , which is a UV

cut-off for the theory. Hence, we can accept (and actually do expect) singularities

as we send M to zero: new massless degrees of freedom are expected to arise when

M → 0. They are those associated to Φ, the superfield we have integrated out.

As a final instructive example, let us consider a perturbation of the previous

model. The superpotential we would like to analyze is

W =
1

2
MΦ2 +

λ

2
L2Φ +

ε

6
Φ3 . (9.76)
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Again, if we want to study the system at energies µ < M , we have to integrate the

massive field out. The equation of motion for Φ gives

Φ = −M
ε

(
1∓

√
1− ελL2

M2

)
. (9.77)

We have now two possible solutions, hence two different vacua. Consistently, as we

send ε to zero one of the two vacua approaches the one of the unperturbed model

while the second is pushed all the way to infinity. Indeed

Φ+ = −M
ε

(
1 +

√
1− ελL2

M2

)
= −M

ε

[
1 +

(
1− ελL2

2M2
+O(ε2)

)]
−−→
ε→0

∞

Φ− = −M
ε

(
1−

√
1− ελL2

M2

)
= −M

ε

[
1−

(
1− ελL2

2M2
+O(ε2)

)]
−−→
ε→0

− λ

2M
L2

Substituting (9.77) into (9.76) we get for the effective superpotential

Weff =
M3

3ε2

[
1− 3

2

ελL2

M2
∓
(

1− ελL2

M2

)√
1− ελL2

M2

]
. (9.78)

There are again singularities, both in parameter space as well as in field L space,

now. Comparing to the unperturbed case one can suspect that at these points extra

massless degrees of freedom show up. Indeed, computing the (effective) mass for the

field we have integrated out, we get

Meff =
∂2W

∂Φ2
= M + εΦ = (on the solution) = ±M

√
1− ελL2

M2
. (9.79)

The field Φ becomes massless at 〈L〉 = ±M/
√
ελ, precisely the two singularities of

the effective superpotential (9.78). In the limit ε→ 0, keeping M fixed, one recovers,

again, the result of the unperturbed theory.

As in previous example, the same result could have been obtained just using

holomorphicity arguments. Promoting also the coupling ε to a spurion field with

charges

U(1)a U(1)b U(1)R

ε −3 0 2
(9.80)

and repeating the same argument as in the previous example, one could conclude

that the effective superpotential should have the following structure

Weff =
M3

ε2
f

(
ελL2

M2

)
, (9.81)
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which has precisely the structure of the exact expression (9.78). Taking various

limits one can actually fix also the form of the function f and get the expression

(9.78) (modulo an overall numerical coefficient, as before).

This way of integrating out in supersymmetric theories, which preserves holomor-

phy, is called holomorphic decoupling. We will heavily use holomorphic decoupling

when studying the quantum properties of SQCD in our next lecture. For instance,

using this technique it is possible to get the effective superpotential for SQCD with

an arbitrary number of flavors once the exact expression for a given number of flavors

is known. Everything amounts to integrate flavors in and out (more later).

9.7 Exercises

1. Using holomorphy and (spurious) symmetries, show that the superpotential

W = µ1Φ + µ2Φ2 + · · ·+ µnΦn , (9.82)

is not renormalized at any order in perturbation theory and non-perturbatively.
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10 Supersymmetric gauge dynamics: minimal supersym-

metry

Given a quantum field theory, the very first questions one should answer regard

the way its symmetries are realized in its vacua, and what the dynamics around

such vacua is.

• Given a QFT with gauge group G and global symmetry group GF, how are

these realized in the vacuum?

• Which phases may enjoy such a theory?

• Are there tools to give not only qualitative but also quantitative answers to

these questions?

It is very difficult to fully or even partially answer these questions, in general. How-

ever, as we will discuss in this and subsequent lectures, for supersymmetric theories

this is possible, sometime. Before entering into any details, there are a number of

general remarks we want to make regarding the low energy behavior of field theo-

ries, more specifically asymptotically free gauge theories. This will help to better

appreciate what comes next.

10.1 Confinement and mass gap in QCD, YM and SYM

It is often said that asymptotically free gauge theories enjoy many interesting and

fascinating phenomena at low energy, i.e. confinement, the generation of a mass

gap, chiral symmetry breaking, etc... This is certainly true, but it turns out that

such phenomena may be realized very differently, for different theories. Below we

are going to consider three specific theories, namely QCD, YM and N = 1 SYM,

which are all UV-free and all said to be confining, and show how different the IR

dynamics of these theories actually is.

QCD, the theory of strong interactions. At high energy QCD is a weakly

coupled theory, a SU(3) gauge theory of weakly interacting quarks and gluons. It

grows, through renormalization effects, to become strong in low energy processes.

So strong so to bind quarks into nucleons. The strong coupling scale of QCD is

ΛQCD ∼ 300 MeV . (10.1)
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Note that as compared to protons and neutrons (whose mass is order 1 GeV),

constituent quarks are relatively light (the u and d quarks are order of a few MeV;

the s quark is order 100 MeV). Most of the mass of nucleons comes from quark

kinetic energy and the interactions binding quarks together.

The reason why we cannot see free quarks, we usually say, is confinement: quarks

are bound into nucleons and cannot escape. In fact, this statement is not completely

correct: if we send an electron deep into a proton, we can make the quark escape!

If the electron is energetic enough, a large amount of energy, in the form of

chromoelectric field, appears in the region between the escaping quark and the rest

of the proton. When the field becomes strong enough, of order Λ4
QCD ∼ (300 MeV)4,

flux lines can break and produce q − q pairs (this is a familiar phenomenon also in

electromagnetism: electric fields beyond a certain magnitude cannot survive; strong

fields with energy density bigger that m4
e ∼ (1 Mev)4 decay by producing e+ − e−

pairs). The q quark binds to the escaping quark while the q quark binds to the

other two quarks in the proton. Therefore, the original quark does escape, the force

between it and the remaining proton constituent drops to zero. Just, the escaping

quark is not alone, it is bound into a meson. This should be better called charge

screening, rather than confinement.
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Figure 10.1: Charge screening: the way QCD confines.

Can we have confinement in a more strict sense? Suppose that quarks were

much more massive, say mq ∼ 1 TeV. Now proton mass would be order the TeV.

The dynamics drastically changes, now. Repeating the previous experiment, when

the chromoelectric field becomes order Λ4
SYM, there is not enough energy now to

produce q − q pairs. The force between the escaping quark and the proton goes to

a constant: a tube of chromoelectric flux of thickness ∼ Λ−1
QCD and tension (energy

per unit length) of order Λ2
QCD connects the two. Not only the quark is confined,

it is the flux itself which is confined. This is certainly a more precise definition of

confinement: it holds regardless of quarks, in the sense that it holds also in the
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limit mq →∞, namely when the quarks disappear from the spectrum (they become

chromoelectric static sources and play no role in the dynamics). It is a property of

the pure glue. Strict confinement would be a property of QCD only if the quarks

were very massive, more precisely in the limit F/N � 1, where F is the number of

light quarks and N the number of colors. Real-life quarks are light enough to let the

chromoelectric flux tube break. Hence, actual QCD does not confine in the strict

sense.

Let us discuss the structure of QCD vacua in more detail, looking at how the

global symmetry group of QCD is realized in the vacuum. In what follows, we

consider only the three light quarks, u, d and s and forget the other ones (which are

dynamically less important). So we have F = 3 flavors. Moreover, we will first put

ourselves in the limit where the light quarks are massless, which is approximately

true for u, d and s quarks constituting ordinary matter (protons and neutrons). Only

later we will consider the effect of the small quark masses. In this massless limit the

QCD Lagrangian reads

L = −1

4
TrFµνF

µν +
∑

i

qiLi /Dq
i
L +

∑

i

qiRi /Dq
i
R , i = 1, 2, 3 . (10.2)

Quark quantum numbers under the global symmetry group are

SU(3)L SU(3)R U(1)A U(1)B

qL 3 1 1 1

qR 1 3̄ 1 −1

(10.3)

As well known there is an axial anomaly, in the sense that the U(1)A symmetry is

broken to Z2F at the quantum level. Therefore, the continuos global symmetries at

the quantum level are just

GF = SU(3)L × SU(3)R × U(1)B . (10.4)

As we have already discussed, the theory undergoes confinement (or better charge

screening) and quarks and gluons are bounded into color singlet states. But what

about GF? Experimental and theoretical considerations plus several numerical sim-

ulations on the lattice lead to a definite picture of the realization of the global

symmetry at low energy. It is believed that at low energy only a subgroup survives

SU(3)D × U(1)B , (10.5)

under which hadrons are classified: SU(3)D gives the flavor quantum numbers and

U(1)B is the baryon charge. The remaining generators must be broken, somehow.

215



The intuitive picture is as follows. Due to confinement, at strong coupling quarks

and anti-quarks are bound into pairs, and the vacuum is filled by a condensate of

these color singlet quark bilinears

〈qiLqjR〉 = ∆ δij , (10.6)

where ∆ ∼ Λ3
QCD. This condensate is invariant under a diagonal SU(3) subgroup

of the original SU(3)R × SU(3)L group and is then responsible for the spontaneous

breaking of the chiral symmetry of the original symmetry group GF

SU(3)L × SU(3)R × U(1)B → SU(3)D × U(1)B . (10.7)

Eight global symmetries are broken by the quark condensates and hence we would

expect eight Goldstone bosons. The latter are indeed observed experimentally, and

correspond to the eight pseudoscalar mesons, the pions, π0,±, K0,1, K
0,+
, η

π+ = ud , π− = du , π0 = dd− uu , η = uu+ dd− 2ss

K0 = sd , K− = us , K
0

= sd , K
+

= su
(10.8)

Let us first notice that if U(1)A were not anomalous, we would have had a ninth

meson, the so-called η′ meson, which would have corresponded to a shift in the phase

of the condensate (10.6). The condensate breaks spontaneously the Z2F symmetry

down to Z2, but this does not give rise to any massless particle. The η ′ has a periodic

potential with F minima, each of them being Z2 invariant, and related one another

by ZF rotations. These minima are not isolated, though, since they are connected

via SU(F )L×SU(F )R rotations. This means that there is a moduli space of vacua.

In Figure 10.2 a qualitative picture of QCD vacuum structure is reported.

Via a SU(3) rotation acting separately on qL and qR, the condensate (10.6) can

be put in the form

〈qiLqjR〉 = ∆U ij (10.9)

where U ij is a SU(3) matrix on which a SU(3)L × SU(3)R rotation acts as

U → A†LUAR , (10.10)

which shows there exists a SU(3)D rotation (AL = AR) under which the matrix U

is invariant. So the moduli space of vacua is a SU(3) manifold.

The quantum fluctuations of the entries of this matrix represent the massless ex-

citations around the vacua of massless QCD, the pions. An effective Lagrangian for
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(SU(3)L ⇥ SU(3)R)/SU(3)D

Figure 10.2: The vacuum structure of 3-flavor massless QCD. The η′ particle is

massive. The three vacua associated to the periodic potential along the η′ direction

are rotated one another by the broken Z3 generators, but are not isolated since

there are flat directions connecting them, associated to eight massless excitations

(the pions) which parametrize the coset (SU(3)L × SU(F )R)/SU(3)D.

such excitations can be written in terms of U(x) and its derivatives. This Lagrangian

should be invariant under the full global symmetry group GF, hence non-derivative

terms are not allowed (the only GF-invariant function would be U †U = 1), which is

simply saying that the pions are massless in the massless QCD limit we are consid-

ering. The structure of the effective Lagrangian hence reads

Leff = f 2
π

(
∂µU

†∂µU
)

+ κ ∂µU
†∂µU∂νU

†∂νU + . . . , (10.11)

where κ ∼ 1/M2, with M being some intrinsic mass scale of the theory, and traces

on flavor indices are understood. At low momenta only the first term contributes

and we then get a definite prediction for pion scattering amplitudes, in terms of a

single parameter fπ.

In fact, quarks are not exactly massless and therefore the above picture is only

approximate. In reality, the SU(3)L × SU(3)R symmetry is only approximate since

quark masses correspond to (weak) GF-breaking terms. This has the effect to make

the pions be only pseudo-Goldstone bosons. Hence, one would expect them to be

massive, though pretty light, and this is indeed what we observe in Nature.

In principle, one should have gotten the chiral Lagrangian (10.11) from the UV

Lagrangian (10.2) by integrating out high momentum modes. This is difficult (next

to impossible, in fact). However, we know in advance the expression (10.11) to

be right, since that is the most general Lagrangian one can write describing pion
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dynamics and respecting the original symmetries of the problem. Combining the

expression (10.11) with weak GF-breaking terms induced by actual quark masses,

one gets a Lagrangian which, experimentally, does a good job.

Summarizing, we see that combining symmetry arguments, lattice simulations,

experimental observations and some physical reasoning, we can reach a rather rea-

sonable understanding of the low energy dynamics of QCD. This is all very nice but

one would like to gain, possibly, a theoretical (i.e. more microscopic) understanding

of QCD phenomena. As of today, this is still an open question for QCD. And, more

generally, it is so for any generic gauge theory. As we will later see, supersymmetry

lets one have more analytical tools to answer this kind of questions, having some-

time the possibility to derive strong coupling phenomena like confinement, chiral

symmetry breaking and the generation of a mass gap, from first principles.

YM theory, gauge interactions without matter fields. Let us consider a

YM theory with gauge group SU(N). This is again a UV-free theory, the one-loop

β-function being now

βg =
g3

16π2

(
−11

3
N

)
. (10.12)

There are two claims about this theory (based mostly on lattice calculations and on

theoretical reasoning in comparing YM with what we know, experimentally, about

QCD).

1. The theory has a mass gap, i.e. there are no massless fields in the spectrum.

Rather, there is a discrete set of states with masses of order Λ, the scale where

the one-loop gauge coupling diverges (higher loop and non-perturbative effects

do not change the actual value of Λ in any sensible way)

Λ = µ e
− 8π2

g2(µ)b1 where b1 =
11

3
N . (10.13)

The low energy spectrum consists of glueballs. These are sort of gluons bound

states which however do not consist of a fixed number of gluons (gluon number

is not a conserved quantum number in strong interactions), but rather of a

shifting mass of chromoelectric flux lines. Unlike gluons, for which a mass

term is forbidden (because they have only two polarizations), glueballs include

scalars and vectors with three polarizations (as well as higher spin particle

states), for which a mass term is allowed. Such mass should clearly be of order

of the dynamical scale, m ∼ Λ, so not to contradict perturbation theory.
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The low energy spectrum is very different from QCD. In QCD there is a mass

gap just because quarks are massive. If u, d and s quarks were massless, we

would not have had a mass gap in QCD since pions would have been exact

Goldstone bosons and hence massless. Here instead there is a genuine mass

gap.

2. The theory undergoes confinement (now in the strict sense). The chromoelec-

tric flux is confined, it cannot spread out in space over regions larger than

about Λ−1 in radius. How can we see confinement, namely the presence of

strings which contain the chromoelectric flux? Let us add some heavy quarks

to the theory and let us see whether these quarks are confined, as it was the

case for very massive QCD. The Lagrangian would read

L = −1

4
TrF µνFµν + iψ /Dψ −Mψψ , M � Λ . (10.14)

In the limit M → ∞ the test particles become chromoelectrostatic sources,

and play no role in the dynamics.

If confinement occurs, we would expect a linear potential between the two

quarks. Indeed, in an unconfined theory, the electric flux is uniformly dis-

tributed over a sphere surrounding a charge, and falls-off as 1/r2. In a con-

fining theory with flux tubes, the flux tube has a fixed cross-sectional area

∼ Λ−2. Thus, for any sphere of radius r � R ≡ Λ−1, the flux is zero except

in a region of area Λ−2, see Figure 10.3.
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Figure 10.3: Gauss law for unconfined (left) and confined (right) flux.

Hence, the electric field in that region has a magnitude which is r-independent,

which implies that the force it generates on a test charge is also r-independent,
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and so the potential V between charges would grow linearly in r. The force

goes to a constant, it never drops to zero, see Figure 10.4.

V(r)

r

1/r behavior  at 
short distance

r behavior  at 
large distance
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⇤�1

Figure 10.4: The potential between two test charges in YM theory.

Let us take a closer look to the potential

V (r) = TR r . (10.15)

The proportionality coefficient has dimension of an energy per unit length, and it is

the so-called string tension. On general ground, one would expect the string tension

to depend in some way on the gauge group representation the test charges transform.

This is pretty obvious since, e.g., for the singlet representation TR is clearly zero,

while for actual quarks, which transform in the fundamental representation, it is

not. In fact, as we are going to show below, the string tension does not depend on

the representation itself, but on what is called the N-ality of the representation.

Let us consider a (gauge) group G. Its center, Z(G) is defined as the part of G

which commutes with all generators. For G = SU(N), we have that

Z(G) =
{
Uα
β̄ = e2πik/Nδαβ̄ ; k = 0, 1, . . . , N − 1 modN

}
, (10.16)

where α an index in the fundamental and β̄ in the anti-fundamental of the gauge

group. Hence, in this case, Z(G) = ZN . Let us now consider some representation

R. An element ρ of this representation is labeled by n upper indices αi and n̄ lower

indices β̄i, each upper index transforming in the fundamental and each lower index
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transforming in the anti-fundamental representation. If one acts with the center of

the group on ρ one gets

Z(G) : ρ→ e2πik(n−n̄)/Nρ . (10.17)

The coefficient n− n̄ is called the N -ality of the representation ρ. If ρ has N -ality p,

then the complex conjugate representation ρC has N -ality −p, which is nothing but

N − p, since from eq. (10.17) it follows that the N -ality is defined modulo N . For

instance, while the adjoint representation and the trivial representation have p = 0,

the fundamental representation has p = 1 and the anti-fundamental has p = N − 1.

Clearly, representations break into equivalence classes under the center of the

gauge group. It turns out that the string tension TR is not a function of the rep-

resentation but actually of the N -ality. The basic reason for this is that gluon

number is not a conserved quantity in YM theories, while N -ality is, as we know

show. Let us consider heavy test particles transforming either in the anti-symmetric

representation or in the symmetric representation of the gauge group, ψS and ψA,

respectively. Each of them will have its own string tension, TS and TA (but same

N -ality, p = 2).

Suppose that TS > TA. Since gluon number is not a conserved quantity, we

can add a gluon Aµ coming from the chromoelectric flux tube next to ψS. The

charge of the bound state ψSAµ is Symmetric ⊗ Adj = ⊕ Representations, where all

representations entering the sum have the same N -ality (the same as the symmetric

representation, in fact, since the N -ality is an additive quantity, and that of the

adjoint representation is zero). For example, choosing G = SU(3) we have

6⊗ 8 = 3 + 6 + 15 + 24 , (10.18)

where the first representation on the r.h.s. is the anti-symmetric representation.

Since we have assumed that TS > TA it is energetically favored to pop a gluon out

of the vacuum and put it near to ψS (and another one near to ψS) since this has

an energy cost (of order Λ) which is lower than the energy gain, proportional to

(TS−TA)r, which for sufficiently large r always wins. In other words, in YM theory

the representation of a chromoelectric source is not a conserved quantum number;

only the N -ality is. Therefore, for all representations with the same N -ality, there

is only one stable configuration of strings, the one with lowest tension, as shown

in Figure 10.5. In summary, the tension of stable flux tubes are labeled by p, the

N -ality, not by R, the representation.
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Figure 10.5: The string tensions corresponding to the antisymmetric and symmetric

representations. All strings have the same N -ality, p = 2. The flux tube in the sym-

metric representation, which is less energetic, decays into that of the anti-symmetric

one by popping-up a gluon out of the vacuum.

Notice that charge conjugation symmetry ensures that Tp = TN−p. Therefore,

there are order N/2 stable flux tube configurations for SU(N). For SU(3) there

is only one single confining string, that with N -ality p = 1, since T0 = 0 and

T2 = T1. Multiple flux tubes only arise for larger gauge groups. For instance, for

G = SU(4), there can exist two different string tensions, with N -ality p = 1 and

p = 2, respectively).

All what we said let us also understand how to classify gauge singlets bound

states. While gluons are not confined by flux tubes, since TAdj = T0 = 0, any heavy

quark ψ with N -ality 6= 0 will experience a linear potential and a constant force

which will confine it to an antiquark ψ (these are the mesons) or, more generally,

to some combination of quarks and anti-quarks with opposite N -ality. For instance,

such combination can be made of N − 1 quarks and the bound state is called a

baryon.

SYM, supersymmetric gauge interactions without matter fields. We will

study this theory in detail later. Here, we just want to emphasize the similarities

and differences with respect to YM theories and QCD.

Similarly to YM, SYM enjoys strict confinement, a mass gap and no pions.

Similarly to QCD, it has a sort of chiral symmetry breaking and an anomaly, which

makes the corresponding η ′-like particle being massive. Finally, it differs from both

since it has multiple isolated vacua.

We choose again, for definiteness, the gauge group to be SU(N), but qualitatively

identical statements can be done for any other choice of (non-abelian) gauge group.
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The structure of the (on-shell) SYM Lagrangian

LSYM = −Tr

[
1

4
FµνF

µν + iλ /Dλ

]
. (10.19)

First notice that gauginos cannot break flux tubes since they transform in the adjoint

representation, which is in the same N -ality class of the singlet representation. So

gauginos behave very differently from QCD quarks, in this respect. Basically, the

presence of these fermion fields does not change the confining behavior of pure

YM glue, since gauginos cannot break flux tubes. That is why SYM enjoys strict

confinement, differently from QCD.

On the other hand, the U(1)R symmetry resembles the axial symmetry of QCD,

since it is anomalous and it is broken to Z2N at the quantum level (recall gauginos

have R-charge equal to one). Like QCD, SYM enjoys chiral symmetry breaking,

since it turns out (and we will be able to prove) that gaugino bilinears acquire a

non-vanishing VEV in the vacuum. More precisely, we have

〈λλ〉 ∼ Λ3e2πik/N , k = 0, 1, . . . , N − 1 , (10.20)

which breaks Z2N → Z2. Hence there are N isolated vacua, each of them Z2 sym-

metric, related by ZN rotations, as shown in Figure 10.6. The η ′ is the phase of
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ZN

Figure 10.6: The vacuum structure of pure N = 1 SYM. The N vacua are isolated,

and related by ZN rotations (compare with Figure 10.2).

the condensate (10.20) (similarly to QCD), but the vacua are isolated, so there is a

dynamical mass gap (unlike QCD and like YM).

10.1.1 Intermezzo: Wilson loops as order parameters for confinement

We have discussed the different ways in which confinement is realized in YM, QCD

and SYM by probing the theories with external heavy sources. In particular, YM
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and SYM are believed to enjoy strict confinement and the potential between static

sources grows linearly at large distance. QCD, instead, enjoys a milder version of

confinement, namely charge screening. In this case, the potential between static

sources goes to a constant asymptotically since the force drops to zero at large

distance, being the charge screened.

Interestingly, similar conclusions can be reached without resorting to external

sources but rather computing expectation values of specific line operators, known

as Wilson loops, as we now review.

In the same vein as in General Relativity the Levi-Civita connection tell us how to

parallel transport vectors around a manifold, in a gauge theory the gauge connection

Aµ tells how the internal degrees of freedom of a charged particle in representation

R of the gauge group (i.e. the vector ωi, with i = 1, . . . , dimR, describing its color

degrees of freedom) change as the particle moves along some given path γ. The way

the vector ωi rotates along γ depends on the initial and final points of γ, as well as

on γ itself.

If we take the path to be closed, this tells how the vector differs from its starting

value (hence measuring the holonomy). In this case one can form a gauge invariant

object, the Wilson loop, defined as

WR(γ) = TrRP exp

(
i

∫

γ

Aµdx
µ

)
, (10.21)

where P is the path-ordering operator (meaning that when expanding the exponen-

tial the matrices Aµ = AaµTa are ordered so that those at earlier times are placed to

the left). The Wilson loop is a gauge invariant but non-local operator.

What does this have to do with confinement? It turns out that the VEV of the

Wilson loop operator is an order parameter for confinement! Let us see how this

comes. The VEV of the Wilson loop reads

〈WR(γ)〉 =

∫
DATrRP exp

(
i

∫

γ

Aµdx
µ

)
eiS (10.22)

where S is the action. Let us take as γ the closed path in Figure 10.7 and compute

the VEV of the corresponding Wilson loop in the fundamental representation. A

physical interpretation of such a path can be thought of as having put a quark q

and an anti-quark q at some distance L and then compute the interaction potential

as a function of time. Equivalently, one can think of creating a q/q pair out of the

vacuum at some time in the past. These then propagate for a time T before they

annihilate back in the vacuum.
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Figure 10.7: A rectangular Wilson loop in the fundamental representation of the

gauge group G.

Let us work in Euclidean space. If we take the time T to be very large, eventually

T → ∞, the path integral projects the system onto lowest energy states. Before q

and q appear and after they disappear this energy is zero, while in between this is

V (L), the potential energy between the two quarks. Hence in this limit we get

lim
T→∞
〈Wf (γ)〉 ∼ e−V (L)T =

{
e−σLT = e−σA[γ] Confinement

e−V0T = e−
V0
2
P [γ] Charge screening

(10.23)

where we have considered the cases of a confining potential V ∼ σL (as for YM

or SYM) and a charge screening one V ∼ V0 (as for QCD), respectively. A is the

area enclosed by γ and P its perimeter. The second equality in the second equation

holds because in the limit T →∞ we get P = 2T + 2L ' 2T .

So we learn that in a confining theory, for representations with non-vanishing

N -ality (as for instance the fundamental representation) the Wilson loop follows the

area law, while for unconfined theories (including those enjoying charge screening,

as QCD!) it follows the perimeter law, no matter the representation.

In the limit in which one takes the loop infinitely large, one could suspect, naively,

that, regardless the phase the theory enjoys both VEVs in eqs. (10.23) vanish, since

both the area and the perimeter become infinite. This is not correct. Infinities can

be re-absorbed by counterterms. These however are local, so for a line operator as

the Wilson loop one can regulate the perimeter but not the area. The upshot is

then that for γ → ∞ in a confining theory the VEV of the Wilson loop operator

vanish while for a theory where the charge is screened it goes to a constant

〈Wf (γ)〉 = 0 YM, SYM

〈Wf (γ)〉 6= 0 QCD
(10.24)
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In this sense, the VEV of the Wilson loop operator can be regarded as an order

parameter for (strict) confinement.

Eq. (10.24) may suggest the existence of a symmetry which is preserved or spon-

taneously broken depending whether the theory confines (YM,SYM) or enjoys charge

screening (QCD). Well, yes and no.

Yes, because there is indeed a symmetry. However, this symmetry is not an

ordinary symmetry under which local operators are charged, but rather a one-form

symmetry under which line operators, as the Wilson loop, are charged. Higher-form

symmetries can only be abelian and in this case the relevant symmetry is discrete,

related to the centre of the gauge group, Z(1)
N for G = SU(N) (the upper index refers

to the symmetry being a one-form symmetry). According to eq. (10.24), YM and

SYM do preserve such symmetry.

No, because the non-vanishing VEV for the Wilson loop in QCD does not cor-

respond to a spontaneous symmetry breaking. This is because QCD breaks the

one-form symmetry explicitly, so there is not a symmetry to start with. A way to

understand why this is the case is as follows. In QCD, besides the Wilson loop,

one can construct a different gauge invariant line operator, a Wilson line with a

quark and an antiquark (which are part of the theory) at its two ends. Locally,

this dressed line operator has the same charge as the Wilson loop but this charge

is not a well defined quantum number. Indeed, the sphere measuring the flux and

hence the charge of the Wilson line, can be continuously deformed into a sphere not

linking the defect anymore, hence measuring now a vanishing charge, as shown in

Figure 10.8. This is clearly inconsistent (in other words, the charge operator is not

topological, this being a necessary condition for the symmetry to act faifthfully on

charged operators).

A theory for which the Wilson loop could have a non-vanishing VEV but where,

unlike QCD, this would indicate a spontaneous breaking of the one-form symmetry

would be for example SU(N) YM coupled to adjoint scalars. Being the scalars in the

adjoint, whose N-ality is 0, (open) Wilson lines are now not well-defined operators

since they cannot be made gauge invariant (there are no local charged operators they

can end on). Therefore, the one-form symmetry is now a well-defined symmetry of

the theory. If a Higgs-like potential exists and vacua are at non-vanishing scalar

field VEV the gauge group would be broken as SU(N)→ U(1)N−1 and the massless

spectrum would be made just of N−1 photons. The potential between test particles

would go as 1/r, so Coulomb-like. Computing the VEV of the Wilson loop of Figure
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Wilson loop

Figure 10.8: Ill defined one-form symmetry in QCD. The sphere measuring the

one-form charge (the light grey circle in the figure) cannot unwind a Wilson loop

operator while it can unwind a Wilson line, hence measuring a different charge upon

continuous deformations.

10.7 one would get a non-vanishing result

lim
γ→∞
〈Wf (γ)〉 ∼ lim

T,L→∞
e−V (L)T = lim

T,L→∞
e−T/L 6= 0 . (10.25)

Since the one-form symmetry is now a symmetry of the theory, a non-vanishing

VEV for the Wilson loop would indicate the spontaneous breaking of the one-form

symmetry. Quite interestingly, it turns out that in the IR Z(1)
N is enhanced to

U(1)N−1 and therefore the non-vanishing VEV (10.25) breaks a continuous one-form

symmetry, the N − 1 massless photons being the corresponding Goldstone bosons

(more precisely, the enhancement is to [U(1)× U(1)]N−1, the second abelian factor

being related to a magnetic one-form symmetry we will say more about in Section

12.5, but which does not play any crucial role in the present dicussion)! So, for

adjoint YM a vanishing or non-vanishing VEV for the Wilson loop operator would

indeed correspond to a symmetry being preserved (confining phase) or spontaneously

broken (Coulomb phase), respectively.

10.2 Phases of gauge theories: examples

After this detour on ”the meaning of confinement” and the different ways in which

confinement is realized in a sample of UV-free gauge theories, we would like to
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consider, in more general terms, which kind of phases a generic gauge theory can

enjoy. There are basically three qualitatively different such phases:

• Higgs phase: the gauge group G is spontaneously broken, all vector bosons

obtain a mass.

• Coulomb phase: vector bosons remain massless and mediate 1/r long range

interactions. This phase can be either interacting (this is sometime what is

referred to as actual Coulomb phase) or free, meaning that asymptotic states

do not interact, at low enough energy.

• Wilson or confining phase: color sources, like quarks, gluons, etc..., are bound

into color singlets. As discussed before, this can be realized as charge screening

or strict confinement, depending on the details of the theory under considera-

tion.

It is worth notice that the Coulomb phase is not specific to abelian gauge theories,

as QED. For example, a non-abelian gauge theory with enough matter content

may become IR-free, giving a long-range potential between color charges V (r) ∼
a(r)×1/r, with a(r) a coefficient decreasing logarithmically with r. And, as we will

see in the following, also interacting non-abelian Coulomb phases can exist.

There can of course be intermediate situations, where for instance the original

gauge group is Higgsed down to a subgroup H, which then confines, or is in a

Coulomb phase (this is what happens in the SM of electroweak interactions or in

the adjoint YM example discussed in previous section). In these cases the phase of

the gauge theory is defined by what happens to H in the vacua, regardless of the

fate of the original gauge group G.

Below we consider two examples which will hopefully clarify the meaning of some

of above statements, but also point out some subtleties one could encounter when

dealing with concrete models.

10.2.1 Coulomb phase and free phase

Let us consider SQED, whose structure we have discussed in Lecture 5. The scalar

potential of SQED reads

V = m2|φ−|2 +m2|φ+|2 +
1

2
e2
(
|φ+|2 − |φ−|2

)2
, (10.26)
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where φ− and φ+ are the scalar fields belonging to the two chiral superfields Φ−

and Φ+ with electric charge ±1 respectively, and a superpotential mass term W =

mΦ−Φ+ has been also added. Let us consider massive and massless cases separately.

• m 6= 0. In this case the vacuum is at 〈φ−〉 = 〈φ+〉 = 0. Heavy static probe

charges would experience a potential

V ∼ α(r)

r
, α(r) ∼ 1

log r
. (10.27)

However, the logarithmic fall-off is frozen at distance r = m−1: for larger

distances α stops running. Hence, the asymptotic potential reads

V (r) ∼ α∗
r

, α∗ = α(r = m−1) , (10.28)

which simply says that massive SQED is in a (interacting) Coulomb phase.

• m = 0. In this case the potential gets contributions from D-terms only. Now

there are more vacua, actually a moduli space of vacua. Besides the origin

of field space, also any 〈φ−〉 = 〈φ+〉 6= 0 satisfies the D-equations. One

can parameterize the supersymmetric vacua in terms of the gauge invariant

combination u = 〈φ−φ+〉. We have then two options. When u 6= 0 we are in a

Higgs phase, the gauge group U(1) is broken and the photon becomes massive

(the theory is described by a massive vector multiplet and a massless chiral

multiplet). When instead u = 0 the gauge group remains unbroken. Still, we

are in a different phase with respect to the massive case. The basic difference

is that the coupling α(r) does not stop running, now, since m = 0, and hence

it ends-up vanishing at large enough distances. In other words, the potential

again reads

V (r) ∼ α(r)

r
, α(r) ∼ 1

log r
(10.29)

but now α = 0 for r →∞. This is called a free Coulomb phase. At low energy

(large enough distances) the theory is a theory of free massless particles.

Let us emphasize again that both the interacting and the free Coulomb phases

are not specific to abelian gauge theories, and can be enjoyed also by non-abelian

theories. We will see examples of this phenomenon soon.
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10.2.2 Continuously connected phases

Another important aspect we want to emphasize is that there can exist instances

where there is no gauge-invariant distinction between different phases. Let us show

this non-trivial fact with a simple example.

Let us consider a SU(2) gauge theory with a SU(2) scalar doublet φ (a Higgs

field), a SU(2) singlet eR and a SU(2) doublet L = (νL, eL), with interaction La-

grangian

Lint = LφeR + h.c. . (10.30)

This is nothing but a one-family EW theory model.

As it happens in standard EW theory, this theory can be realized in the Higgs

phase, where the field φ gets a non-vanishing VEV

〈φ〉 =
1√
2

(
0

v

)
. (10.31)

In this phase all three gauge bosons get a mass, the neutrino νL remains massless

while the electron gets a mass me = v/
√

2.

Suppose instead that the theory were realized in a different phase, a confinement

phase. In such phase one would not observe massless gauge bosons (as above) while

fermions and Higgs bosons would bind into SU(2) singlet combinations

EL = φ†L , NL = εabφaLb , eR (10.32)

in terms of which the interaction Lagrangian becomes

Lint = mELeR + h.c. , (10.33)

where m ∼ Λ. So we see that EL and eR pair-up and become massive while NL

remains massless. The spectrum in this phase is the same as that of the Higgs

phase: there is no gauge-invariant distinction between the two phases! Consistently,

also a Wilson loop computation cannot tell in which phase the theory is. In a

Higgs phase gauge bosons are massive and cannot mediate long range forces, so the

potential between static test charges goes to a constant asymptotically. Confinement

in presence of massless (charged) matter is realized as charge screening and also in

this case the force drops to zero asymptotically. Hence, in both case the VEV

of a Wilson loop follows a perimeter law, and it cannot distinguish between the

two phases. This said, there are of course quantitative differences between the
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two phases: for instance, EL is a composite field and its pair production would be

suppressed by a form factor which is not observed in real world EW theory. Still,

we need experiments to discern between the two phases and understand which one

is actually realized in Nature.

The general lesson we want to convey is that by adjusting some parameter of

a gauge theory, sometime one can move continuously from one type of phase to

another. In this non-abelian example, there is no invariant distinction between

Higgs and Wilson phase. Theories of this kind are said to enjoy complementarity.

We will encounter more situations of this sort in the following.

10.3 N=1 SQCD: perturbative analysis

In what follows we will consider SQCD and its quantum behavior (including non-

perturbative effects) and try to answer the basic questions about its dynamical

properties in the most analytical possible way. Let us first summarize what we

have already learned about the classical and quantum - though perturbative only -

behavior of SQCD.

SQCD is a renormalizable supersymmetric gauge theory with gauge group SU(N),

F flavors (Q, Q̃) and no superpotential. Interaction terms are present and come

from D-terms. The group of continuous global symmetries at the quantum level is

GF = SU(F )L × SU(F )R × U(1)B × U(1)R with the following charge assignment

SU(F )L SU(F )R U(1)B U(1)R

Qi
a F • 1 F−N

F

Q̃b
j • F -1 F−N

F

As already emphasized, for pure SYM the R-symmetry is anomalous, and only

a Z2N subgroup of U(1)R survives at the quantum level.

What do we know about the quantum properties of SQCD? We know there is a

huge moduli space of supersymmetric vacua, described by the D-term equations

DA = Q†
b

i (TA)cbQ
i
c − Q̃ b

i (TA)cb Q̃
†
i

c = 0 , (10.34)

where A = 1, 2, . . . , N2 − 1 is an index in the adjoint representation of SU(N).

Up to flavor and global gauge rotations, a solution of the above equations can

be found for both F < N and F ≥ N . For F < N one can show that on the moduli
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space (10.34) the matrices Q and Q̃ can be put, at most, in the following form

Q =




v1 0 . . . 0 0 . . . 0

0 v2 . . . 0 0 . . . 0

. . . . . . . . . . . . 0 . . . 0

0 0 . . . vF 0 . . . 0


 = Q̃T (10.35)

Hence, at a generic point of the moduli space the gauge group is broken to SU(N −
F ). The (classical) moduli space can be parameterized in terms of mesons fields

M i
j = Qi

aQ̃
a
j (10.36)

without any classical constraint between them, since the meson matrix has maximal

rank.

For F ≥ N the matrices Q and Q̃ can also be brought to a diagonal form on the

moduli space

Q =




v1 0 . . . 0

0 v2 . . . 0

. . . . . . . . . . . .

0 0 . . . vN

0 0 0 0

. . . . . . . . . . . .

0 0 0 0




, Q̃T =




ṽ1 0 . . . 0

0 ṽ2 . . . 0

. . . . . . . . . . . .

0 0 . . . ṽN

0 0 0 0

. . . . . . . . . . . .

0 0 0 0




(10.37)

where |vi|2 − |ṽi|2 = a, with a a i-independent number. At a generic point of

the moduli space the gauge group is now completely broken. The moduli space

is efficiently described in terms of mesons and baryons but there exist classical

constraints between them, now. The mesons are again defined as in eq. (10.36)

but the meson matrix does not have maximal rank anymore. Baryons are gauge

invariant single trace operators made out of N fields Q respectively N fields Q̃, with

fully anti-symmetrized indices and read

Bi1...iF−N = εi1i2...iF−N j1...jN ε
a1a2...aN Qj1

a1
Qj2
a2
. . . QjN

aN

B̃i1...iF−N = εi1i2...iF−N j1...jN εa1a2...aN Q̃a1
j1
Q̃a2
j2
. . . Q̃aN

jN , (10.38)

where ai are gauge indices and il, jl are flavor indices.

As far as quantum correction are concerned, we know the exact (perturbative)

expression for the gauge coupling which, in the holomorphic scheme, reads

τ =
θYM

2π
+ i

4π

g2(µ)
=

b1

2πi
log

Λ

µ
, b1 = 3N − F and Λ = µ e2πiτ/b1 . (10.39)
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10.4 N=1 SQCD: non-perturbative dynamics

Our goal is to understand how the above picture is modified once non-perturbative

corrections are taken into account and get, if possible, quantum exact description

of the vacua of the theory and of the low energy dynamics around them. Given

the expression of the one-loop coefficient of the β-function (10.39), the region of

the parameter space where to gain such an understanding is harder it is obviously

F < 3N .

A generic prediction for a UV-free theory with a classical moduli space, as SQCD

is for F < 3N , is that quantum corrections are expected to modify the perturbative

analysis only near the origin of field space. Indeed, for large value of scalar field

VEVs, the gauge group gets broken (and the gauge coupling hence stops running)

for small values of the gauge coupling constant

e
− 8π2

g2(〈Q〉)
+iθYM =

(
Λ

〈Q〉

)3N−F

−→ 0 for 〈Q〉 → ∞ . (10.40)

This implies that for large field VEVs the gauge coupling freezes at a value g∗

where (semi)-classical analysis works properly. The smaller the field VEV the more

important are quantum corrections. Hence, generically, we expect non-perturbative

dynamics to modify the perturbative answer mostly near the origin of field space.
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g2(µ)

Figure 10.9: The gauge coupling running of a UV-free theory. The large 〈Q〉 region

is a weakly coupled region where classical analysis is correct, since the value at which

the gauge coupling stops running, g = g∗, is small.

This said, it also turns out that for any fixed value of N , several non-perturbative

dynamical properties change with the number of flavors, F . Hence, in what follows,

we will consider qualitative different cases separately.
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10.4.1 Pure SYM: gaugino condensation

We have already discussed this case, at a qualitative level. Let us first recall that this

is the only case in which there does not exist an anomaly-free R-symmetry. At the

quantum level, only a discrete Z2N R-symmetry survives. Promoting τ to a spurion

field and using holomorphy arguments, it is easy to see what the structure of the

non-perturbative generated superpotential should be. Let us first notice that the

operator e2πiτ/N has R-charge R = 2. Indeed, due to the transformation properties

of θYM under R-symmetry transformations, θYM → θYM + 2Nα, we have

e2πiτ/N → e2iαe2πiτ/N . (10.41)

Because of confinement, assuming a mass gap, the effective Lagrangian should de-

pend only on τ , and hence Weff , if any, should also depend only on τ . Imposing

R-symmetry, by dimensional analysis the only possible term reads

Weff = c µ3e2πiτ/N = cΛ3 . (10.42)

where c is an undetermined coefficient (which in principle could also be zero, of

course). This innocent-looking constant superpotential contribution contains one

crucial physical information. Given the presence of a massless strong interacting

fermion field (the gaugino), one could wonder whether in SYM theory gauginos

undergo pair condensation, as it is believed to happen in QCD, where quark bilinears

condense. Looking at the SYM Lagrangian

L =
1

32π
Im

[∫
d2θ τ TrWαWα

]
, (10.43)

we see that λαλα is the scalar component of WαWα and (minus) Fτ acts as a source

for it (recall we are thinking of τ as a spurion superfield, τ = τ +
√

2θψτ − θθFτ ).
Therefore, in order to compute the gaugino condensate one should just differentiate

the logarithm of the partition function Z =
∫
DV ei

∫
L with respect to Fτ . Under

the assumption of a mass gap, the low energy effective action depends only on

τ , since gauge fields have been integrated out, and it coincides with the effective

superpotential (10.42), giving for the gaugino condensate

〈λλ〉 = −16π
∂

∂Fτ
logZ = −16πi

∂

∂Fτ

∫
d2θWeff(τ) = 16πi

∂

∂τ
Weff(τ) (10.44)

where in doing the second step we have used the fact that

Weff = weff(τ) +
√

2
∂Weff

∂τ
θψτ − θθ

(
∂Weff

∂τ
Fτ +

1

2

∂2Weff

∂τ 2
ψ2
τ

)
.
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Plugging (10.42) in eq. (10.44) we get

〈λλ〉 = −32π2

N
cµ3e2πiτ/N ≡ aΛ3 , (10.45)

which means that if c 6= 0 gauginos do condense in SYM. Since gauginos have R = 1,

this implies that in the vacuum the Z2N symmetry is broken to Z2 and that there

are in fact N distinct (and isolated) vacua. All these vacua appear explicitly in the

above formula since the transformation

θYM → θYM + 2πk , (10.46)

which is a symmetry of the theory, sweeps out N distinct values of the gaugino

condensate

〈λλ〉 → e2iα〈λλ〉 , θYM → θYM + 2Nα ' θYM + 2πk (10.47)

where k = 0, 1, . . . , 2N − 1, and k = i and k = i + N give the same value of the

gaugino condensate. In other words, we can label the N vacua with N distinct

phases of the gaugino condensate (0, 2π 1
N
, 2π 2

N
, . . . , 2πN−1

N
), recall Figure 10.6.

This ends our discussion of pure SYM. It should be stressed that to have a

definitive picture we should find independent ways to compute the constant c in

eq. (10.42), since if it were zero, then all our conclusions would have been wrong (in

particular, there would not be any gaugino condensate, and hence we would have

had a unique vacuum preserving the full Z2N symmetry). We will come back to this

important point later.

10.4.2 F < N : the ADS superpotential

For F < N the classical analysis tells that there is a moduli space of complex

dimension F 2, parameterized by meson field VEVs. The question, again, is whether

an effective superpotential is generated due to strong coupling dynamics. This can

be answered using again holomorphy.

First, notice that the complexified gauge coupling, which we tread by Λ3N−F , is

not charged under SU(F )L × SU(F )R, while the only single trace operators made

of the meson matrix and invariant under the non-abelian flavor symmetry is detM .

The quantum numbers under the abelian symmetries of detM and Λ3N−F are

U(1)B U(1)A U(1)R

detM 0 2F 2(F −N)

Λ3N−F 0 2F 0
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The form of Weff can be fixed requiring it to be invariant under the non-abelian

global symmetry, SU(F )L× SU(F )R, with R-charge two, U(1)A and U(1)B charges

equal zero and dimension three. From the table above it follows that Weff should be

made by (a sum of) terms like

Weff ∼ Λ(3N−F )n (detM)p , (10.48)

where n, and p are integer numbers subject to the contraints

{
U(1)A : 0 = 2nF + 2pF

U(1)R : 2 = 2p(F −N)
−→

{
n = −p
p = −1/(N − F )

(10.49)

So we see that the only superpotential term which can be generated should have the

following form

Weff = cN,F

(
Λ3N−F

detM

) 1
N−F

, (10.50)

where, again, the overall constant, which generically will be some function of N and

F , is undetermined. Notice that in the range we are considering, F < N , both

3N − F and N − F are positive, so in the classical limit, Λ → 0, Weff vanishes,

as needed. The expression (10.50) is the celebrated Affleck-Dine-Seiberg (ADS)

superpotential.

In what follows we would like to analyze several properties of the ADS super-

potential, trying to understand where it may come from, physically, and eventually

determine the coefficient cN,F .

Let us consider again the classical moduli space. At a generic point of the moduli

space the SU(N) gauge group is broken to SU(N −F ). Suppose for simplicity that

all scalar field VEVs are equal, vi = v, recall expression (10.35). Clearly the theory

behaves differently at energies higher or lower than v. At energies higher than v the

gauge coupling running is that of SQCD with gauge group SU(N) and F massless

flavors. At energies lower than v all matter fields become massive (and should be

integrated out) and the theory behaves as pure SYM with gauge group SU(N −F ).

Hence the gauge coupling runs differently at energies larger or smaller than v and,

accordingly, the dynamical generated scale is also different. More precisely we have

E > v
4π

g2(µ)
=

3N − F
2π

log
µ

Λ

E < v
4π

g2
L(µ)

=
3(N − F )

2π
log

µ

ΛL

, (10.51)
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where ΛL is the strong coupling scale of the low energy effective theory. If supersym-

metry is preserved, the two above equations should match at E = v. This is known

as scale matching (that there are no threshold factors reflects a choice of subtraction

scheme, on which threshold factors depend; this is the correct matching in, e.g. the

DR scheme). Hence we get

Λ
3(N−F )
L = Λ3N−F 1

v2F
=

Λ3N−F

detM
−→ Λ3

L =

(
Λ3N−F

detM

) 1
N−F

. (10.52)

This implies that

Weff = cN,F

(
Λ3N−F

detM

) 1
N−F

= cN,FΛ3
L , (10.53)

which means that

cN,F = cN−F,0 . (10.54)

Besides getting a relation between c’s for different theories (recall these are (N,F )-

dependent constants, in general), we also get from the above analysis some physical

intuition for how the ADS superpotential is generated. One can think of Weff being

generated by gaugino condensation of the left over SU(N − F ) gauge group (recall

that gaugino condensation is in one-to-one correspondence with the very existence

of an effective superpotential for pure SYM theory: the two are fully equivalent

statements).

Let us now start from SQCD with a given number of flavors and suppose to give

a mass m to the F -th flavor. At high enough energy this does not matter much.

But below the scale m the theory behaves as SQCD with one flavor less, as far as

the gauge coupling running is concerned. More precisely, we have

E > m
4π

g2(µ)
=

3N − F
2π

log
µ

ΛF

E < m
4π

g2
L(µ)

=
3N − (F − 1)

2π
log

µ

ΛL,F−1

, (10.55)

where ΛF refers to the strong coupling scale of SQCD with F flavors and ΛL,F−1

is the strong coupling scale of the low energy effective theory, SQCD with F − 1

flavors. Matching the scale at E = m we obtain the following relation between ΛF

and ΛL,F−1

Λ3N−F+1
L,F−1 = mΛ3N−F

F . (10.56)

Let us now use holomorphic decoupling, to connect the theories above and below the

scale m. The superpotential of SQCD with F − 1 massless flavors and one massive
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one reads

Weff = cN,F

(
Λ3N−F
F

detM

) 1
N−F

+mQFQ̃F . (10.57)

At low enough energy we can trade the equations of motion of mesons involving the

massive flavor by their F-term equations. The F-term equation for MF
i for i 6= F

implies MF
i = 0, and similarly for M i

F. So the meson matrix can be put into the

form

M =

(
M̃ 0

0 t

)
, t ≡MF

F , (10.58)

where M̃ is the meson matrix made out of F − 1 flavors. The F-term equation for

t gives

0 = − cN,F
N − F

(
Λ3N−F
F

det M̃

) 1
N−F

(
1

t

)1+ 1
N−F

+m (10.59)

which implies

t =

[
N − F
cN,F

m

(
Λ3N−F
F

det M̃

) 1
F−N

] F−N
N−F+1

. (10.60)

Plugging this back into eq. (10.57) one gets

Weff = (N − F + 1)

(
cN,F
N − F

) N−F
N−F+1

(
mΛ3N−F

F

det M̃

) 1
N−F+1

. (10.61)

We can now use eq. (10.56) and get for the effective superpotential of SQCD with

F − 1 flavors, which is what the theory reduces for at low enough energies,

Weff = (N − F + 1)

(
cN,F
N − F

) N−F
N−F+1

(
Λ3N−F+1
L,F−1

det M̃

) 1
N−F+1

= cN,F−1

(
Λ3N−F+1
L,F−1

det M̃

) 1
N−F+1

. (10.62)

giving finally the following relation

cN,F−1 = (N − F + 1)

(
cN,F
N − F

) N−F
N−F+1

. (10.63)

Combining this result with the relation we found before, eq. (10.54), one concludes

that all coefficients are related one another as

cN,F = (N − F ) c
1

N−F , (10.64)
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with a unique common coefficient c to be determined. This result tells that if the

ADS superpotential can be computed exactly for a given value of F (hence fixing

c), then we know its expression for any other value!

Let us consider the case F = N − 1, which is the extreme case in the window

F < N . In this case

cN,N−1 = c . (10.65)

Interestingly, for F = N − 1 the gauge group is fully broken, so there is no left-over

strong IR dynamics. In other words, any term appearing in the effective action

should be visible in a weak-coupling analysis. Even more interesting, the ADS

superpotential for F = N−1 is proportional to Λ2N+1 which is nothing but how one-

instanton effects contribute to gauge theory amplitudes (recall that for F = N − 1

b1 = 2N +1, and e−Sinst ∼ Λb1), suggesting that in this case the ADS superpotential

is generated by instantons. At weak coupling, a reliable one-instanton calculation

can indeed be done and gives c = 1. Via eq. (10.64) this result hence fixes uniquely

cN,F for arbitrary values of N and F as

cN,F = N − F , (10.66)

giving finally for the ADS superpotential the following exact expression

WADS = (N − F )

(
Λ3N−F

detM

) 1
N−F

. (10.67)

Notice that this also fixes the coefficient of the effective superpotential of pure SYM

theory which is

WSYM = N Λ3 , (10.68)

implying, via eq. (10.44), that gauginos do condense!

Let us finally see how does the ADS superpotential affect the moduli space of

vacua. From the expression (10.67) we can compute the potential, which is expected

not to be flat anymore, since the effective superpotential WADS ADS depends on

scalar fields (through the meson matrix). The potential

VADS =
∑

i

∣∣∣∂WADS

∂Qi

∣∣∣
2

+
∣∣∣∂WADS

∂Q̃i

∣∣∣
2

(10.69)

is minimized at infinity in field space, namely for Q = Q̃→∞, where it reaches zero,

see Figure 10.10. This can be easily seen noticing that, qualitatively, detM ∼MF ,

which implies that VTVY ∼ |M |−
2N
N−F , which is indeed minimized at infinity. This
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No stable vacuum

Figure 10.10: The runaway behavior of the quantum corrected potential of SU(N)

SQCD with F < N .

means that the theory does not admit any stable vacuum at finite distance in field

space: the (huge) classical moduli space is completely lifted at the quantum level!

This apparently strange behavior makes sense, in fact, if one thinks about it for a

while. For large field VEVs, eventually for v →∞, we recover pure SYM which has

indeed supersymmetric vacua (that is, zero energy states). This is part of the space

of D-term solutions of SQCD; any other configuration would have higher energy

and would hence be driven to the supersymmetric one. Let us suppose this picture

were wrong and that SQCD had a similar behavior as QCD: confinement and chiral

symmetry breaking. Then we would have expected a quark condensate to develop

〈ψQiψQ̃j〉 6= 0. Such condensate, differently from a gaugino condensate (which we

certainly have), would break supersymmetry, since it is nothing but an F-term for

the meson matrix M j
i . Hence this configuration would have E > 0 and thus any

configuration with E = 0 would be preferred. The latter are all configurations like

(10.35) which, by sending vi all the way to infinity, reduce to SYM, which admits

supersymmetry preserving vacua. The ADS superpotential simply shows this.

There is a caveat in all this discussion. In our analysis we have not included

wave-function renormalization effects. The latter could give rise, in general, to non-

canonical Kähler potential terms, which could produce wiggles or even local minima

in the potential. However, at most this could give rise to metastable vacua (which our

holomorphic analysis cannot see), but it would not lift the absolute supersymmetric

minima at infinity, a region where the Kähler potential is nearly canonical in the

UV-variables Q and Q̃. On the other hand, no supersymmetric minima can arise at

finite distance in field space. These would correspond to singularities of the Kähler
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mass gap correct)

Figure 10.11: The effect of a non-canonical Kähler potential on the ADS potential.

The picture on the right cannot hold if the assumption of mass gap for pure SYM

is correct.

metric, implying that at those specific points in field space extra massless degrees

of freedom show-up. This cannot be, if the assumption of mass gap for pure SYM

(to which the theory reduces at low enough energy, at generic points on the classical

moduli space) is correct.

10.4.3 Integrating in and out: the linearity principle

The superpotential of pure SYM is sometime written as

WVY = NS

(
1− log

S

Λ3

)
(10.70)

where S = − 1
32π2 TrWαWα is the so-called glueball superfield and the subscript VY

stands for Veneziano-Yankielowicz. Let us first notice that integrating S out (recall

we are supposing pure SYM has a mass gap) we get

∂WVY

∂S
= N

(
1− log

S

Λ3

)
+NS

(
− 1

S

)
= 0 , (10.71)

which implies

〈S〉 = Λ3 . (10.72)

Plugging this back into the VY superpotential gives

WTVY = NΛ3 , (10.73)

which is nothing but the effective superpotential of pure SYM we have previously

derived, eq. (10.68). From this view point the two descriptions seem to be equivalent,
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at least as far as low enough energies are concerned: the effective superpotential

(10.68) can be obtained from the VY superpotential by integrating S out.

Analogously, the ADS superpotential is sometime written as

WTVY = (N − F )S

[
1− 1

N − F log

(
SN−F detM

Λ3N−F

)]
, (10.74)

where TVY stands for Taylor-Veneziano-Yankielowicz. Integrating S out one now

recovers the ADS superpotential. Instead, adding a mass term for all matter fields, ∼
TrmM , and integrating M out, from the TVY superpotential one gets, consistently,

the VY superpotential.

The fact is that one can also revert the procedure, and obtain the VY and TVY

superpotentials starting from the expressions (10.68) and (10.67) and integrating

the glueball superfield S in. At first sight this could look strange since one does not

expect the Wilsonian RG to be invertible, of course. The TVY or VY superpotentials

include one more dynamical field with respect to (10.67)-(10.68), namely the glueball

superfield S, so we expect them to contain some dynamical information more. As

we are going to discuss below, this intuition is not correct: the two descriptions are

completely equivalent.

Let us try to be as general as possible and consider a supersymmetric gauge the-

ory admitting also a tree-level superpotential Wtree. Given a set of chiral superfields

Φi, the generic form of such superpotential is

Wtree =
∑

r

λrXr(Φi) , (10.75)

where λr are coupling constants and Xr gauge invariant combinations of the chiral

superfields Φi. In general, one would expect the non-perturbative generated super-

potential Wnon−pert to be a (holomorphic) function of the couplings λr, the gauge

invariant operators Xr, and of the dynamical generated scales Λs (we are supposing,

to be as most general as possible, the gauge group not to be simple, hence we allow

for several dynamical scales). In fact, as shown by Intriligator, Leigh and Seiberg,

Wnon−pert does not depend on the couplings λr. This fact implies that the full ef-

fective superpotential (which includes both the tree level and the non-perturbative

contributions) is linear in the couplings. This is sometime referred to as linearity

principle. The upshot is that, in general, we have

Weff =
∑

r

λrXr +Wnon−pert(Xr,Λs) . (10.76)
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Let us focus on the dependence on, say, λ1. At low enough energy (where the

superpotential piece dominates - let us suppose for now that X1 is massive) we

can integrate out the field X1 by solving its F-term equation, which, because of

eq. (10.76), reads

λ1 = − ∂

∂X1

Wnon−pert . (10.77)

The above equation is the same as a Legendre transform. In other words, the

coupling λr and the gauge invariant operator Xr behave as Legendre dual variables.

Solving for X1 in terms of λ1 and all other variables, and substituting in eq. (10.76),

one obtains an effective superpotential with a complicated dependence on λ1 but

where X1 has been integrated out. Repeating the same reasoning for all Xr one can

integrate out all fields and end-up with an effective superpotential written in terms

of couplings only

Weff(λr,Λs) =

[∑

r

λrXr +Wnon−pert(Xr,Λs)

]

Xr(λ,Λ)

. (10.78)

The point is that the Legendre transform is invertible. Therefore, as we can integrate

out a field, we can also integrate it back in, by reversing the procedure

〈Xr〉 =
∂

∂λr
Weff(λr,Λs) . (10.79)

The reason why the two descriptions, one in terms of the fields, one in terms of the

dual couplings, are equivalent is because we have not considered D-terms. D-terms

contain the dynamics (e.g. the kinetic term). Hence, if we ignore D-terms, namely

if we only focus on holomorphic terms as we are doing here, integrating out or in a

field is an operation which does not make us loose or gain information. As far as the

holomorphic part of the effective action is concerned, a field and its dual coupling

are fully equivalent.

What about the dynamical scales Λs? Can one introduce canonical pairs for

them, too? The answer is yes, and this is where the physical equivalence between

ADS and TVY superpotentials we claimed about becomes explicit. Let us start by

considering pure SYM. One can write the gauge kinetic term as a contribution to

the tree level superpotential in the sense of eq. (10.75)

Wtree =
τ(µ)

16πi
TrWαWα = 3N log

(
Λ

µ

)
S , (10.80)

where S is a X-like field and 3N log (Λ/µ) the dual coupling. In other words, one

can think of S and log Λ as Legendre dual variables. From this view point, the SYM
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superpotential (10.68) is an expression of the type (10.78), where the field S has

been integrated out and the dependence on the dual coupling is hence non-linear.

Indeed (10.68) can be re-written as

WSYM = NΛ3 = Nµ3e
1
N

3N log Λ
µ , (10.81)

which explicitly shows that this is the case. Using now eq. (10.79) applied to this

dual pair, one gets

〈S〉 =
1

3N
Λ
∂

∂Λ
Weff = Λ3 . (10.82)

Therefore

Wnon−pert(S) = Weff −Wtree = NS − 3N log

(
Λ

µ

)
S = NS −NS log

S

µ3
, (10.83)

which is correctly expressed, according to the linearity principle, in terms of S only,

and not the coupling, log Λ. We can now add the two contributions, the one above

and (10.80) and get for the effective superpotential an expression in the form (10.76)

Weff = Wnon−pert +Wtree = NS

(
1− log

S

Λ3

)
(10.84)

which is nothing but the VY superpotential! The same reasoning can be applied to

a theory with flavor and/or with multiple dynamical scales. The upshot is one and

the same: integrating in (TVY) or out (ADS) fields holomorphically, are operations

which one can do at no cost. The two descriptions are physically equivalent.

To sum-up, the relation between couplings and dual field variables for the most

generic situation is

Couplings b1
1 log Λ1

µ
b2

1 log Λ1

µ
. . . λ1 λ2 . . .

Fields S1 S2 . . . X1 X2 . . .

Suppose now that the mass spectrum of such generic theory is as in Figure 10.12:

the X’s are a set of massless fields, the X ′’s are massive ones, and the S’s are glueball

superfields (which are all massive because of mass gap of the pure glue theory, i.e.

all Λ′s 6= 0).

The most Wilsonian thing to do would be to describe the effective superpotential

in terms of fields X, and couplings λ′ and Λ

Weff = Weff(X,λ′,Λ) . (10.85)
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Figure 10.12: The mass spectrum of a generic theory.

In this sense, the ADS superpotential is more Wilsonian than the TVY. Seemingly,

for pure SYM the most Wilsonian thing to do is to express the effective superpo-

tential as a function of the coupling only (since the glueball superfield is massive),

namely as Weff = NΛ3. However, since (as far as the holomorphic part of the ef-

fective action is concerned) integrating in and out fields are equivalent operations,

one can very well choose to write down the effective superpotential by integrating X

fields out and X ′ and S fields in (or anything in between these two extreme cases)

Weff = Weff(λ,X ′, S) , (10.86)

getting an equivalent way of describing the low energy effective theory superpoten-

tial. This said, one should bare in mind that as far as the massless fields X, there

is no actual energy range for which integrating them out makes real physical sense,

and this would be indicated by the Kähler potential of the effective theory being

ill-defined (in other words, there is no energy range in which the kinetic term of such

massless fields is negligible, since the energy is always bigger or equal than the field

mass, which is vanishing). On the contrary, in presence of a mass gap, that is in the

absence of X-like fields, the two descriptions, one in terms of couplings the other in

terms of fields, are equivalent, since now no singularities are expected in the Kähler

potential. And this is a more and more exact equivalence the lower the energy.

10.4.4 F ≥ N : persistent moduli space

Let us now go back to our analysis of the IR dynamics of SQCD with gauge group

SU(N) and F flavors. What about the case F ≥ N? As we are going to see,
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things change drastically. For one thing, a properly defined effective superpotential

cannot be generated. Using couplings and fields we have (mesons, baryons and

the dynamical scale Λ), there is no way of constructing an object respecting all

symmetries, with the correct dimension, and being vanishing in the classical limit.

The consequence is that for F ≥ N the classical moduli space is not lifted. This

does not mean that nothing interesting happens. For instance, the moduli space can

be deformed by strong dynamics effects. Moreover, the perturbative analysis does

not tell us what the low energy effective theory looks like; as we will see instead, in

some cases we will be able to make very non-trivial statements about the way light

degrees of freedom interact, and in turn about the phase the theory enjoys.

In what follows, we will consider qualitatively different cases separately. Let us

start analyzing the case F = N . It is easy to see that in this case all gauge invariant

operators have R-charge R = 0, so one cannot construct an effective superpotential

with R = 2. However, as we are going to show, something does happen due to

strong dynamics.

Besides the mesons, there are now two baryons

B = εa1a2...aN Q1
a1
Q2
a2
. . . QN

aN

B̃ = εa1a2...aN Q̃a1
1 Q̃

a2
2 . . . Q̃aN

N .

The classical moduli space is parameterized by VEVs of mesons and baryons. There

is, however, a classical constraint between them

detM −BB̃ = 0 (10.87)

(this comes because for N = F we have that detQ = B and det Q̃ = B̃ and

the determinant of the product is the product of the determinants). One can ask

whether this classical constraint is modified at the quantum level. In general, one

could expect the quantum version of the above classical constraint to be

detM −BB̃ = aΛ2N , (10.88)

where a is a (undetermined for now) dimensionless and charge-less constant. One

can get easily convinced that this is the only possible modification compatible with

all physical requirements. First it has the correct physical dimension, namely the

same as the l.h.s, ∆ = 2N . Second, it correctly vanishes in the classical limit, Λ→ 0.

Third, it has vanishing R-charge and U(1)A charge 2N , as the l.h.s has. Finally, it

is suggestive that the power that Λ enters in eq. (10.88) is the one-loop coefficient of
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the β-function and is exactly that associated with a one instanton correction, since

for N = F we have for the instanton action

e−Sinst ∼ e
− 8π2

g2
+iθYM ∼ Λ2N . (10.89)

So, there are no reasons not to allow for a modification as (10.88), modulo the

constant a which can very well be vanishing, after all. So, given that in principle

a modification like (10.88) is allowed, everything boils down to determine whether

the constant a is vanishing or has a finite value.

The constraint (10.88) can be implemented, formally, by means of a Lagrange

multiplier, allowing a superpotential

W = A
(

detM −BB̃ − aΛ2N
)

(10.90)

where A is the Lagrange multiplier, whose equation of motion is by construction the

constraint (10.88). The interesting thing is that one can use holomorphic decoupling

to fix the constant a. Adding a mass term for the N -th flavor, the low energy

theory reduces to SQCD with F = N − 1. Imposing that after having integrated

out the N -th flavor one obtains an effective superpotential which matches the ADS

superpotential for F = N − 1, fixes a = 1, that is

detM −BB̃ = Λ2N . (10.91)

So the quantum constraint is there, after all. Actually, it is necessary for it to

be there in order to be consistent with what we already know about the quantum

properties of SQCD with F < N !

Several comments are in order at this point.

F = N SQCD is the first case we meet where a moduli space of supersymmetric

vacua persists at the quantum level. Still, the quantum moduli space is different

from the classical one. The moduli space (10.87) is singular. It has a singular

submanifold reflecting the fact that on this submanifold additional massless degrees

of freedom arise. This is the submanifold where not only (10.87) is satisfied, but also

d(detM−BB̃) = 0, which makes the tangent space singular and therefore good local

coordinates not being well-defined. This happens whenever baryon VEVs vanish,

B = B̃ = 0, and the meson matrix has rank k ≤ N − 2 since

d(detM −BB̃) = minor{M i
j} dM i

j −BdB̃ − B̃dB , (10.92)

and for this to be zero each term should vanish separately. Note that when only

one of the two baryon operators vanishes (B = 0, B̃ 6= 0 or viceversa) the rank of
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M can be as large as N − 1 since detM = detQ det Q̃. In this case minor{M i
j} 6= 0

implying that also d(detM −BB̃) 6= 0 and the metric is hence not singular.

On the submanifold where (10.92) vanishes a SU(N−k) gauge group remains un-

broken, and corresponding gluons (as well as some otherwise massive matter fields)

remain massless. The quantum moduli space (10.91) is instead smooth. Basically,

when B = B̃ = 0 the rank of the meson matrix is not diminished since its deter-

minant does not vanish, now: everywhere on the quantum moduli space the gauge

group is fully broken.

Classically, the origin is part of the space of vacua. Hence, chiral symmetry can

be unbroken. At the quantum level, instead, the origin is excised (all the classical

singular submanifold, in fact), so in any allowed vacuum chiral symmetry is broken

(like in QCD). Moreover, being the moduli space non-singular, means there are no

massless degrees of freedom other than mesons and baryons. But the latter are

massless, since are moduli. Hence in SQCD with N = F there is no mass gap (as

for massless QCD). Note that because of supersymmetry, this means that there are

also massless composite fermions.

Obviously, the chiral symmetry breaking pattern is not unique. Different points

on the moduli space display different patterns. At a generic point, where all gauge

invariant operators get a VEV, all global symmetries are broken. But there are

submanifolds of enhanced global symmetry. For instance, along the mesonic branch,

defined as

M i
j = Λ2δij , B = B̃ = 0 , (10.93)

we have that

SU(F )L × SU(F )R × U(1)B × U(1)R −→ SU(F )D × U(1)B × U(1)R , (10.94)

a chiral symmetry breaking pattern very much similar to QCD. Along the baryonic

branch, which is defined as

M i
j = 0 , B = −B̃ = ΛN , (10.95)

we have instead

SU(F )L × SU(F )R × U(1)B × U(1)R −→ SU(F )L × SU(F )R × U(1)R , (10.96)

which is very different from QCD (the full non-abelian chiral symmetry is preserved).

Which phases does the theory enjoy? The classical singular submanifold is ex-

cised. Therefore, the gauge group is always (fully) broken and the theory is hence
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in a Higgs phase. Still, near the origin the theory can be better thought to be in a

confined phase, since the effective theory is smooth in terms of mesons and baryons,

and, moreover, we are in the strongly coupled region of field space, where an in-

herently perturbative Higgs description is not fully appropriate. In fact, there is no

order parameter which can distinguish between the two phases; there is no phase

transition between them (this is similar to the prototype example of one-family EW

theory we discussed already). Notice that the Wilson loop is not a useful order

parameter here since it follows the perimeter law, no matter where one sits on the

moduli space: we do not have strict confinement but just charge screening, as in

QCD, since we have (light) matter transforming in the fundamental representation

of the gauge group, and therefore flux lines can (and do) break. The qualitative

difference between classical and quantum moduli spaces, and their interpretation is

depicted in Figure 10.13.

Higgsing

Gluons Confinement  
(charge screening)

Classical 
moduli space

Quantum 
moduli space

Figure 10.13: Classical picture (left): at the origin the full gauge symmetry is re-

covered and chiral symmetry is not broken. Quantum picture (right): the (singular)

origin has been replaced by a circle of theories where chiral symmetry is broken

(rather than Higgs phase, this resembles more closely the physics of a confining

vacuum).

A non-trivial consistency check of this picture comes from computing ’t Hooft

anomalies in the UV and in the IR. Let us consider, for instance, the mesonic branch.

The charges under the unbroken global symmetries, SU(F )D × U(1)B × U(1)R of

the UV (fundamental) and IR (composite) degrees of freedom are as follows
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SU(F )D U(1)B U(1)R

ψQ F 1 −1

ψQ̃ F −1 −1

λ • 0 1

ψM Adj 0 −1

ψB • F -1

ψB̃ • −F −1

where we have used the constraint (10.91) to eliminate the fermionic partner of

TrM , so that ψM transforms in the Adjoint of SU(F )D. We can now compute

several triangular anomalies and see whether computations done in terms of UV

and IR degrees of freedom agree. We get

UV IR

SU(F )2
D U(1)R 2N 1

2
(−1) = −N F (−1) = −F

U(1)2
B U(1)R −2NF −2F 2

U(1)3
R −2NF +N2 − 1 −(F 2 − 1)− 1− 1 = −F 2 − 1

(10.97)

Since (crucially!) F = N we see that ’t Hooft anomaly matching holds. A similar

computation can be done for the baryonic branch finding again perfect agreement

between the UV and IR ’t Hooft anomalies. This rather non-trivial agreement

ensures that our low energy effective description in terms of mesons and baryons,

subject to the constraint (10.91), is most likely correct.

Let us move on and consider the next case, F = N + 1. The moduli space is

again described by mesons and baryons. We have N + 1 baryons of type B and

N + 1 baryons of type B̃ now

Bi = εij1...jN ε
a1a2...aN Qj1

a1
Qj2
a2
. . . QjN

aN

B̃i = εij1...jN εa1a2...aN Q̃a1
j1
Q̃a2
j2
. . . Q̃aN

jN .

As we are going to show, differently from the previous case, the classical moduli

space not only is unlifted, but is quantum exact, also. In other words, there are no

quantum modifications to it.

This result can be proved using holomorphic decoupling. The rationale goes as

follows. This system can be described, formally, by the following superpotential

Weff =
a

Λ2N−1

(
detM −BiM

i
j B̃

j
)
, (10.98)
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where i = 1, 2, . . . , N+1 is a flavor index, 2N−1 is the one-loop β-function coefficient

and a, as usual, is for now an undetermined coefficient. The above superpotential

has all correct symmetry properties, including the R-charge, which is indeed equal to

2. Notice, though, that since the rank of the meson matrix k ≤ N , then detM = 0,

classically. So the above equation should be really thought of as a quantum equation,

valid off-shell, so to say.

Let us now add a mass m to the F -th flavor. This gives

Weff =
a

Λ2N−1

(
detM −BiM

i
j B̃

j
)
−mMN+1

N+1 . (10.99)

Integrating out massive modes, which tantamounts to impose the F-flatness condi-

tions for MN+1
i,M

i
N+1, Bi and B̃i for i < N + 1, reduces the meson matrix and the

baryons to

M =

(
M̂ i

j 0

0 t

)
, B =

(
0i

B̂

)
, B̃ =

(
0i

˜̂
B

)
(10.100)

where now i, j = 1, . . . , N , and t = MN+1
N+1. The F-flatness condition for t reads

a

Λ2N−1

(
det M̂ − B̂ ˜̂B

)
−m = 0 (10.101)

which implies

det M̂ − B̂ ˜̂B =
1

a
mΛ2N−1 =

1

a
Λ2N

L , (10.102)

where in the last step we have used the relation (10.56). This shows that the ansatz

(10.98) is correct, since upon holomorphic decoupling we get exactly the quantum

constraint of F = N SQCD (and a gets fixed to one).

From eq. (10.98), by differentiating with respect to M i
j, Bi and B̃i we get the

moduli space equations (i.e. the classical, still quantum exact, constraints between

baryons and mesons) {
M · B̃ = B ·M = 0

detM · (M−1)
j
i −BiB̃

j = 0
(10.103)

where detM · (M−1)
j
i ≡ minor {M} ji (recall that above equations are on-shell, and

on-shell detM itself vanishes but the minor {M}ji does not!).

As a non-trivial check of this whole picture one can verify, choosing any preferred

point in the space of vacua, that ’t Hooft anomalies match (and hence that our

effective description holds).

Now that we know eq. (10.98) is correct, let us try to understand what does

it tell us about the vacuum structure of SQCD with F = N + 1. First, unlike
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F = N SQCD, the origin of field space, where all VEVs vanish, is part of the

moduli space. In such vacuum chiral symmetry is unbroken. This is an instance of a

theory displaying confinement (actually charge screening) without chiral symmetry

breaking. Theories with such a property, like F = N + 1 SQCD at the origin of field

space, are said to be s-confining.

Classically, the singularities at the origin are interpreted as extra massless gluons

(and matter fields), since the theory gets unhiggsed for vanishing values of matter

field VEVs. At the quantum level, the physical interpretation is different, since

because the theory is UV-free, the region around the origin is the more quantum

one. Singularities are more naturally associated with additional massless mesons

and baryons which pop-up since eqs. (10.103) are trivially realized at the origin and

therefore do not provide any actual constraint between meson and baryon compo-

nents. In other words, at the origin the number of mesonic and baryonic massless

degrees of freedom is larger than the dimension of the moduli space. This can be

checked, again, by ’t Hooft anomaly matching.

On the other hand, as F = N SQCD, this theory exhibits complementarity,

in the sense that one can move smoothly from a confining phase (near the origin)

to a Higgs phase (at large field VEVs) without any order parameter being able to

distinguish between them (again, the Wilson loop follows the perimeter law in both

phases).

One could try to go further, and apply the same logic to F = N + 2 (and on).

On general ground one would expect M i
j, B

ij, B̃ij (baryons have now two free flavor

indices) to be the dynamical degrees of freedom in the IR, and could then try to

construct an effective (off-shell) superpotential of the kind of (10.98). This, however,

does not work. Looking at the charges of the various gauge invariant operators and

dynamical scale Λ one can easily see that an effective superpotential with R-charge

equal to 2, correct physical dimensions and symmetries, cannot be constructed.

Indeed, the only SU(F )L × SU(F )R invariant superpotential one could construct

should be the obvious generalization of (10.98), that is

Weff ∼ detM −BilM
i
jM

l
m B̃

jm , (10.104)

which, to start with, does not have R = 2 but actually R = 4 (things get worse

the larger the number of flavors). Even ’t Hooft anomaly matching condition can

be proven not to work. For instance, choosing for simplicity the origin of field

space where meson and baryons are unconstrained, one can easily see that ’t Hooft
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anomalies do not match. More generally, it turns out that increasing F , ’t Hooft

anomaly coefficients computed using (unconstrained) IR degrees of freedom increase

much faster than those computed using UV degrees of freedom, and only for F =

N + 1 they match.

In fact, things turn out to be rather different. As we will show, the correct

degrees of freedom to describe the low energy effective dynamics of F = N+2 SQCD

are those of an IR-free theory (!) described by a supersymmetric gauge theory with

gauge group SU(2), F chiral superfields q transforming in the fundamental of SU(2),

F chiral superfields q̃ transforming in the anti-fundamental (hence F flavors) and

F 2 singlet chiral superfields Φ, plus a cubic tree level superpotential coupling q, q̃

and Φ. How that can be?

Two pieces of information are needed in order to understand this apparently

weird result and, more generally, to understand what is going on for F ≥ N + 2.

Both are due to Seiberg and in the following we will review them in turn.

10.4.5 Conformal window

A first proposal is that SQCD in the range 3
2
N < F < 3N flows to an interacting IR

fixed point (meaning it does not confine!). In other words, even if the theory is UV-

free and hence the gauge coupling g increases through the IR, at low energy g reaches

a constant RG-fixed value. Let us try to see how such claim comes about. The

SQCD β-function for the physical gauge coupling (which hence takes into account

wave-function renormalization effects) is

β(g) = − g3

16π2

3N − F [1− γ(g2)]

1−Ng2/8π2
, (10.105)

where γ is the anomalous dimension of matter fields and can be computed in per-

turbation theory to be

γ(g2) = − g2

8π2

N2 − 1

N
+O(g4) . (10.106)

Expanding formula (10.105) in powers of g2 we get

β(g) = − g3

16π2

[
3N − F +

(
3N2 − 2FN +

F

N

)
g2

8π2
+O(g4)

]
. (10.107)

From the above expression it is clear that there can exist values of F and N such

that the one-loop contribution is negative but the two-loops contribution is positive.
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This suggests that in principle there could be a non-trivial fixed point, a value of

the gauge coupling g = g∗, for which β(g∗) = 0.

Let us consider F slightly smaller than 3N . Defining

ε = 3− F

N
� 1 (10.108)

we can re-write the β-function as

β(g) = − g3

16π2

[
εN −

[
3(N2 − 1) +O(ε)

] g2

8π2
+O(g4)

]
. (10.109)

The first term inside the parenthesis is positive while the second is negative and

hence we see we have a solution β(g) = 0 at

g2
∗ =

8π2

3

N

N2 − 1
ε , (10.110)

up to O(ε2) corrections. This is called Banks-Zaks (BZ) fixed point. Seiberg argued

that an IR fixed point like the one above exists not only for F so near to 3N but

actually for any F in the range 3
2
N < F < 3N , the so-called conformal window.

According to this proposal, the IR dynamics of SQCD in the range 3
2
N < F < 3N

is described by an interacting superconformal theory: quarks and gluons are not

confined but appear as interacting massless particles, the Coulomb-like potential

being

V (r) ∼ g2
∗
r
. (10.111)

Hence, according to this proposal, SQCD in the conformal window enjoys a non-

abelian Coulomb phase.

Let us try to understand why the conformal window is bounded from below and

from above. The possibility of making exact computations in a SCFT shows that

for F < 3
2
N the theory should be in a different phase. In a SCFT the dimension of

a field satisfies the following relation

∆ ≥ 3

2
|R| , (10.112)

where R is the field R-charge (recall that in a SCFT the generator of the R-symmetry

enters the algebra, and hence an R-symmetry is always present). The equality holds

for chiral (or anti-chiral) operators. Since M is a chiral operator, this implies that

∆(M) =
3

2
R(M) =

3

2
R(QQ̃) = 3

F −N
F

≡ 2 + γ∗ . (10.113)
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This means that the anomalous dimension of the meson matrix at the IR fixed point

is γ∗ = 1− 3N/F .

Now, the lowest component of the meson matrix M is a scalar operator. In four

space-time dimensions the dimension of a scalar must satisfy

∆ ≥ 1 . (10.114)

Indeed, when ∆ < 1 the operator, which is in a unitary representation of the su-

perconformal algebra, would include a negative norm state which cannot exist in a

unitary theory. This implies that F = 3
2
N is a lower bound since there ∆(M) = 1

and lower values of F make no sense: for F < 3
2
N the theory should be in a different

phase. A clue to what such phase could be is that at F = 3
2
N the field M becomes

free. Indeed, for F = 3
2
N we get that ∆(M) = 1 which is possible only for free, non-

interacting scalar operators. Perhaps it is the whole theory of mesons and baryons

which becomes free, somehow. We will make this intuition more precise later.

As for the upper bound, let us notice that for F ≥ 3N SQCD is not asymptot-

ically free anymore, since the β-function changes sign (for F = 3N the one-loop β

function is 0 but one can show that the two-loop contribution is positive). The spec-

trum at large distance consists of elementary quarks and gluons interacting through

a potential

V ∼ g2

r
with g2 ∼ 1

log(rΛ)
, (10.115)

which implies that SQCD is in a non-abelian free phase. It is interesting to notice

that for F = 3N the anomalous dimension of M is actually zero, consistent with

the fact that from that value on, the IR dimension of gauge invariant operators is

not renormalized since the theory becomes IR-free. A summary of the IR behavior

of SQCD for F > 3
2
N is reported in Figure 10.14.

10.4.6 N = 1 electric-magnetic duality

The second proposal put forward by Seiberg regards the existence of a sort of electro-

magnetic duality. The IR physics of SQCD for F > N + 1 has an equivalent

description in terms of another supersymmetric gauge theory, known as the magnetic

dual theory. This equivalence, however, is just an IR equivalence. SQCD, sometime

called electric theory in this context, and its magnetic dual are very different in the

UV as well as along the RG-flow. They just provide two equivalent ways to describe

the dynamics around the space of vacua. We speak in this case of an IR duality
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Figure 10.14: The IR behavior of SQCD in the window 3
2
N < F < 3N , where the

theory flows to an IR fixed point with g = g∗, and for F ≥ 3N , where g∗ = 0 and

the theory is in a non-abelian IR-free phase.

(it should be said that perturbing SQCD by suitable operators, e.g. by quartic

operators, one can sometime promote this IR duality to a full duality, valid along

the whole RG; discussing such instances, however, is beyond our scope).

In order to understand this claim (and its implications), and define such dual

theory more precisely, we first need to do a step back. In trying to extend to higher

values of F the reasoning about SQCD with F = N + 1, one should consider the

following gauge invariant operators

M i
j , Bi1i2...iF−N , B̃i1i2...iF−N . (10.116)

The baryons have Ñ = F −N free indices so, at least group-theoretically, one could

think about them as if they were bound states of Ñ components, some new quark-

like fields q and q̃ of some supersymmetric gauge theory theory with gauge group

SU(Ñ) = SU(F −N) for which q and q̃ transform in the Ñ and Ñ representations,

respectively. Then the SQCD baryons would have a dual description as

Bi1i2...iÑ
∼ εa1a2...aÑ

qa1
i1
qa2
i2
. . . q

a
Ñ
i
Ñ

(10.117)

and similarly for B̃. Recall that in terms of the original matter fields Q and Q̃, the

baryons are composite fields made out of N components.

Seiberg made this naive idea concrete (and physical), putting forward the fol-

lowing proposal: SQCD with gauge group SU(N) and F > N + 1 flavors can be

equivalently described, in the IR, by a different SQCD-like theory with gauge group

SU(F − N) and F flavors plus an additional chiral superfield Φ which is a gauge

singlet and which transforms in the fundamental representation of SU(F )L and in
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the anti-fundamental representation of SU(F )R, and which interacts with q and q̃

via a cubic superpotential

W = h qi Φ
i
j q̃

j . (10.118)

As bizarre this proposal may look like, let us try to understand it better. Let us first

consider the Seiberg dual theory (which from now on we dub mSQCD, where ’m’

stands for magnetic) without superpotential term, and let us focus on the SQCD

conformal window, 3
2
N < F < 3N , first. For W = 0 the field Φ is completely

decoupled and mSQCD is just SQCD with gauge group SU(F −N) and F flavors.

So, in the conformal window mSQCD is itself UV-free since its one-loop β-function

coefficient is b1 = 2F − 3N and hence positive. In fact, as one can easily check, the

SQCD conformal window is a conformal window also for mSQCD! Hence mSQCD

(without the singlet Φ) flows to an IR fixed point for 3
2
N < F < 3N . At such fixed

point the superpotential coupling, that we now switch-on, is relevant, since

∆(W ) = ∆(Φ) + ∆(q) + ∆(q̃) = 1 +
3

2
N/F +

3

2
N/F < 3 , (10.119)

where in the second step we have used the relation (10.117) (and the analogue one

relating B̃ and the q̃ ’s) and the values of baryon R-charges. The claim is that the

relevant perturbation (10.118) drives the theory to some new fixed point (where the

β-functions of the dual gauge coupling and of the coupling h both vanish!) which is

actually the same fixed point of SQCD. This idea is summarized in Figure 10.15.

CFT

UV UVSQCD mSQCD
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Figure 10.15: How the RG goes for SQCD and mSQCD in the conformal window.

In the far IR, the two theories reach the same fixed point.

How does mSQCD look like for F ≤ 3
2
N? Since for mSQCD b1 = 2F − 3N ,

for F = 3
2
N the β-function vanishes and for lower values of F it changes its sign

and the theory becomes IR-free. Hence, the bound F = 3
2
N has the same role that

the bound F = 3N has for SQCD (not surprisingly, one can apply the BZ-fixed
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point argument to mSQCD for F slightly larger than 3
2
N and find the existence of

a perturbative fixed point). This explains why, if Seiberg duality is correct, the IR

dynamics of SQCD in the range N + 1 < F ≤ 3
2
N differs from the behavior in the

conformal window, something we had already some indications, when studying the

lower bound in F of the SQCD conformal window. Indeed, we can now make our

former intuition precise: using a clever set of variables (i.e. the magnetic dual vari-

ables), one concludes that for N + 1 < F ≤ 3
2
N SQCD IR dynamics is described by

a theory of freely interacting (combinations of) meson and baryon fields. These can

be described in terms of free dual quarks interacting with a Coulomb-like potential

Vm ∼
g2

m

r
with g2

el ∼
1

log(rΛm)
, (10.120)

where gm is the mSQCD gauge coupling and Λm the mSQCD strong coupling scale

(which in this regime of parameters is a UV cut-off, since the theory is IR-free).

This phase of SQCD is dubbed free magnetic phase, a theory of freely interacting

(dual) quarks. The fact that the IR dynamics of SQCD for N +1 < F ≤ 3
2
N , where

the theory is confining, can be described this way is a rather powerful statement:

since mSQCD is IR-free, in terms of magnetic dual variables the Kähler potential

is canonical (up to subleading 1/Λ2
m corrections), meaning that we know the full

effective IR Lagrangian of SQCD for N + 1 < F ≤ 3
2
N , at low enough energies!

As for the conformal window, which variables to use depends on F . The larger

F , the nearer to IR-freedom SQCD is, and the more UV-free mSQCD is. In other

words, the conformal window IR-fixed point is at smaller and smaller value of the

electric gauge coupling the nearer F is to 3N , and eventually becomes 0 for F = 3N .

For mSQCD things are reversed. The IR-fixed point arises at weaker coupling the

nearer F is to 3
2
N , and for F = 3

2
N we have that gm

∗ = 0. Therefore, the magnetic

description is the simplest to describe SQCD non-abelian Coulomb phase for F near

to 3
2
N ; the electric description is instead the most appropriate one when F is near

to 3N .

For F ≥ 3N the magnetic theory does not reach anymore an IR interacting fixed

point. The value F = 3N plays for mSQCD the same role the value F = 3
2
N plays

for SQCD. Indeed, the mSQCD meson matrix, U = qq̃ has ∆ = 1 for F = 3N , and

becomes a free field, while for larger values of F it would get a dimension lower than

one, which is not acceptable. For F ≥ 3N the theory should enter in a new phase.

This is something we knew already: in this region we are in the SQCD IR-free phase.

Can we provide some consistency checks for the validity of this proposed duality?
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Let us first note that two basic necessary requirements for its validity are met:

the two theories have the same global symmetry group as well as the same number

of IR degrees of freedom. In order to see this, let us first make the duality map

precise. The mapping between chiral operators of SQCD and mSQCD (at the IR

fixed point) is

M ←→ Φ : Φi
j =

1

µ
M i

j (10.121)

B ←→ b : bj1j2...jN = c εi1i2...iF−N j1j2...jN Bi1i2...iF−N (10.122)

and similarly for b̃ and B̃, with b and b̃ being the baryons of mSQCD. The scale µ

relating SQCD mesons with the mSQCD gauge singlet Φ appears for the following

reason. In SQCD mesons are composite fields and their dimension in the UV, where

SQCD is free, is ∆ = 2. On the other hand, Φ is an elementary field in mSQCD

and its dimension in the UV is ∆ = 1. Hence the scale µ needs to be introduced to

match Φ to M in the UV. Clearly, upon RG-flow both fields acquire an anomalous

dimension and should flow to one and the same operator in the IR, if the duality

is correct. Applying formula (10.112), which for chiral operators is an equality, one

easily sees that this is indeed what happens, since R(M) = R(Φ). Eq. (10.122) is

obtained from (10.117) multiplying the latter by εi1i2...iF−N j1j2...jN , while the scale c

is there for similar reasons as µ and has mass dimension F − 2N . Its precise value,

which turns out to be a function of µ in fact, will be fixed later.

From its very definition, it follows that the magnetic theory has a global sym-

metry group which is nothing but the one of SQCD, GF = SU(F )L × SU(F )R ×
U(1)B × U(1)R and, using the map (10.121), one can read-off the following charges

for the elementary fields

SU(F )L SU(F )R U(1)B U(1)R

qai F • N
F−N

N
F

q̃jb • F − N
F−N

N
F

Φ F F 0 2F−N
F

λ̃ • • 0 1

while the superpotential (10.118) has R = 2.

We can now use global symmetries to see that SQCD and mSQCD have the same

number of IR degrees of freedom. Basically, there is a one-to-one map between gauge

invariant operators, and these operators have the same global symmetries (which

counts physically distinct degrees of freedom). Indeed, the meson matrix M enjoys
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the same symmetries as the mSQCD singlet Φ, and the SQCD baryons B, B̃ the

same as the mSQCD baryons b, b̃. One might feel uncomfortable since the mesons

of the magnetic dual theory, U j
i = qiq̃

j, seem not to match with anything in the

electric theory. This is where the superpotential (10.118) comes into play. Recall

that the supposed equivalence between SQCD and mSQCD is just a IR equivalence.

The F-equations for Φ fix the dual meson to vanish on the moduli space, since

FΦ = hqq̃ = hU = 0. Hence, in the IR the two theories do have the same number

of degrees of freedom (and we now see the importance of the superpotential term

(10.118)!).

Given these necessary requirements, we now want to present further checks for

the validity of Seiberg’s proposal.

• The first such checks comes from ’t Hooft anomaly matching. There are sev-

eral global symmetries and related ’t Hooft anomalies one can cmpute. Let

us choose, for instance, those associated to SU(F )2
L U(1)B, U(1)2

B U(1)R and

U(1)3
R. The computation, using SQCD and mSQCD degrees of freedom, re-

spectively, gives the following results

SQCD

SU(F )2
L U(1)B

1
2
N(+1) = 1

2
N

U(1)2
B U(1)R 2NF (+1)(−N

F
) = −2N2

U(1)3
R

(
−N
F

)3
2NF +N2 − 1 = −2N

4

F 2 +N2 − 1

mSQCD

SU(F )2
L U(1)B

1
2
(F −N) N

F−N = 1
2
N

U(1)2
B U(1)L 2(F −N)F

(
N

F−N

)2 (N−F
F

)
= −2N2

U(1)3
R

(
N−F
F

)3
2(F −N)F + F 2

(
F−2N
F

)3
+

+(F −N)2 − 1 = −2N
4

F 2 +N2 − 1

This shows that ’t Hooft anomalies indeed match between SQCD and its IR-

equivalent mSQCD description.

Note that for the matching to work it turns out that the presence of dual

gauginos is crucial (in the above computation, they contribute to the mSQCD

U(1)3
R ’t Hooft anomaly). This explicitly shows that the description of SQCD

baryons in terms of some sort of dual quarks is not just a mere group rep-

resentation theory accident. There is a truly dynamical dual gauge group,
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under which dual quarks are charged, and dual vector superfields (which in-

clude dual gauginos) which interact with them. This means that SQCD, in

the range N + 1 < F < 3/2N (a range in which the theory confines), enjoys

an emergent gauge symmetry in the IR!

• The duality relation is a duality, which means that acting twice with the

duality map one recovers the original theory (as far as IR physics!). Let us

start from SQCD with N colors and F flavors and act with the duality map

twice

SQCD : SU(N), F , W = 0

↓ duality

mSQCD : SU(F −N), F , W =
1

µ
qiM

i
j q̃
j = qiΦ

i
j q̃
j

↓ duality

mmSQCD : SU(N), F , W =
1

µ
qiM

i
j q̃
j +

1

µ̃
diU j

i d̃j = qiΦ
i
j q̃
j + diΨ j

i d̃j

where U j
i = qiq̃

j is the meson matrix of mSQCD, Ψ j
i is the gauge singlet chiral

superfield dual to U and belonging to the magnetic dual of mSQCD and, for

the ease of notation, we have put h = 1 in eq. (10.118). Choosing µ̃ = −µ, we

can rewrite the superpotential of mmSQCD as

W =
1

µ
Tr
[
UM − dUd̃

]
. (10.123)

The fields U and M are hence massive and can be integrated out (recall we

claim the IR equivalence of Seiberg-dual theories, not the equivalence at all

scales). This implies

∂W

∂U
= 0→M i

j = did̃j ,
∂W

∂M
= 0→ U = 0 (10.124)

showing that the dual of the dual quarks are nothing but the original quark

superfields Q and Q̃, and that U = 0 (hence W = 0) in the IR . Summarizing,

after integrating out heavy fields, we are left with SQCD with gauge group

SU(N), F flavors and no superpotential, exactly the theory we have started

with! In passing, let us note that in order to make the duality working we

have to set µ̃ = −µ, a mass scale which is not fixed by the duality itself.
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• The duality is preserved under mass perturbations, namely upon holomorphic

decoupling. Let us again consider SQCD with gauge group SU(N) and F

flavors and let us add a mass term to the F -th flavor, W = mMF
F. This

corresponds to SU(N) SQCD with F − 1 massless flavors and one massive

one. In the dual magnetic theory this gives a superpotential

W =
1

µ
qiM

i
j q̃
j +mMF

F . (10.125)

The F-flatness conditions for MF
F and qF and q̃F are

qaF q̃
F
a + µm = 0 , (M · q̃a)F = (qa ·M)F = 0 , (10.126)

where a is a SU(F − N) gauge index. The first equation induces a VEV for

the dual quarks with flavor index F , which breaks the gauge group down to

SU(F −N−1). The other two equations imply that the F -th row and column

of the SQCD meson matrix M vanish. We hence end-up with SU(F −N − 1)

SQCD with F − 1 flavors, a gauge singlet M which is a (F − 1) × (F − 1)

matrix, while the superpotential (10.125) reduces to eq. (10.118) where now

i, j run from 1 to F − 1 only. This is the correct Seiberg dual of SQCD with

F − 1 flavors.

This analysis shows that a mass term in the electric theory corresponds to

higgsing in the magnetic dual theory, according to the table below

SQCD mSQCD

SU(N), F ←→
dual

SU(F −N), F

↓ mass ↓ higgsing

SU(N), F − 1 ←→
dual

SU(F −N − 1), F − 1

The converse is also true (though slightly harder to prove): a mass term in

mSQCD corresponds to higgsing in SQCD.

• Let us use holomorphic decoupling to go from the last value of F where we

have the duality, F = N + 2, to F = N + 1. If Seiberg duality is correct, we

should recover the description of SQCD with F = N + 1 flavors we discussed

previously. Let us consider mSQCD when F = N + 2. The magnetic gauge
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group is SU(2). Upon holomorphic decoupling, an analysis identical to the

one we did above produces a cubic superpotential at low energy as

W ∼ qiM
i
j q̃
j i, j = 1, . . . , N + 1 (10.127)

where qi are nothing but the baryons Bi of SQCD with F = N + 1 and q̃j the

baryons B̃j, just take eq. (10.117) with Ñ = F − N = 1. At the same time,

the VEVs for qN+2 and q̃N+2 break the SU(2) gauge symmetry completely.

From mSQCD view point this is a situation similar to SQCD with F = N − 1

where the full breaking of gauge symmetry group allowed an exact instanton

calculation providing the ∼ detM contribution to the effective superpotential.

The same happens here and the final answer one gets for the low energy

effective superpotential is

Weff ∼
(
qiM

i
j q̃
j − detM

)
, (10.128)

which is precisely the effective superpotential of SQCD with F = N + 1!

This also shows that by holomorphic decoupling we can actually connect the

description of the IR dynamics of SQCD for any number of flavors, from F = 0

to any larger values of F , at fixed N .

Let us finally notice, in passing, that even for F = N + 1 we can sort of speak

of a magnetic dual theory. Just it is trivial, since there is no magnetic dual

gauge group.

• There is yet an important relation between the three a priori different mass

scales entering the duality: the electric dynamical scale Λel, the magnetic scale

Λm, and the matching scale µ. This reads

Λ3N−F
el Λ3(F−N)−F

m = (−1)F−NµF . (10.129)

That this relation is there, can be seen in different ways. First, one can check

that the relation is duality invariant, as it should. Indeed, applying the duality

map (recall that µ̃ = −µ, while Λel and Λm get interchanged by the duality)

one gets

Λ3(F−N)−F
m Λ3N−F

el = (−1)N µ̃F = (−1)N−FµF , (10.130)

which is identical to (10.129). One can also verify the consistency of the

relation (10.129) upon higgsing and/or holomorphic decoupling.
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Finally, by matching F = N + 2 SCQD to F = N + 1 SQCD via holomorphic

decoupling, one can also fix the value of c in eq. (10.122) to be

c = 1/
√
−(−µ)N−FΛ3N−F

el = 1/
√
−µNΛ3N−2F

m . (10.131)

Eq. (10.129) shows that as the electric theory becomes stronger (i.e. Λel in-

creases), the magnetic theory becomes weaker (i.e. Λm decreases). By using

the relation between dynamical scales and gauge couplings, this can be trans-

lated into a relation between gauge coupling constants, and gives an inverse

relation between them

g2
el ∼ g−2

m , (10.132)

showing that large values of the electric gauge coupling gel correspond to small

values of the magnetic one, and viceversa. This is why Seiberg duality can be

thought as a sort of electric-magnetic duality.

Depending on where in the (F,N) space one sits, the meaning of the dynamical

scales changes. In the conformal window both SQCD and mSQCD are UV-free.

Both theories have a non-trivial RG-flow and, upon non-perturbative effects,

driven by Λel and Λm, reach an IR fixed point (which is one and the same, in

fact). In the free-magnetic phase, mSQCD is IR-free and SQCD is UV-free.

Therefore, in this regime Λm should be better thought of as a UV cut-off for

the magnetic theory, which is an effective theory. In this regime SQCD can

be thought of as the (or better, a possible) UV-completion of mSQCD. The

electric free phase can be thought of in a similar way, with the role of SQCD

and mSQCD reversed. Within this interpretation it is natural to tune the

free parameter µ to make the two theories have one single non-perturbative

scale, the scale at which non-perturbative SQCD effects come into play and the

scale below which the magnetic effective description takes over. From relation

(10.129) one sees that this is obtained by equating, up to an overall phase, the

matching scale µ with Λel and Λm

µ = Λel = Λm(≡ Λ) . (10.133)

Using the above relation for F = N + 2 and adding a mass term for the F -th

flavor, upon holomorphic decoupling one gets the expression (10.128) including

the correct power of Λ, that is

Weff =
1

Λ2N−1

(
BiM

i
j B̃

j − detM
)
. (10.134)
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where we have already used the fact that the dual quarks are nothing but the

baryon themselves, in this case.

Figure 10.16 contains a qualitative description of the three different regimes we

have just discussed.

IR

UV
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UV
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Figure 10.16: The three qualitative different phases of SQCD with F > N+1. In the

magnetic-free and electric-free phases we have chosen (for convenience) the arbitrary

matching scale µ in such a way to make Λel and Λm being identified, eq. (10.133).

10.5 The phase diagram of N=1 SQCD

After this long tour on quantum properties of SQCD, it is time to wrap-up and

summarize its phase diagram.

SQCD with F = 0 (i.e. pure SYM) enjoys strict confinement, displays N isolated

supersymmetric vacua and a mass gap.

For 0 < F < N the theory doesn’t exist by its own. The classical moduli space

is completely lifted and a runaway potential, with no absolute minima at finite

distance in field space, is generated.

For F = N,N + 1 a moduli space persists at the quantum level and SQCD

enjoys confinement with charge screening (the asymptotic states are gauge singlets

but flux lines can break) and no mass gap. Asymptotic states are mesons and

baryons. The theory displays complementarity, as any theory where there are scalars

transforming in the fundamental representation of the gauge group: there is no

invariant distinction between Higgs phase, which is the more appropriate description

for large field VEVs, and confinement phase, which takes over near the origin of field

space. The potential between static test charges goes to a constant asymptotically
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since in the Higgs phase gauge bosons are massive and there are no long-range forces.

As already observed, this holds also in the confining description, since we actually

have charge screening and Wilson loops do not follow the area law in this case. At

the origin of field space, F = N + 1 SQCD s-confines.

For N+2 ≤ F ≤ 3
2
N we are still in a confinement phase, but the theory is in the

so-called free magnetic phase and can be described at large enough distance in terms

of freely interacting dual quarks and gluons. What is amusing here is that while

asymptotic massless states are composite of elementary electric degrees of freedom

(i.e. mesons and baryons), they are charged with respect to a magnetic gauge group

whose dynamics is not visible in the electric description and which is generated,

non-perturbatively, by the theory itself.

For F > 3
2
N SQCD does not confine anymore, not even in the weak sense:

asymptotic states are quarks and gluons (and their superpartners). The potential

between asymptotic states, though, differs if F ≥ 3N or F < 3N . In the former case

the theory is IR-free and it is described by freely interacting particles. Hence the

potential vanishes, at large enough distance. For 3
2
N < F < 3N , instead, the theory

(which is still UV-free) is in a non-abelian Coulomb phase. Charged particles are

not confined but actually belong to a SCFT, and interact by a 1/r potential with

fixed, non-vanishing coupling.

A diagram summarizing the gross features of the quantum dynamics of SQCD

is reported below.
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phase: gel,m ! gel,m

⇤

Our focus in this chapter has been on SQCD with gauge group SU(N). This

should be regarded as a prototype for many other N = 1 supersymmetric gauge the-

ories whose dynamics one can investigate using similar tools. For example, one can

consider SQCD with gauge groups SO(N) or USp(2N), or modifications of SU(N)

SQCD by the addition of matter in representations other than the (anti)fundamental,

e.g. the adjoint, the symmetric or anti-symmetric representations. Several proper-
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ties that these other theories display are similar to what we have seen here, but some

of these theories present also new phenomena that SU(N) SQCD does not enjoy,

like generalizations of Seiberg dualities, existence of abelian Coulomb phases, phase

transitions between Higgs phase and confinement phase, etc... . We are not going

to discuss any of these variants and refer the interested reader to the bibliography

at the end of the chapter.

10.6 Exercises

1. Consider SQCD with one flavor and show that giving it a mass, upon holo-

morphic decoupling one gets the pure SYM superpotential, eq. (10.68).

2. Consider SQCD with F = N with superpotential

W = A
(

detM −BB̃ − aΛ2N
)

+mQNQ̃N (10.135)

By integrating out the massive flavor, show that one recovers the ADS super-

potential for F = N − 1 SQCD if and only if a = 1.

3. Check ’t Hooft anomaly matching for SQCD with F = N along the baryonic

branch, M = 0, B = −B̃ = ΛN .

4. Check ’t Hooft anomaly matching for SQCD with F = N + 1 at the origin of

the moduli space.

5. Consider mSQCD for F = 3(F −N)− ε(F −N) with ε << 1, and find the BZ

perturbative fixed point, i.e. the values of the dual gauge coupling gm and of

the cubic superpotential coupling h, eq. (10.118), for which the corresponding

β-functions vanish.

6. Show that the addition of a mass term in mSQCD corresponds to higgsing in

SQCD (note: this is the inverse of what we have shown in the main text).
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11 Dynamical supersymmetry breaking

After this long detour on quantum properties of supersymmetric gauge theories,

we can now go back to supersymmetry breaking, and finally discuss models where

supersymmetry is broken by strong coupling effects, aka dynamical supersymmetry

breaking (DSB). As we already emphasized, besides their intrinsic interest, these

models can in principle be used as consistent (and natural) hidden sectors within

gravity or gauge mediation scenarios (or any of their possible variants).

We will first focus on models where supersymmetry is broken dynamically in

stable vacua, that is at absolute minima of the potential. Later we will discuss

dynamical supersymmetry breaking into metastable vacua, instead.

The rough general picture for DSB models into stable vacua is as follows (with

well motivated exceptions, as we will see):

• The supersymmetric theory at hand is a (asymptotycally free) gauge theory.

This is because gauge degrees of freedom are the only ones having some chance

of generating non-perturbative contributions to the superpotential. As we

already discussed, in models of chiral superfields only, the superpotential is

tree-level exact.

• The tree level superpotential Wtree does not break supersymmetry but lifts

all flat directions. Since the superpotential is polynomial in the fields, this

typically gives a potential which vanishes at the origin and grows for large

field VEVs. Since the superpotential is classically exact in perturbation theory,

supersymmetry is preserved at all orders, perturbatively.

• Strong coupling effects generate a non-perturbative superpotential which pro-

vides a contribution to the potential which is strong at the origin of field space

but decreases for large field VEVs (recall that the large field VEVs region

corresponds to the classical region, where quantum corrections are negligible).

An instance of such a potential is the effective potential of F < N SQCD.

DSB arises because of the interplay between the classical contribution and the non-

perturbatively generated one, as shown in Figure 11.1. Generically, supersymmetry

will be broken and the exact potential will display a stable non-supersymmetric

minimum at finite distance in field space.
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Figure 11.1: A schematic view of dynamical supersymmetry breaking conspiracy.

The classical and non-perturbative contributions to the effective potential sum-up

and give a stable supersymmetry-breaking minimum at 〈φ〉 = 〈φ∗〉.

11.1 Calculable and non-calculable models: generalities

Once a stable non-supersymmetric minimum is found, one would like to study quan-

tum fluctuations around it. The spectrum around such vacuum is not supersymmet-

ric and hence quantum corrections are not protected by supersymmetry. Moreover,

besides the superpotential, the knowledge of the Kähler potential is also important,

if one wants to make any sort of quantitative statement. A knowledge of the Kähler

potential is needed to know the exact point in field space where the supersymmetry

breaking vacuum sits, the values of the vacuum energy, i.e. of the supersymmetry

breaking scale Ms ∼ (Vmin)
1/4, and the masses and interactions of light fields. In

other words, one should know the structure of the effective Lagrangian. It is in gen-

eral a difficult task to control the form of the Kähler potential, since K is corrected

at all orders in perturbation theory (and non-perturbatively). There is then a prob-

lem of calculability around a non-perturbatively generated supersymmetry breaking

vacuum, in general.

Looking at Figure 11.1, calling λ the generic tree level coupling(s), it should be

clear that if we decrease λ the tree-level potential becomes less and less steep, and

the supersymmetry breaking minimum is pushed more and more towards the large

VEVs region, where the theory is weakly coupled, see Figure 11.2.

There are three basic reasons why making the tree-level superpotential couplings
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⇤

Figure 11.2: Decreasing the perturbative coupling λ the DSB minimum becomes

smaller and moves towards large field VEVs. For the red curve the minimum,

namely the supersymmetry breaking scale Ms, is smaller than the dynamical scale

Λ.

smaller, calculability is increased.

The smaller λ the smaller Ms, too. Eventually, it might become even smaller

than Λ (see the red curve in Figure 11.2). This is useful since at energies lower than

Λ gauge degrees of freedom can be safely integrated out giving rise to simpler models

(of O’R-like type, so to say). Hence, the analysis of the low energy effective theory

around supersymmetry breaking vacua might be simpler, the potential having only

F-terms contributions

V (φ, φ†) =
[
K
′′
(φ, φ†)

]−1 ∣∣∣∂W
∂φ

∣∣∣
2

. (11.1)

Second, as we have discussed at length in the previous lecture, most progresses

in understanding supersymmetric theories at the non-perturbative level regard the

deep IR, E < Λ (structure of vacua, lowest lying state excitations around them,

etc...). Hence, having Ms < Λ is a welcome feature.

Finally, one more reason why having λ small increases calculability has to do

with the very possibility of computing the Kähler potential. While the effective su-

perpotential Weff can often be determined exactly, the Kähler potential is in general

more difficult to calculate, since it is not protected by holomorphy. Having super-

symmetry breaking vacua at large VEVs has the advantage that the theory is more

and more classical (i.e., weakly coupled) there. Therefore, one can in principle de-

termine the Kähler potential of the low energy effective fields just by projecting the
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UV-fields canonical Kähler potential on such operators (which are typically some

gauge and flavor invariant combinations of UV fields), getting a correct result up to

corrections which, in such semi-classical region, are weak.

According to this general picture, DSB models can be roughly divided into three

classes, with increasing level of calculability.

• The worst case scenario is a situation where one cannot get any information

on the full potential due to the incapacity of computing both the effective

superpotential and the Kähler potential. That supersymmetry is broken can

be concluded based on indirect arguments, as those we discussed in Lecture 7

(like R-symmetry and/or global symmetry arguments). In these cases one can

reasonably say that supersymmetry is broken and that Ms ∼ Λ, but nothing

can be said about the massless excitations around the supersymmetry breaking

vacua nor on the effective Lagrangian describing their dynamics.

• A better situation occurs when one can compute the effective superpotential

and explicitly see that the latter generates some non-vanishing F-terms which

were vanishing at tree-level. In these cases one can safely say that supersym-

metry is broken and possibly tell which are the low energy degrees of freedom

around the supersymmetry breaking vacua. Still, the Kähler potential cannot

be determined. Hence, one cannot calculate any property of the ground states

nor determine the dynamics around them. DSB models belonging to this class

are known as non-calculable models.

• Finally, there can exist models where the scenario summarized in Figure 11.2

can be fully realized. There exists a region in parameter space where the

minimum is in a weakly coupled region and therefore one can also compute

the Kähler potential, there. In these situations one can get also quantitative

information about the low energy effective theory, like the precise value of the

supersymmetry breaking scale as well as the structure of the light spectrum

and of interactions. Possibly, at an arbitrary high level of accuracy, if super-

symmetry breaking vacua can be made parametrically far from the origin of

field space. Models of this kind are known as calculable models.

In what follows, we will present some concrete examples for each of above three

classes.
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11.2 The one GUT family SU(5) model

Let us consider a supersymmetric gauge theory with gauge group SU(5), a chiral

superfield T transforming in the 10 (i.e. the antisymmetric representation), and

another chiral superfield Q̃ transforming in the anti-fundamental representation, 5.

This theory is UV-free, the one-loop β function coefficient being b1 = 13.

This theory does not have any classical flat direction since it is impossible to

construct holomorphic gauge invariant operators out of T and Q̃. For the same

reason a superpotential cannot be added. Therefore, at the classical level there

exists one supersymmetric vacuum, sitting at the origin of field space. At such

point of field space, the gauge group is unbroken. Given that the theory is UV-free

and so expected to go to strong coupling in the IR and considering the not so large

matter content, one can reasonably argue that the theory confines and so that there

are no leftover gauge degrees of freedom in the IR.

At the origin the theory is strongly coupled and it is difficult to perform any

reliable computation. However, one can use indirect arguments to conclude that

non-perturbative corrections break supersymmetry. First, one can easily check that

there exist two non-anomalous global symmetries, U(1) and U(1)R, under which the

fields have charges T ' (−1, 1) and Q̃ ' (3,−9), where the charges are fixed by

anomaly cancellations. We now use ’t Hooft anomaly matching to argue that the

global symmetry groupGF = U(1)×U(1)R is spontaneously broken. We do not know

what the low energy SU(5) invariant degrees of freedom are, but if GF is unbroken,

they should reproduce ’t Hooft anomalies for U(1)3, U(1)2U(1)R, etc... of the original

theory. One can be as general as possible and allow for a set of putative low energy

fields Xi with charges ' (qi, ri) under U(1) × U(1)R. One gets four equations for

the qi’s and ri’s. Allowing charges not larger than ∼ 50, one needs a least five fields

(with rather bizarre charges) to obtain a solution. This sounds quite unnatural (as a

comparison: a non-supersymmetric version of this model requires just one massless

fermion to match ’t Hooft anomalies!). It is therefore quite possible that the system

does not admit solutions. So, the global symmetry must be spontaneously broken.

But then, since the theory does not have classical flat directions, according to the

indirect criteria we have discussed at the beginning of §7.6.1, supersymmetry is

broken, too.

An independent way to see that supersymmetry most likely is broken is as follows.

Add one pair of chiral superfields in the 5 and 5̄ representations. There are now

classical flat directions and by adding a mass term for the fundamentals one can show
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that supersymmetry is broken, in fact. In the limit m → ∞ this theory reduces to

the original one, without extra matter. If there are no phase transitions in the limit

of large mass, then also the original theory breaks supersymmetry.

This is an instance of the first class of supersymmetry breaking models we dis-

cussed in previous section. We do not have direct access to the effective super-

potential nor to the Kähler potential, so no quantitative statements can be made.

However, symmetry arguments indicate that supersymmetry is most likely broken

at the non-perturbative level.

There exist generalizations of this model which break supersymmetry in a similar

manner. They are based on a gauge group SU(N), with N odd, N − 4 chiral

superfields transforming in the antifundamental of SU(N), one chiral superfield

transforming in the antisymmetric representation of SU(N), and a superpotential

which lifts all otherwise present classical flat directions. One can show that at low

energy the dynamics of all these models essentially reduces to the one of the SU(5)

model described above, and, as the latter, they are therefore expected to break

supersymmetry.

11.3 The 3-2 model: instanton driven SUSY breaking

In what follows, we are going to describe an instance of a calculable model.

Let us consider a supersymmetric theory with gauge group G = SU(3)× SU(2)

and matter as detailed in Table 1.

SU(3) SU(2) U(1)Y U(1)R

Qαi 3 2 1/3 1

Ũ i 3̄ • −4/3 −8

D̃i 3̄ • 2/3 4

Lα • 2 −1 −3

Table 1: Matter fields and corresponding quantum numbers of the 3-2 model.

The index i is an index in the (anti)fundamental of SU(3), α in the fundamental

of SU(2) and there exist two abelian anomaly-free global symmetries, U(1)Y and

U(1)R. The above global symmetry charge assignment comes from the computation

of triangle diagrams with global and gauge currents as detailed in Figure 11.3.
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anomaly:

Figure 11.3: One-loop diagrams contributing to anomalies of the abelian global

symmetries, U(1)Y and U(1)R, of the 3-2 model.

Anomaly-free global symmetries require (letters follow the one-loop diagrams in

Figure 11.3)

a : 3Y (Q) + Y (L) = 0

b : 2Y (Q) + Y (U) + Y (D̃) = 0

c :
1

2
[3(R(Q)− 1) +R(L)− 1] + 2 = 0

d :
1

2

[
2(R(Q)− 1) +R(Ũ)− 1 +R(D̃)− 1

]
+ 3 = 0 .

Up to an overall (inessential) normalization, this system of equations admits the

solution

R(Q) = 1 , R(Ũ) = −8 , R(D̃) = 4 , R(L) = −3

Y (Q) = 1/3 , Y (Ũ) = −4/3 , Y (D̃) = 2/3 , Y (L) = −1 ,

in agreement with Table 1. Finally, the theory has a tree-level superpotential

Wtree = λQD̃L , (11.2)

which, given the above charge assignment, respects both R and non-R symmetries.

Let us start analyzing this theory at the classical level. The space of D-flat di-

rections has (real) dimension six. This can be seen using the usual parameterization
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in terms of single trace gauge invariant operators. These read

XA = QQ̃AL = QαiQ̃
i
ALβε

αβ , Y = det
(
QQ̃
)

= εαβεAB
(
QαiQ̃

i
A

)
QβjQ̃

j
B , (11.3)

where A = 1, 2, Q̃i
1 ≡ Ũ i, Q̃i

2 ≡ D̃i and εαβ is the invariant tensor of SU(2). That

these are the correct degrees of freedom to describe the space of D-flat directions

can be seen as follows. One can start constructing SU(3) invariants. The only ones

are QαQ̃A and Lα, which are both SU(2) doublets. Using them to make (single

trace) operators which are also SU(2) invariant, operators XA and Y follow.

We should now ask whether the superpotential (11.2) affects this space of super-

symmetry preserving vacua, looking for the subspace of D-flat directions where all

F-terms also vanish. The F-equation for Lα reads

∂Wtree

∂Lα
= λQαQ̃2 = 0 . (11.4)

Contracting with Lα itself this implies that on the moduli space X2 = 0. Similarly,

multiplying by QαQ̃1 so to construct the Y invariant, one can show that also Y = 0

on the moduli space. Finally, the F-equation for Q̃2 is

∂Wtree

∂Q̃i
2

= λQiL = 0 . (11.5)

Contracting with Q̃i
1 one can show that also X1 = 0 on supersymmetric vacua.

The conclusion is that because of the presence of the superpotential (11.2) there

do not exist classical flat directions but rather one single supersymmetric vacuum

at the origin of field space. Let us note, in passing, that according to the sufficient

condition discussed in §7.6.1 this implies that if we can prove that some of the global

symmetries are spontaneously broken, then we know supersymmetry is broken, too.

Let us start asking whether a dynamical superpotential is generated. In principle,

we would expect contributions from SU(3) and/or SU(2) gauge dynamics. Let us

choose for now a regime where Λ3 >> Λ2 and λ << 1. In this regime, at scales

lower than Λ3 and bigger than Λ2, the SU(2) gauge group is weakly coupled while

SU(3) confines. Hence, up to subleading corrections, we can consider the SU(3)

gauge group as dynamical and the SU(2) gauge group acting as a global symmetry

group. Looking at the matter content of the model, we see that from the SU(3)

gauge theory view point this is nothing but SQCD with F = N − 1, where N = 3.

Hence a non-perturbative superpotential is indeed generated and reads

Wnon−pert =
Λ7

3

Y
. (11.6)
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This is enough to conclude that supersymmetry is dynamically broken! Due to

(11.6) the minimum of the potential is certainly at some non-zero VEV for Y . Since

R(Y ) = −2 the R-symmetry is then spontaneously broken and since there are no

classical flat directions, supersymmetry is broken. Let us see if we can make more

quantitative statements.

Summing up the tree-level and non-perturbative superpotential contributions we

get for the full effective superpotential

Weff = λX2 +
Λ7

3

Y
. (11.7)

From the above expression one can easily see that supersymmetry is broken because,

in terms of such low energy fields, we have

∂Weff

∂X2

= λ 6= 0 . (11.8)

In this derivation we have implicitly assumed that X1, X2 and Y are the correct low

energy degrees of freedom, and that no other massless fields show up at any point

of field space. If this were the case, one could have met singularities in the Kähler

metric at such points, invalidating our conclusions. In fact, for small enough λ, we

are safe on this side. First notice that Wnon−pert brings the theory away from the

origin. For λ << 1 the minimum of the potential is certainly in the large Q, Q̃

region. Since Q and Q̃ are charged under both gauge groups, in the vacuum the

gauge symmetry is completely broken, and (heavy) gauge bosons can be integrated

out. This suggests that X1, X2 and Y are indeed the correct low energy degrees

of freedom and therefore we do not expect singularities (which would indicate the

presence of extra massless states) in the Kähler potential.

All what we said so far shows that the 3-2 model belongs, at least, to the sec-

ond class of supersymmetry breaking models we discussed at the beginning of this

section, the so-called non-calculable models. In fact, we can do more.

In the regime we chose, λ << 1, Λ3 >> Λ2, the ground states are in a weakly

coupled region, and then we are in a situation similar to the red curve of Figure

11.2. Therefore, the Kähler potential can be safely taken to be canonical in terms

of UV-fields

K = Q†Q+ Q̃†Q̃+ L†L . (11.9)

We can project this potential onto D-flat directions and get

K = 24
A+Bx

x2
(11.10)
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where

A =
1

2

(
X†1X1 +X†2X2

)
, B =

1

3

√
Y †Y , x = 4

√
B cos

(
1

3
arccos

A

B3/2

)
.

(11.11)

We can now plug the above expression and that for the effective superpotential,

eq. (11.7), into eq. (11.1) and, upon minimization with respect to all scalar fields,

find the minima, and hence the vacuum energy E ∼Ms.

The computation is doable but rather lengthy, so let us first try to get an estimate

of the different scales in the problem. The minima will be around a region of field

space where the classical and the non-perturbative contributions to the potential are

the same order (see Figure 11.1), which is the same as to ask the two contributions to

the effective superpotential in eq. (11.7) being roughly comparable. In what follows,

we think in terms of fundamental UV fields (an acceptable thing to do, given we

are in a weakly coupled region). Calling v the generic VEV of (fundamental) scalar

fields at the non-supersymmetric minimum, we get that

λv3 ∼ Λ 7
3

v4
that is v ∼ Λ3

λ1/7
. (11.12)

This implies that W ∼ Λ 3
3 λ

4/7 and hence ∂W/∂φ ∼ Λ 2
3λ

5/7. Therefore, since

the potential is proportional to the derivative of the superpotential squared (recall

that the Kähler potential is canonical in the UV fields around the supersymmetry

breaking vacua), we finally get

M4
s ∼ Λ 4

3λ
10/7 that is Ms ∼ Λ3λ

5/14 . (11.13)

Note that this is a leading order estimate. The Kähler potential receives perturbative

and non-perturbative corrections in inverse powers of v. However, in the regime we

are considering these are very small, in the sense that v is much larger than any

other scale in the theory. Indeed

v ∼ λ−1/7Λ3 >>
λ<<1

Λ3 >> Λ2 . (11.14)

From eq.(11.13) we see that Ms << Λ3, as well as Ms << Λ2, if λ is small enough.

This gives an a posteriori justification of our claim that X1, X2 and Y were the

correct low energy degrees of freedom. Supersymmetry breaking occurs at an energy

scale below the confining scale of both non-abelian gauge groups. Therefore, the low

energy effective dynamics is certainly not including light gauge degrees of freedom.

The effective Lagrangian should be (and actually is - recall our conclusions below
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eq (11.11)) of O’R-like type, with the only complication of a non-canonical Kähler

potential (in IR field variables). A supersymmetric σ-model, in fact.

As already stressed, our rough estimates do not prevent to compute everything

analytically, by means of eq. (11.1). The answer one gets this way is that the min-

imum of the potential is at X1 = 0, which means that the U(1)Y symmetry is

unbroken (X2 and Y are uncharged under this symmetry). On the other hand we

know that R-symmetry is broken, since the vacua are at finite value of Y , which is

charged under the R-symmetry. This suggests, and confirmed by explicit computa-

tions, that the massless spectrum is composed by a goldstino, an R-axion, associated

to the breaking of the R-symmetry, and finally a fermionic field with hypercharge

Y = −1, whose existence can be proved using t’Hooft anomaly matching condition

for the unbroken U(1)Y symmetry. All other fields have masses of order ∼ λv.

What changes in our analysis if choosing a different regime, namely Λ2 >> Λ3?

One can derive an effective superpotential also in this case (which is that of SQCD

with F = N , now) and show that supersymmetry is still broken (though at a

different scale with respect to previous regime). However, generically the theory is

strongly coupled and hence the Kähler potential is unknown, regardless how small

the superpotential coupling λ is. Basically, this is because for F = N the effective

superpotential is not of runaway type and does not push the vacua towards large

field VEVs, where a semi-classical analysis could had been done. Therefore, in this

regime the model is non-calculable.

Finally, one can be as general as possible, and consider the two dynamical scales

being the same order, leading to a superpotential of the following form

Weff = λX2 +
Λ7

3

Y
+ A

(
Z − Λ 4

2

)
(11.15)

where Z = εijkQiαQjβε
αβQkγLδε

γδ and A a Lagrange multiplier. The latter is noth-

ing but just the gauge invariant expression detM −BB̃ for the SU(2) theory, which

classically is zero, Z = 0. This shows why in the regime where the SU(2) gauge

group is classical, the superpotential reduces to the expression (11.7) we used before.

Notice that since Z is classically zero, the Z†Z term in the Kahler potential is sup-

pressed by some function of Λ2/v. Restoring canonical normalization for Z kinetic

term implies that the mass of Z is enhanced by the inverse of this function. There-

fore at low energy, in the regime where the SU(2) group is nearly classical, one can

safely integrate Z out and use just XA and Y as low energy fields, as we did before.

Obviously, the analysis in the regime where both SU(3) and SU(2) have a quantum
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behavior is more complicated but one can again conclude that supersymmetry is

broken.

The 3-2 model is the prototype of calculable DSB models, and many interesting

generalizations are available, like the so-called SU(N)×SU(2) and SU(N)×SU(N−
1) models, plus several others. These are discussed in the references at the end of

this Chapter.

Let us end with an important remark. The 3-2 model is a beautiful instance

of a DSB model and provides a natural way to generate a (small) supersymmetry

breaking scale dynamically, without the need of having dimension-full parameters

put by hand in the theory, as it was the case for the supersymmetry breaking

models we discussed in Chapter 7. This holds at any point in the parameter space.

Calculability, though, does not. As we have seen, the model is fully calculable in

the region of the parameter space where the tree-level dimensionless coupling is

parametrically small, something not at all generic, from a naturalness point of view.

11.4 The 4-1 model: gaugino condensation driven SUSY

breaking

Let us now consider a model which is similar to the previous one, but differs in

that at low energy the theory is not fully higgsed but reduces to a non-abelian SYM

theory. In this case supersymmetry breaking will be driven by gaugino condensation,

and not by instanton effects as for the 3-2 model. Let us consider a supersymmetric

theory with gauge group G = SU(4)×U(1) and matter content as detailed in Table

2.

SU(4) U(1) U(1)Y U(1)R

Qi 4 −3 1 1

Q̃i 4̄ −1 1 1

Aij 6 2 −1 −3

S • 4 −2 0

Table 2: Matter fields with corresponding quantum numbers of the 4-1 model.

The indexes i, j are in the (anti)fundamental of SU(4), while U(1)Y and U(1)R

are two abelian non-anomalous global symmetries. The model also enjoys the fol-
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lowing tree-level superpotential

Wtree = λSQ̃Q , (11.16)

which respects all symmetries.

As usual, let us start analyzing this theory at the classical level. We first consider

the SU(4) dynamics, only, and ignore the U(1) dynamics as well as the superpoten-

tial (11.16). The SU(4) D-flat directions can be described by the following gauge

invariant operators

M = Q̃Q , PfA = εijklAijAkl/8 , S . (11.17)

For later purposes let us notice that M has U(1) charge equal to -4, while PfA and

S have U(1) charge equal to 4.

One can check that along a generic flat direction a SU(2) ⊂ SU(4) gauge in-

variance survives under which no matter is charged. At scales below the dynamical

scale Λ2 of the effective SU(2) SYM, the theory confines and glueballs and their

superpartners can be integrated out: one is only left with M , PfA and S as low en-

ergy degrees of freedom. Gaugino condensation of pure SYM leads to the following

non-perturbative generated superpotential

Wnon−pert ∼ Λ 3
2 =

Λ 5
4√

MPfA
(11.18)

where the second equality comes from the usual scale-matching condition.

If we now consider the U(1) gauge interactions, we have to project the SU(4) D-

flat space onto the subspace which is also U(1) D-flat. The latter is parameterized by

two moduli, MPfA and SM , which hence parametrize the classical D-flat directions.

Note that the tree-level superpotential (11.16), exactly as in the 3-2 model, lifts them

all and leaves only the origin of field space as a supersymmetric vacuum (this can

be seen from the F-term equation for S which sets to zero M and hence both MPfA

and SM).

Both the U(1) gauge coupling and the superpotential coupling are IR-free, so they

would not affect the above analysis, which lead to (11.18). Therefore, we can now

consider the full superpotential simply adding up the tree-level and non-perturbative

contributions and get

Weff =
Λ 5

4√
MPfA

+ λSM . (11.19)
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This superpotential is essentially the same as that of the 3-2 model, eq. (11.7).

Therefore, from this point on the analysis is the same as the one we performed

previously. Supersymmetry is broken because of the interplay between the dynami-

cally generated runaway superpotential term (11.18) and the tree-level contribution

(11.16). Differently from the 3-2 model, though, the fact that for small enough λ

SM and MPfA are the correct low energy degrees of freedom, does not follow from

complete Higgsing of the gauge group, since on the moduli space there is a surviving

SU(2) SYM theory. Still, at energies below Λ2 the gauge group confines and glue-

balls and their superpartners can be integrated out. Hence, at low enough energy,

the effective theory is indeed given in terms of SM and MPfA only.

Similarly to the 3-2 model, one can argue that for small values of the coupling

λ the model is calculable. This might look strange, given the left-over non-abelian

SU(2) gauge dynamics which is strongly coupled. How can that be? One expects

non-perturbative strong coupling dynamics associated to SU(2) to give rise to cor-

rections to the Kähler potential in terms of some function of ∼ Λ2/v, with v the

typical scale of a fundamental field VEV. Balancing the two terms in eq. (11.19)

and recalling the expression (11.18) one finds

v ∼ Λ2

λ1/3
which implies

Λ2

v
<< 1 for λ << 1 . (11.20)

Hence, quantum corrections to the Kähler potential are suppressed in this regime

and the model is calculable.

Let us stress again how different the dynamics is with respect to the 3-2 model.

There, the smallness of λ ensures that both gauge groups are fully broken at very

high energy, and therefore quantum corrections due to gauge dynamics suppressed.

Here, instead, a fully unbroken gauge groups survives at low energy.

The computation of low energy spectrum and interactions goes along similar

lines as the 3-2 model, and we do not repeat it here (for instance, also for this

model the tree-level superpotential has a R-symmetry which is spontaneously broken

in the vacua; hence we expect, as for the 3-2 model, a R-axion in the massless

spectrum). Let us summarize, instead, the physical picture one should bare in

mind. The theory in the UV is a SU(4) × U(1) gauge theory. At a scale v this

is broken down to SU(2). This left-over non abelian gauge theory confines at a

scale Λ2 << v, below which we have a low energy effective theory with chiral

superfields, only. Gaugino condensation gives rise to a superpotential contribution

which induces supersymmetry breaking at a scale Ms. Note that in the limit λ << 1
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the supersymmetry breaking scale is parametrically smaller than Λ2 (using the same

rationale we used for the 3-2 model, one easily sees that Ms ∼ Λ2λ
1/6 which is well

below Λ2, if λ is small). Hence, at the supersymmetry breaking scale all gauge

degrees of freedom are heavy and do not contribute to the effective action, which

justifies the description in terms of SM and MPfA, only.

The 4-1 model has several generalizations. The most straightforward ones are

theories with gauge group SU(2l) × U(1) and matter consisting of a chiral su-

perfield transforming in the anti-symmetric representation of SU(2l), 2l − 3 anti-

fundamentals Q̃, one fundamental Q, and 2l− 3 singlets Si. Supersymmetry break-

ing is again driven by gaugino condensation of a IR left-over SU(2) gauge group,

provided a suitable tree-level superpotential is added which lifts all classical flat di-

rections. The 4-1 model corresponds to l = 2. More details on these generalizations

can be found in the references at the end of the Chapter.

11.5 ITIY model: SUSY breaking with classical flat direc-

tions

Let us now consider an instance of a non-calculable model. Its interest lies in the

fact that supersymmetry is broken even though the theory is non-chiral and admits

classical flat directions (the latter get lifted by non-perturbative effects not leading

to runaway behavior).

Let us consider a gauge theory with group G = SU(2), four fundamental fields

Qi (which correspond to two flavors, since for SU(2) the fundamental and anti-

fundamental representations are equivalent) plus six singlets Sij and a superpotential

Wtree = λSijQ
iQj (11.21)

(notice that the productQiQj is antisymmetric since what it really means isQi
αQ

j
βε
αβ

where α, β are SU(2) gauge indexes). This theory admits a SU(4) flavor symme-

try group (this enhancement of the global non R-symmetry group from SU(F )L ×
SU(F )R × U(1)B to SU(2F ) is always there whenever the gauge group is SU(2)),

under which the Qi’s transform in the fundamental and the singlets in the anti-

symmetric representations, respectively. Hence, the tree-level superpotential (11.21)

respects the flavor symmetry. As usual, let us start studying the classical behavior

of the theory. The SU(2) D-flat directions can be parameterized by six meson-like

operators M ij ∼ QiQj, which transform in the 6 of SU(4) and satisfy the classical

283



constraint of SQCD with N = F = 2, that is

PfM = εijklM
ijMkl = 0 . (11.22)

The indexes i, j should be seen as SO(4) indexes (recall that SO(4) ' SU(2)×SU(2)

and notice that for any nonzero value of M the SU(4) global symmetry is broken

to SU(2) × SU(2)). The F-flatness condition for Sij sets all Qi’s to zero hence all

flat directions are lifted but the singlets.

At the quantum level the classical constraint (11.22) is modified and the full

effective superpotential reads

Weff = λSijM
ij + A

(
εijklM

ijMkl − Λ4
)
. (11.23)

The F-equation for Sij still gives M ij = 0 but now this is in conflict with the

quantum constraint, i.e. the F-equation for the Lagrange multiplier A. Therefore,

supersymmetry is broken. More precisely, working out the potential from the ex-

pression (11.23) one can show that, up to symmetry transformations, the minimum

is at Mij = Λ2
2, S13 = S14 = S23 = S24 = 0 and S12 = S34 ≡ S. Therefore, there is a

pseudoflat direction parametrized by S.

This model is instructive in many respects, which we consider in turn.

Having a flat direction, parametrized by S, one could be worried about where,

in field space, the supersymmetry breaking vacua lie, once quantum corrections in

the coupling λ are taken into account. In principle, there can also be a runaway.

A careful analysis, which we refrain to do here, shows that this is not the case: for

small enough λ and large λ〈S〉 the Kähler potential for S can be shown to grow

logarithmically for large S, hence ensuring that the actual minimum is stabilized at

a finite distance in field space.

Notice also that this model is non-chiral. Therefore, one could add a mass

term for all fields, lifting all classical flat directions. At low energy one could then

integrate all chiral fields out and end-up with pure SU(2) SYM, which does not

break supersymmetry (it has two vacua and Witten index equal to 2)! How that

can be? The answer comes from a careful analysis of the massless limit.

Let us add a mass perturbation to the superpotential (11.23)

Weff = λSijM
ij +mijM

ij +
1

2
m̃PfS + A

(
εijklM

ijMkl − Λ4
)
. (11.24)
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The F-equations for M ij and Sij set

〈M ij〉 ∼ εijklmkl

(
Λ4

Pfm

)1/2

〈Sij〉 ∼
mij

m̃

(
Λ4

Pfm

)1/2

,

where the square roots get two values, corresponding to the two vacua of pure SU(2)

SYM. Take now the limit m̃,mij → 0 with their ratio fixed. This way, 〈M ij〉 has

a finite limit, but 〈Sij〉 is pushed all the way to infinity. This implies that the

supersymmetry preserving vacua are also pushed to infinity and disappear from the

spectrum, recovering our previous result.

This is an instance of discontinuos change of the Witten index, which moves

from 2 to 0 in the limit of vanishing masses. The reason for that is that the mass

terms change the behavior of the Hamiltonian in the large field region. As the limit

m̃ → 0 is taken, the asymptotic behavior of the potential changes since now there

are classical flat directions (and the Witten index can - and does - change, recall

our discussion in §7.6.2).

The ITIY model (after Intriligator,Thomas, Izawa and Yanagida), admits many

generalizations. An interesting class is based on SQCD with gauge group USp(2N)

and F = N + 1 flavors. This theory has a SU(2F ) = SU(2N + 2) flavor symmetry,

and enjoys a quantum deformed moduli space, very much like SU(N) SQCD with

F = N flavors. Coupling the quark superfields to a set of gauge singlets transforming

in the antisymmetric representation of the flavor symmetry group via a superpoten-

tial like (11.21), one can show supersymmetry is broken in a way identical to that

of the original ITIY model (in fact, recalling that SU(2) ' USp(2), one sees that

the ITIY model corresponds to the case N = 1 of the above class).

11.6 DSB into metastable vacua. A case study: massive

SQCD

As a final project, we want to discuss the possibility that supersymmetry is broken

dynamically into metastable vacua.

A model of DSB into metastable vacua share some basic properties with or-

dinary DSB models. The theory should be a gauge theory and should not break

supersymmetry at tree level. Only non-perturbative corrections should. The differ-

ence is that the non-perturbative dynamics does not lift classical supersymmetric
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vacua but just ensure that local minima of the potential whose nature is intrinsically

non-perturbative, arise.

On general ground, as we observed in towards the end of Chapter 7, due to

Witten index arguments, R-symmetry arguments, etc... the landscape of theories

admitting metastable supersymmetry breaking vacua is expected to be much larger

than those admitting stable ones. This has been known since long, but only more

recently it was possible to come-up with the first explicit such construction, when

in 2006 Intriligator, Seiberg and Shih (ISS) proved the existence of dynamically

generated metastable vacua in the most innocent-looking supersymmetric gauge

theory one can imagine: massive SQCD. Note that this is a non-chiral theory, with

supersymmetric vacua (a full moduli space, in fact, in the massless limit), non-

vanishing Witten index and no R-symmetry (quarks mass terms explicitly break the

non-anomalous R-symmetry of massless SQCD). Even more strikingly, the model is

calculable, in the sense that around these metastable vacua one can compute both

the superpotential and the Kähler potential, and hence the effective Lagrangian

describing the dynamics of light fields.

These results have been extended into several directions, and many interesting

applications have been found since then. In what follows, we will just review the

basic model, which represents the core of all these developments.

11.6.1 Summary of basic results

Since the derivation is rather lengthy, let us anticipate the upshot of the analysis

we are going to perform. This is as follows: SU(N) SQCD with (light) massive

flavors in the free magnetic phase (that is for N + 1 ≤ F ≤ 3
2
N) admits metastable

supersymmetry breaking vacua which, for m << Λ, where m is the scale of quark

masses and Λ the dynamical scale of the theory, can be made parametrically long

lived. More precisely, the theory admits

• N supersymmetric vacua along the mesonic branch, at

〈M〉SUSY =
(
mF−NΛ3N−F )1/N

, 〈Bi1i2...iF−N 〉 = 0 , 〈B̃i1i2...iF−N 〉 = 0 . (11.25)

• A compact space of metastable supersymmetry breaking vacua along the bary-

onic branch

〈Bi1i2...iF−N 〉, 〈B̃i1i2...iF−N 〉 6= 0 , 〈M〉meta = 0 , (11.26)

with vacuum energy Vmeta ∼ N |mΛ|2.
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One can also compute the life-time of the metastable vacua and find that

τ ∼ eSB where SB ∼ ε−4(3N−2F )/N and ε =

√
m

Λ
, (11.27)

with SB the Coleman bounce action. This implies, as anticipated, that for small

masses, i.e. ε << 1, the metastable vacua can be made arbitrarily long-lived,

and hence potentially viable, phenomenologically. A qualitative picture of what

summarized above is depicted in Figure 11.4.
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Figure 11.4: The scalar potential of massive SQCD in the free magnetic phase. On

the mesonic branch there are supersymmetric vacua. On the baryonic branch there

are supersymmetry breaking vacua, which are parametrically long-lived if m << Λ.

11.6.2 Massive SQCD in the free magnetic phase: electric description

Consider SQCD with gauge group SU(N) in the free magnetic phase, namely for

N + 1 ≤ F ≤ 3
2
N . As we have discussed in detail in Chapter 10, this theory has

many supersymmetric vacua, actually a full moduli space. Let us add a mass term

for all matter fields

Wm = TrmQQ̃ ≡ TrmM . (11.28)

where the trace is taken on gauge and flavor indexes. Notice that (11.28) breaks

the SQCD R-symmetry explicitly, while the flavor symmetry group is broken to a

subgroup H, whose structure depends on the specific form of the mass matrix m

(more later).
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This theory has two mass scales, the quarks mass, which with a slight abuse of

language we call again m, and Λ, the dynamical scale of the theory. Let us consider

the two obvious possible regimes in turn.

a. m > Λ

The theory at low energy flows to pure SYM with gauge group SU(N) and has

N (isolated) supersymmetric vacua. By scale matching, we obtain

Λ3N
L = detmΛ3N−F (11.29)

which implies

Weff = NΛ3
L = N

(
detm Λ3N−F ) 1

N , (11.30)

an effective superpotential displaying, correctly, the N vacua of pure SU(N) SYM.

What’s this, really? The mass matrix m and the meson matrix M are Legendre

dual variables. The effective superpotential above is nothing but the effective super-

potential once the mesons have been integrated out. Hence, using formula (10.79),

we get the matrix equation

〈M〉SUSY =
(
detm Λ3N−F ) 1

N
1

m
(11.31)

which tells where in the moduli space the N supersymmetric vacua sit: they corre-

spond to the N roots of the above equation.

b. m < Λ

In this case, which is actually the one we will be interested in, eventually, it is

not completely correct to proceed as before since strong coupling dynamics, driven

by Λ, enters before being allowed to integrate the massive quarks out. The more

correct thing to do, in this case, is to notice that m and M are Legendre dual

variables, and integrate M in starting from eq. (11.30). In practice, one should take

the determinant of eq. (11.31), solve for detm and follow the procedure outlined in

§10.4.3, getting finally

Weff = (N − F )

(
Λ3N−F

detM

) 1
N−F

+ TrmM . (11.32)

Then we can find eq. (11.31) simply solving the F-equations for M . Recall, however,

that strictly speaking detM = 0 for F ≥ N + 1, so one has to go a bit off-shell, so

to say, in performing the computation. The final result, eq. (11.31), is of course a

perfectly meaningful on-shell result.
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The upshot is that, no matter the value of m/Λ, there exist N supersymmetric

vacua on the mesonic branch. That baryon VEVs are vanishing can be easily argued

as follows. In the same way as m and M can be thought as Legendre dual variables,

one can think of b and b̃ as sources for the baryons B and B̃, respectively, deforming

the theory by ∆W = bB + b̃ B̃ (flavor indexes are suppressed, for the ease of

notation). At low energy the theory reduces to pure SYM with gauge group SU(N)

and effective superpotential (11.30). Using now eq. (10.79) applied to the Legendre

dual variables b and B (respectively b̃ and B̃) one concludes that 〈B〉 = 〈B̃〉 = 0.

Hence the supersymmetric vacua (11.31) have indeed zero baryon number.

In general, m is a matrix transforming under the anti-fundamental of SU(F )L

and the fundamental of SU(F )R. This matrix can always be diagonalized via a

bi-unitary transformation and, from here on, we choose for simplicity all entries to

be equal, mi = m. The superpotential term hence reads

Wm = mTrM , (11.33)

where now m is just a number. With this choice, the SU(F )L × SU(F )R flavor

symmetry group is broken to SU(F )D. Similarly, eq. (11.31) now reads

〈M〉SUSY =
(
mF Λ3N−F ) 1

N
1

m
=
(
mF−NΛ3N−F ) 1

N = ε2
F−N
N Λ2 , (11.34)

where ε ≡
√
m/Λ.

11.6.3 Massive SQCD in the free magnetic phase: magnetic description

So far, we have derived the first part of ISS statement, the easy one. We have ob-

tained, via holomorphic decoupling, the N supersymmetric vacua of massive SQCD,

and found they lie along the mesonic branch. In order to find something more inter-

esting, we have to turn to the Seiberg dual description of the theory, i.e. mSQCD.

Since we are in the magnetic-free phase we choose, in what follows, Λel = Λm =

µ ≡ Λ. The magnetic dual superpotential, including the mass deformation (11.33)

reads

Wm = hTr qΦq̃ −mΛhTr Φ , (11.35)

where

Φ =
1

hΛ
M . (11.36)

Let us start by recovering, using magnetic variables, the N supersymmetric vacua

we have found before. To this aim, let us suppose we give some non-vanishing VEV
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to the gauge singlet Φ. This provides a mass to dual quarks, q and q̃, which can then

be integrated out. The theory reduces to pure SU(F − N) SYM and the effective

superpotential one obtains, upon holomorphic decoupling, reads

Weff = −mΛhTr Φ + (F −N) Λ3
L . (11.37)

By matching at dual quarks mass scale we find the relation

Λ
3(F−N)
L = hFdet Φ Λ3(F−N)−F that is Λ3

L =
(
hFdet Φ Λ2F−3N

) 1
F−N . (11.38)

We can substitute the above relation into the superpotential (11.37) and get

Weff = −mΛhTr Φ + (F −N)
(
hFdet ΦΛ2F−3N

) 1
F−N . (11.39)

The F-equation for Φ gives

〈hΦ〉SUSY =
√
mΛ ε−

3N−2F
N >>

√
mΛ

= Λ ε2
F−N
N << Λ , (11.40)

where the inequalities hold if ε is small. The expression in the first line says that

the supersymmetric vacua are at a parametrically large distance from the origin of

field space in units of
√
mΛ. This means that they are located in a very quantum

region from mSQCD point of view, since in this regime of parameters mSQCD is

a IR-free theory. On the other hand, the expression in the second line shows that

they are still well below mSQCD Landau pole, meaning that the above analysis is

a meaningful one to do within mSQCD. Notice that, consistently, using the map

(11.36) one can easily see that (11.40) is the same as (11.34).

Even using magnetic variables one can easily conclude that in the supersymmetric

vacua baryon VEVs are vanishing. As already observed, on such vacua the dual

quarks are massive and can be integrated out, hence their VEVs vanish. The VEVs

of the magnetic baryons can be easily computed from that of dual quarks. Indeed,

the magnetic theory is IR free and in the supersymmetric vacua the VEV of the

product of qs is the same as the product of the VEVs of each q. Therefore

〈bj1j2...jN 〉 = 0 (11.41)

and similarly for b̃j1j2...jN . From the map (10.121) it then follows that 〈Bi1i2...iF−N 〉 =

〈B̃i1i2...iF−N 〉 = 0, as anticipated.

Notice that while the ε parameter defined here and in the electric description is

one and the same, the ε→ 0 limit should be understood differently. In the electric
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description Λ is a dynamical RG-invariant scale and the limit of small ε is obtained

sending m → 0 keeping Λ fixed. In the magnetic description, Λ is a cut-off scale,

above which the theory is not defined. The limit should now be understood as

Λ → ∞ keeping
√
mΛ, the mass scale entering the superpotential (11.35), fixed

(notice that ε =
√
m/Λ =

√
mΛ/Λ). This apparently pedantic observation will be

relevant later.

Let us now come back to the expression (11.35) and analyze the properties of

deformed mSQCD more closely. We will do this in steps. Let us forget, for now, that

the magnetic group SU(F − N) is gauged. If gauge degrees of freedom are frozen,

the vacua of the theory are obtained solving F-equations only. From eq. (11.35)

these read 



FΦji
= q̃iaq

a
j −mΛδij

F qi = hΦi
j q̃
j

F q̃j = hqiΦ
i
j

(11.42)

where a are SU(F − N) indexes. We see that the first set of equations cannot be

solved. The rank of q̃iaq
a
j is at most F−N while that of δij is clearly F . Hence we can

set to zero at most (F−N) terms of FΦ-equations: we are left with F−(F−N) = N

non-vanishing F-terms. On the other hand, the F-equations for q and q̃’s are easily

satisfied. We conclude that supersymmetry is broken, and is so by a rank condition.

The potential energy gets contribution from the N F-equations that cannot be set

to zero and hence reads

Vmeta ∼ N |mΛ|2 . (11.43)

The supersymmetry breaking vacua are at

〈Φ〉 =

(
0 0

0 Φ0

)
, 〈q〉 =

(
q0

0

)
, 〈q̃T 〉 =

(
q̃0

0

)
(11.44)

where q0q̃0 = mΛ 1F−N , with q0 and q̃0 being F −N × F −N matrices, and Φ0 an

arbitrary N×N matrix. Therefore, we find a pseudomoduli space of supersymmetry

breaking vacua parameterized by Φ0, q0 and q̃0. If this analysis were correct, the

picture we would obtain is what is summarized, schematically, in Figure 11.5.

The question we should now try to answer is to what extent the above results

are solid in the full quantum theory. So far, our analysis was classical, both because

we have been ignoring the SU(F − N) gauge dynamics, and because, even within

the ungauged model, we have not taken into account quantum corrections coming

from the coupling h. Let us start considering quantum effects due to h. Later, we

will consider the role of gauge degrees of freedom and interactions.
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Figure 11.5: Linearly deformed mSQCD classical potential.

Let us first notice that the supersymmetry breaking vacua lie relatively near to

the origin, which is the more classical region for mSQCD, which is a IR-free theory.

Indeed, as already observed, the scale
√
mΛ is set to be the mass scale entering

the mSQCD Lagrangian by the superpotential (11.35), the natural mass unit to

measure dimensionfull quantities in the magnetic theory. Looking at eqs. (11.43)

and (11.44), we see that the energy density of the supersymmetry breaking minima

is order one in units of
√
mΛ, and so are the values of q0 and q̃0 on such minima

(the Φ0 flat direction does not play any role here since, as we will see momentarily,

quantum corrections lift this degeneracy and set Φ0 = 0). On the contrary, looking

at eq. (11.40) we see instead that 〈Φ〉SUSY is parametrically large in units of
√
mΛ.

Since mSQCD is IR-free, we can then safely take the Kähler potential to be canonical

in the region where the supersymmetry breaking vacua sit, that is

K = Tr
(
Φ†Φ + q†q + q̃†q̃

)
. (11.45)

A second comment regards global symmetries. In the limit where the magnetic

gauge group SU(F −N) is taken to be ungauged, mSQCD has a global symmetry

group SU(F −N)× SU(F )L × SU(F )R × U(1)B × U(1)R0 which is broken by the

second term in (11.35) to G = SU(F − N) × SU(F )D × U(1)B × U(1)R0 , where

under the non-anomalous R-symmetry U(1)R0 the dual quarks are chargeless and Φ

has R-charge R0 = 2, as dictated by the tree-level superpotential (11.35).

On the supersymmetry breaking vacua (11.44) the group G is spontaneously

broken. The vacua with maximal unbroken global symmetry sit at (up to unbroken
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flavor rotations)

Φ0 = 0 , q0 = q̃0 =
√
mΛ 1F−N , (11.46)

and preserve H = SU(F − N)D × SU(N) × U(1)B′ × U(1)R0 (notice in particular

that the R-symmetry is not broken). The preserved baryonic symmetry U(1)B′ is the

combination of the original baryonic symmetry U(1)B and of the U(1) ⊂ SU(F )D

not contained in SU(F − N)D × SU(N), under which the lowest part of the dual

quark matrices q and q̃ are charged while the upper part is not.

In order to study quantum corrections around the supersymmetry breaking

vacua, we can proceed as we did for the O’Raifeartaigh model, and compute the

masses of the fluctuations of Φ, q and q̃ as functions of the pseudomoduli Φ0, q0 and

q̃0. It is reasonable to expect that the actual vacuum will sit at a point of maxi-

mal symmetry, so as a working hypothesis let us expand around (11.46). We can

parametrize the fluctuations as (for ease of comparison we use the same notation of

ISS)

Φ =

(
δY δZ†

δZ̃ δΦ̂

)
, q =

(√
mΛ + 1√

2
(δχ+ + δχ−)

1√
2
(δρ+ + δρ−)

)
, q̃T =

(√
mΛ + 1√

2
(δχ+ − δχ−)

1√
2
(δρ+ − δρ−)

)

(11.47)

What one finds is that the model looks as N copies of a O’Raifeartaigh-like model.

After computing the one-loop effective potential the mass spectrum looks as follows:

• There are no tachyonic modes, giving an a posteriori justification for our work-

ing hypothesis (11.46).

• Some fields have (tree-level) mass ∼ |h
√
mΛ| from the classical superpotential

(11.35).

• Pseudomoduli are all lifted and get non-tachyonic masses at one-loop∼ |h2
√
mΛ|

from their coupling to massive fields (this shows in retrospective that our ed-

ucated guess was right, after all).

• Some fields remain exactly massless. These are: the Goldstone bosons associ-

ated to the coset G/H, a goldstino, as well as several fermionic partners of Φ0

pseudomoduli.

So, after taking into account quantum corrections in the tree-level coupling h we are

left with a compact moduli space of stable non-supersymmetric vacua. This moduli

space is robust against quantum corrections, because it is protected by symmetries.

293



What does it change of the above analysis if we now switch-on gauge interactions,

namely once we let SU(F−N) group being gauged? Interestingly, not much happens

around the supersymmetry breaking vacua (11.46).

First, besides F-equations (11.42) we have now to impose D-equations on the

supersymmetry breaking vacua (11.46). These are trivially satisfied, as one can

verify plugging VEVs (11.46) into
∑

A

Tr
(
q†TAq − q̃TAq̃†

)
= 0 . (11.48)

Hence, the compact space parameterized by (11.46) remains a minimum of the

potential (D-terms identically vanish and therefore do not contribute to the vacuum

energy).

Second, the SU(F −N) gauge group is completely higgsed in the vacua (11.46),

since 〈qo〉 = 〈q̃0〉 6= 0. Gauge bosons acquire a mass ∼ g
√
mΛ, eating some of the

previously massless Goldstone bosons of the ungauged model. The only change,

then, is that the compact moduli space is smaller since global symmetries in the

gauged model are less, to start with. In particular we have now that G = SU(F )D×
U(1)B and H = SU(F −N)×SU(N)×U(1)B′ . Notice that the R-symmetry of the

ungauged model U(1)R0 is now anomalous, while the non-anomalous R-symmetry

which mSQCD shares with SQCD is explicitly broken by the mass term in the

superpotential (i.e. the linear term in Φ, in mSQCD language).

Finally, the gauging does not affect the computation of the one-loop effective

potential, either, since the tree level spectrum of massive SU(F − N) fields is su-

persymmetric and gives no contribution to StrM2. This happens because D-terms

vanish on the vacua (11.46), and the non-zero expectation values of q and q̃ which

provide masses to SU(F−N) gauge fields do not couple directly to any non-vanishing

F-term.

So we conclude that, up to a restriction of the compact moduli space, the super-

symmetry breaking vacua we found classically in mSQCD survive quantum correc-

tions and are hence supersymmetry breaking vacua of our original theory!

Gauging the SU(F−N) group does have (drastic) consequences on other regions

of field space, though. We already know, and we have proved it using both electric

and magnetic variables, that the theory has supersymmetric vacua on the mesonic

branch. Besides other things, this makes the supersymmetry breaking vacua (11.46)

being not absolute minima of the potential. Using magnetic language the effect of

gauging is the generation of a non-perturbative superpotential contribution of the
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form

Wnp ∼ (detΦ)
1

F−N ∼ Φ
F

F−N . (11.49)

This contribution is irrelevant near the origin, where supersymmetry breaking vacua

sit, and becomes more and more important the farer we move along the mesonic

branch. This operator plays the same role that a mass term for the chiral superfield

Φ2 played in the modified O’Raifeartaigh model discussed in §7.3: it brings in super-

symmetry preserving vacua. The difference is that everything happens dynamically,

here. So we conclude that mSQCD has metastable supersymmetry breaking vacua

semiclassically, and non-perturbative restoration of supersymmetry by a a dynam-

ical generated superpotential. On the other hand, in terms of the original SQCD

theory, the supersymmetry breaking vacua are highly quantum mechanical, since

they sit in a region which is highly quantum, from SQCD view point.

The final picture we obtain confirms what was anticipated in Figure 11.4 or,

using magnetic dual language, in Figure 11.6 .
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Figure 11.6: The ISS potential in magnetic dual variables.

A final comment regards the R-symmetry breaking pattern. Nicely, what we get

is consistent with what we learned previously. The SQCD original R-symmetry is

explicitly broken by the mass term (11.28). Hence, the theory does not satisfy the

necessary condition for supersymmetry breaking, and indeed it has N supersym-

metric vacua, and non-vanishing Witten index. On the other hand, the anomalous

U(1)R0 R-symmetry is restored, approximately, near the origin. This is more trans-

parent using magnetic variables. The superpotential contribution (11.49) breaks R0
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explicitly, but this operator is irrelevant near the origin and this is why this symme-

try arises as an approximate R-symmetry around the vacua (11.46). Therefore, by

the (extended version of the) Nelson-Seiberg criterium, one would expect metastable

vacua to arise there. And this is exactly what happens.

Finally, it is amusing to notice that in the ISS vacuum is plenty of massless fields,

so there is no mass gap: a theory with tree-level masses for all matter fields and

strict confinement, admits vacua without a mass gap!

In all our discussion there is one point that we have overlooked. The magnetic

theory has a UV cut-off, Λ. Do our results depend on the physics at scale Λ? Luckily,

not in the limit we are interested in, namely

ε =

√
m

Λ
<< 1 −→

{
SQCD : m→ 0 , Λ fixed

mSQCD : Λ→∞ ,
√
mΛ fixed

(11.50)

First, the analysis within the macroscopic theory (i.e., ungauged mSQCD) is valid,

since this was done at scales of order
√
mΛ = εΛ, which are well below the UV

cut-off Λ, if ε is small. Second, also the supersymmetry preserving vacua can be

seen in the magnetic theory: as we have already observed, for small ε they are well

below the scale Λ

〈Φ〉SUSY = Λ ε2
F−N
N << Λ , (11.51)

and hence are very weakly affected by any Λ-physics effects. Finally, the one-loop ef-

fective potential gives pseudomoduli mass squares of order |mΛ|, that is
√
mΛ
√
mΛ,

which is not a holomorphic expression. On the other hand, corrections from Λ-

physics are holomorphic in mΛ and provide mass contributions of the form

mΛ

Λ
· mΛ

Λ
= |mΛ|2/|Λ|2 = |mΛ|ε2 << |mΛ| , (11.52)

which are then subleading for ε << 1. A direct way to see this is to note that

corrections in Λ would make the Kähler potential (11.45) not being canonical. In

particular, to leading order, we would get a contribution as δK = c/|Λ|2(ΦΦ†)2,

with c a number of order one. This is reminiscent of the Polonyi model with quartic

Kähler potential we discussed in§7.3. A similar computation as the one there gives

a contribution to the pseudomoduli mass as in eq. (11.52), δm2 ∼ |mΛ|2/|Λ|2.

The last important check we have to do regards the life-time of the supersym-

metry breaking vacua. The life-time can be computed using the Coleman bounce

action SB. Intuitively, the more the two vacua are far in field space in units of the
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energy difference between them, the more one might expect the life-time to be long.

This expectation is confirmed by an explicit computation. It turns out that in the

present case we are in a situation in which the so-called thin-wall approximation is

valid. In such a situation, up to inessential numerical factors, the bounce action is

proportional to the ratio between the fourth power of the distance, in field space,

between the supersymmetry breaking and the supersymmetry preserving vacua, and

the value of the energy difference between them. Using previous formulas SB hence

reads

SB ∼
(∆Φ)4

Vmeta

∼ ε−4 3N−2F
N , (11.53)

which is indeed large for ε << 1. This ensures that the ISS vacua are parametrically

long lived, since τ ∼ eSB . Notice that the largeness of the bounce action is due to

different effects depending whether one is working in electric or magnetic variables.

From mSQCD view point it is large since ∆Φ is parametrically large in units of
√
mΛ.

From SQCD view point, the bounce action is large because V
1/4

meta is parametrically

small in units of Λ

mSQCD

{
∆Φ ∼

√
mΛε−

3N−2F
N

V
1/4

meta ∼
√
mΛ

SQCD

{
∆Φ ∼ Λε2

F−N
N ≡ Λ′

V
1/4

meta ∼ εΛ =
(

Λε2
F−N
N

)
ε

3N−2F
NB = Λ′ε

3N−2F
NB

(11.54)

where in the electric theory we have defined a rescaled strong coupling scale Λ′.

11.6.4 Summary of the physical picture

Let us summarize the physical picture which emerges from our analysis of massive

SQCD in the free magnetic phase.

Since the theory is UV-free, at high energies, larger than the dynamical scale,

E > Λ, the theory is weakly coupled, it can be described in terms of electric variables

and the gauge coupling gel increases along the flow. The scale Λ is an IR cut-off

for SQCD and a UV cut-off for the IR-free dual magnetic theory. Hence, at scales

E ∼ Λ, in order to describe the dynamics of the theory one should better use

magnetic language. Below Λ but above 〈Φ〉 the theory renormalizes as for an IR-

free theory, in the sense that the magnetic gauge copling gm decreases along the

flow. This goes on until one meets the scale 〈Φ〉. What happens next depends on

the value of such scale. If 〈Φ〉 6= 0 at E ∼ 〈Φ〉 the dual quarks get massive and
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the theory reduces to pure SYM and leads to N supersymmetric vacua. If instead

〈Φ〉 = 0 the magnetic theory becomes completely free, gauge degrees of freedom get

frozen and one is driven to the supersymmetry breaking vacua at E ∼
√
mΛ.

This is what happens for (massive) SQCD in the free magnetic phase, namely

in the range N + 1 ≤ F ≤ 3
2
N . A natural question to ask is whether there exist

metastable vacua in massive SQCD for different values of F . The short answer is

that the existence of such vacua can be rigorously proven only in the free magnetic

phase. For F ≥ 3N SQCD the dynamics is trivial and there do not exist ISS-like

metastable vacua whatsoever. In the conformal window, 3
2
N < F < 3N , the analy-

sis is not easy since mSQCD is not IR-free. Moreover, one can show that 〈Φ〉SUSY is

very near to the origin of field space, hence making metastability difficult to achieve

anyway. Finally, the non-perturbative generated superpotential (11.49) is now rele-

vant in the IR, indicating the difficulty in treating separately classical and quantum

effects. For F < N the runaway is too strong and there are simply no tools to

say whether local minima develop along the moduli space. Finally, for F = N the

existence of ISS vacua cannot actually be proven using the magnetic dual theory,

which does not exists for F = N , but can only be inferred using holomorphic de-

coupling starting from F = N + 1. Even though there are convincing arguments in

favor of ISS vacua also in this case, given that the state we are speaking about is not

supersymmetric, the procedure requires some assumptions which are not fully under

control; hence, the case F = N is not completely understood, in fact. A natural

question is therefore whether is it possible to find ISS-like vacua in theories with a

quantum deformed moduli space, as SU(N) SQCD with F = N is. The answer is

for the affirmative. It has been shown that suitable deformations of the USp(2N)

ITIY model we discussed in §11.5 allow for dynamically generated metastable vacua,

in a theory with a quantum deformed moduli space, as the ITIY model and any of

its generalizations actually are. Basically, giving supersymmetric masses to some

of the singlets Sij one can show that supersymmetric vacua come in from infinity

(because, integrating out massive singlet(s), mesonic flat directions develop) but dy-

namically generated non-supersymmetric local vacua survive. Moreover, such vacua

can be made parametrically long lived in a region of the parameter space which,

interestingly enough, coincides with the region where Kähler potential corrections

are fully under control.

The ISS model admits many generalizations (including those above). In particu-

lar, at the price of some complications and subtleties which we cannot discuss here,
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one can generalize the model in order to let the emergent IR R-symmetry to be

spontaneously broken in the supersymmetry breaking vacua. This is a feature that

the original ISS model does not have, since, as we have seen, quantum corrections

stabilize U(1)R0 charged moduli at the origin, Φ0 = 0. These generalizations are

interesting per sé but as well as from a more phenomenological point if view: if

one thinks of the ISS model as a hidden sector in gravity or gauge mediation sce-

narios, having broken R-symmetry is a necessary condition to let gauginos getting

(Majorana) mass.

11.7 Exercises

1. Consider the SU(5) model discussed in §11.2 and add to it two chiral su-

perfields, H and H̃, transforming in the 5 and 5̄ representations of SU(5),

respectively. In this extended model there exist flat directions, which can be

parametrized by the gauge invariant operators TQ̃H̃, TTH, H̃H, Q̃H.

• Show that along these flat directions the theory reduces to pure SU(2)

SYM (plus 4 singlet chiral superfields) and compute the effective super-

potential by scale matching.

• Add now the following tree-level superpotential

Wtree = hTTH + f TQ̃H̃ +mH̃H

and show that for m = 0 there exists a moduli space of supersymmetric

vacua. Show that in the massive case, instead, the F-term equations

cannot be solved and hence supersymmetry is dynamically broken.

Note that in the limit m→∞ the fields H, H̃ decouple and one is back with

the original SU(5) model. Under the assumption that there are no phase

transitions as we send m to infinity, one can conclude that the original SU(5)

model breaks supersymmetry, too.

2. Show, imposing cancellation of ABJ anomalies, that the global symmetry

charge assignment in Table 2 for the chiral superfields Qi, Q̃
i, Aij and S is

as given.
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12 Supersymmetric gauge dynamics: extended supersym-

metry

In this final lecture we will focus on asymptotically free gauge theories with

extended supersymmetry and try to understand their quantum dynamics, in analogy

with what we did for N = 1 supersymmetric theories in lecture 10.

Asymptotically free gauge theories can enjoy different phases at low energy. In

the case of N = 1 supersymmetry, we were able to understand a great deal about

the exact vacuum structure and the phases such field theories can enjoy. This can

obviously be done also for theories with extended supersymmetry. However, the

beautiful thing about theories with extended supersymmetry is that one can also

derive the low energy effective action (in N = 1 setups this can be done only in

very special circumstances, e.g. for SQCD in the free magnetic phase, but this is

not generic at all). The main purpose of this lecture is to show how this is possible.

12.1 Low energy effective actions: classical and quantum

Before entering into any detail, we would like to make some general comments,

independent from supersymmetry. Suppose to start from some matter coupled,

asymptotically free gauge theory. At low energy its dynamics will be described

by some (non-renormalizable) effective action whose degrees of freedom will be in

general very different from UV ones. What is the structure one would expect for

such an action?

Let us assume that in the vacuum we want to expand the theory about, the po-

tential vanishes, V = 0. This is not a restriction, since the minimum of the potential

can always be chosen to vanish via a constant shift in the Lagrangian. Moreover, in

the context of supersymmetric theories, which is what we are eventually interested

in, this is not even a choice but a necessary condition, as far as supersymmetric

vacua.

The leading dynamics around these vacua is governed by light fields, eventually

only massless ones, as we take the cutoff energy characterizing the low energy effec-

tive action to be lower than any scale in the theory. In this limit, the physics is, by

definition, scale invariant. However, the nature of the corresponding IR fixed point

is not unique. If no massless fields are present (like in the case of strict confinement)

there are no propagating degrees of freedom in the limit E → 0, so the IR theory is
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empty and the IR fixed point a trivial one. The theory is gapped. If massless fields

are present, instead, the theory can be in a free or an interacting phase.

A necessary condition for having an interacting conformal field theory at low

energy is that massless non-abelian gauge fields are present in the effective action

(at least if one assumes that a local Lagrangian description can exist). Indeed, by

the Coleman-Gross theorem, in four space-time dimensions any theory of scalars,

spinors and abelian gauge fields flows in the IR to a free (or trivial, if everything

get a mass) theory. In this sense, the distinction we made between abelian free

phase and abelian Coulomb phase for massless and massive SQED in Section 10.2.1

is to some extent semantic. Both theories are actually IR-free, the only difference

being that in the latter case the massless spectrum contains only free photons (and

gaugini) while in the former also free massless chiral superfields are present. In

presence of massless non-abelian gauge fields, instead, one can either end up with,

say, confinement, hence a trivial IR fixed point, or an interacting conformal field

theory (an example being N = 1 SQCD with 3/2N < F < 3N). There are no

general tools to describe strongly coupled, interacting conformal field theories, for

which, regardless of supersymmetry, typically one cannot easily derive an effective

Lagrangian (recall we are assuming that the UV theory is asymptotically free so we

are excluding the case in which there are enough massless charged matter fields to

make the β function being IR-free to start with, as e.g. N = 1 SQCD with F ≥ 3N).

Sometime duality can help, like for N = 1 SQCD with N + 1 < F < 3/2N , whose

dynamics can be described by a dual, IR-free, magnetic theory. But this is clearly

non generic.

Since our aim is to discuss low energy effective actions and make quantitative

statements, in what follows we will focus on effective theories where scalars, spinors

and abelian gauge fields enter, only. One may think this is a big restriction we are

imposing on the class of theories we want to study. Remarkably, it is not. As we will

discuss momentarily, for both N = 2 and N = 4 supersymmetric gauge theories,

the moduli space happens to enjoy precisely such a IR-free phase.

A few more comments are in order.

In absence of supersymmetry, one expects the minima of the potential to be

isolated, and hence the space of vacua to be a set of isolated points in the space of

scalar field VEVs (there might exist a classical pseudo-moduli space which, however,

is typically lifted once quantum corrections are taken into account). If this is the

case, while scalar fields VEVs do parametrize the space of vacua, no scalar fields can
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be actually massless. Hence, having truly massless scalar fields in the low energy

spectrum, implies the existence of a moduli space of vacua on which the potential

vanishes identically, V = 0 (this includes also the case of spontaneously broken

global symmetries, a scenario which can occur also in non-supersymmetric setups,

albeit in this case the moduli space, parametrized by goldstone bosons, is compact).

Supersymmetric theories typically admit moduli space of supersymmetric vacua.

Hence, in the following, we will assume we are in such a situation, and hence we

allow massless scalar fields to be present in the low energy effective action. These

scalar fields, or better their VEVs, parametrize the moduli space.

In writing down the most general form of a IR-free effective action, an important

simplification occurs. Suppose a charged massless field is present in the theory. Due

to one-loop running, the abelian gauge coupling τ under which the massless field is

charged vanishes in the far IR, that is Imτ → ∞. Hence, the abelian gauge field

associated to it is decoupled and does not participate to the low energy effective

dynamics. Notice, further, that a charged massless scalar field cannot parametrize

the moduli space. Indeed, a non vanishing VEV would Higgs the U(1) and thereby

give the field a mass, as the gauge field itself. They would both disappear from the

low energy effective action. If, on the contrary, all charged fields are massive, they

do not appear in the low energy effective action to start with. Therefore, in the

limit E → 0 the low energy effective action just contains massless neutral fields and

abelian gauge fields (plus fermions).

To sum up, the low energy effective action would be something like

L = gij(φ)∂µφ
i∂µφj +

1

2
Im[τIJ(φ)F IµνFJ µν ] + fermions , (12.1)

where i, j run on (neutral and massless) scalar fields, and I, J on (abelian) gauge

fields. The complexified gauge coupling matrix τIJ and field strength are defined,

respectively, as

τIJ =
θIJ
2π

+
4πi

g2
IJ

, F Iµν = F I
µν +

i

2
εµνρσF

Iρσ . (12.2)

The σ-model metric gij = gij(φ) is the metric on the moduli space M, whose

coordinates are the massless scalar fields VEVs. Solving the theory boils down to

compute the exact expression of the metric gij and the gauge coupling matrix τIJ

(and of the coefficient functions of fermion kinetic terms which also depend on the

scalar fields φi).
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So far, we have been rather qualitative. In what follows we will show that

for theories with extended supersymmetry one can actually be quantitative and

understand a great deal about actions as (12.1) and their quantum dynamics.

12.1.1 N = 2 effective actions

Let us focus on theories with N = 2 supersymmetry and suppose to start from some

asymptotically free N = 2 renormalizable action. Such an action is fully specified

by the gauge group G and matter content, see Section 6.1.

If supersymmetry is preserved and a moduli space exists, the lightest excitations

are massless. Hence, for low enough energy, lower then any scale in the theory,

the dynamics on the moduli space is described by an effective action including

these massless fields, only. This action should preserve N = 2 supersymmetry.

Hence, it should be nothing but a special instance of the N = 2 non-linear σ-

model discussed in Section 6.1.1. As such, it would be fully determined by knowing

the exact expression of the prepotential F(Φ), which gives both the special Kähler

metric and the generalized complexified gauge coupling, eqs. (6.9) and (6.10), and

by knowing the HyperKähler metric describing the hypermultiplets σ-model.

Scalar fields parametrize a complex manifold which, as discussed in Section6.1.1,

has locally the following product structure

M =MV ×MH . (12.3)

MV is a special Kähler manifold, whose coordinates are the massless scalar φI

VEVs belonging to vector multiplets, the subspace of M where hyperscalar field

VEVs are held fixed. MH is a HyperKähler manifold, whose coordinates are the

massless scalar H i VEVs belonging to hypermultiplets, the subspace of M where

vector multiplet scalar field VEVs are held fixed (we refer collectively to H i
1 and H i

2

defined in Section6.1 as H i in here).

Let us look at the structure of this (classical by now) moduli space more closely.

The first thing is that, in writing (12.3), we have assumed that the σ-model

metric is diagonal, i.e. that there are no kinetic terms mixing φI and H i. That this

is the case comes from a N = 2 selection rule. If a cross term where there in the

Lagrangian, its supersymmetry variation should be canceled (up to total space-time

derivatives) by the supersymmetry variation of some other term. Looking at the

supersymmetry variations of vector- and hypermultiplet component fields, one can

easily see that such a term does not exist. Hence, metric cross terms are zero.
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The subspace MV where only the complex scalars φI get a VEV is called

Coulomb branch. This is because the scalars belonging to N = 2 vector multi-

plets transform in the adjoint of the gauge group G and, as such, can at most break

G down to U(1)n, where n = rankG. More precisely, the scalar potential is pro-

portional to Tr [φ, φ ] and its supersymmetric minima are described by the adjoint

scalars VEVs being in the Cartan subalgebra of G

〈φ〉 =
n∑

I=1

aI hI where hI ∈ CSA of G . (12.4)

For generic aI the gauge group is broken as G→ U(1)n. To parametrize the moduli

space one should bare in mind that a set of aI fixes the gauge invariance only up

to the action of the Weyl group WG, the group of residual gauge transformations

which, while acting on φ, do not take it out from the Cartan subalgebra. So,

locally,MV = Cn/WG, meaning that the coordinates of the moduli space should be

invariant under Weyl transformations.

Taking, for example, G = SU(N), the Weyl group is SN , the group of permu-

tations of N elements. A natural set of U(1)N−1 × SN invariant coordinates on the

(N − 1)-dimensional moduli space CN−1/SN can be shown to be

u2 =
∑

i<j

aiaj , u3 =
∑

i<j<k

aiajak , . . . , uN = a1a2 . . . aN , i, j, k = 1, . . . , N (12.5)

where, in this case, eq. (12.4) is

〈φ〉 =




a1

.

.

aN


 with

N∑

i=1

ak = 0 because Trφ = 0 . (12.6)

At low energy, the effective Lagrangian describes n = N −1 massless N = 2 abelian

vector superfields V I . The scalar fields φI belonging to these massless abelian vector

superfields are neutral and the gauge couplings τIJ are frozen at the value corre-

sponding to the (lightest) massive particles (whose masses are in fact proportional

to aI). Hence the theory is in a IR-free abelian Coulomb phase. The (qualitative)

behavior of gauge coupling evolution is shown in Figure 12.1, where we refer to aI

collectively as a.

The subspaceMH , where only the scalars H i get a VEV is called Higgs branch.

This is because, for generic gauge group representations (hyper)scalar field VEVs
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µ⇤ a
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G

Figure 12.1: Schematic behavior of gauge coupling running of N = 2 SYM with

gauge group SU(N), higgsed to N − 1 U(1)’s at scale a > Λ on the Coulomb

branch. The gauge coupling stops running at a scale µ ' a. The low energy

effective theory is described by abelian vector superfields, containing photons and

neutral fields (scalars and fermions) and enjoys an IR-free Coulomb phase.

break the gauge group completely, now. So, on the Higgs branch, one does not

expect propagating massless gauge degrees of freedom. Here again, the scalars

parametrizing the moduli space MH are not only massless but also neutral (if this

were not the case, they would acquire a mass by Higgs mechanism and should be

integrated out for low enough energy, disappearing from the effective action).

Branches where both φI and H i have non-vanishing VEVs are called mixed

branches.

So, all in all, we have to deal with a set of massless, neutral scalar fields and

n = rankG abelian gauge fields (plus fermionic superpartners). So, we are exactly

in a situation as the one advocated in the previous general discussion, see eq. (12.1).

As we have already seen discussing N = 1 theories, the moduli space needs

not to be smooth. There can exist singularities where submanifolds of different

dimensions meet. For example, classically, at the origin of field space, where the

Coulomb and the Higgs branch meet, the theory is fully un-higgsed and the metric

of the moduli space is expected to be singular: extra massless degrees of freedom

appear and they should be included in the low energy effective description. Fig. 12.2

provides a qualitative picture of the N = 2 classical moduli space.

All what we said above is the classical part of the story. How do quantum

corrections change it? Answering this question will be the basic goal of this chapter.
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aI = hi = 0

Figure 12.2: N = 2 classical moduli space. The mixed branch intersects the Higgs

branch on a Higgs submanifold and the Coulomb branch along a Coulomb subman-

ifold. The more singular point is the origin where the maximal number of degrees

of freedom become massless.

However, already at this stage a few important facts can be anticipated.

First, the selection rule dictating a direct product for the moduli space M,

eq. (12.3), holds also at the quantum level, since it comes from the supersymmetry

algebra.

Second, N = 2 supersymmetry implies that the special Kähler metric on MV

and the (imaginary part of the) generalized complexified gauge coupling, τIJ , are

related, see Section6.1.1. The former is a function of the scalar fields φI only, and

so is the gauge coupling matrix τIJ . The latter undergoes renormalization, at one

loop and non-perturbatively in N = 2, its quantum corrected expression being

some (unknown for the time being) function of the strong coupling scale Λ. Since Λ

appears in τIJ , it appears in the Lagrangian in the same way as a VEV of a scalar

belonging to a vector multiplet (one can think of Λ as a spurion). Since the metric

onMH does not depend on vector multiplet scalars, it does not depend on Λ, either.

One then concludes that the metric on MH is classically exact! The upshot is that

the metric on the Coulomb branch can receive quantum corrections, while that on

the Higgs branch is classically exact. Therefore, the exact low energy effective action

will be described by a quantum corrected Coulomb branch and a classically exact

Higgs branch. Solving the quantum theory boils down to determine the geometry
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on the Coulomb branch. Hence, in what follows, we will mostly focus on Coulomb

branches.

One more property which makes N = 2 special is that, unlike for N = 1, in

N = 2 theories a moduli space always survives at quantum level. In other words,

the classical moduli space can be modified, but never completely lifted (as instead

happens in, e.g. SQCD with F < N). As forMH , this is obvious. The HyperKähler

manifold is classically exact so, if it exists classically, it persists quantum mechan-

ically. A way to see that this holds also on the Coulomb branch is as follows. For

large field VEVs, aI � Λ, we can use classical intuition where, by ordinary Higgs

mechanism, the gauge theory is higgsed to U(1)n at weak coupling, see eq. (12.4).

The corresponding n flat directions can be lifted at the quantum level, if given a

mass. However, this cannot occur since in such semi-classical region this can hap-

pen only by higgsing, and abelian vector multiplets are neutral and so are the scalar

fields φI , which cannot then Higgs the theory further. Therefore, we conclude that

at large fields VEVs the moduli space persists even at the quantum level. But then,

by analytic continuation, a moduli space persists also in the strongly coupled region,

where aI ∼ Λ (complex manifolds can become singular only on complex subman-

ifolds, whose dimension is then at least 2 real dimensions smaller, so there is no

obstructions against analytic continuation into a region of strong coupling where

classical intuition would fail).

The classical moduli space has singularities of enhanced gauge symmetry and

one could wonder if such singularities survive at the quantum level. One of the

basic results we will show in the following is that the quantum moduli space does

admit singularities where massive particles become massless, but none of them are

gauge fields. So, there are no points of enhanced gauge symmetry, and the theory

is always in an abelian Coulomb phase. What can exist, instead, are other type of

singularities, known as Argyres-Douglas points, where mutually non-local particles,

as monopoles and dyons, become simultaneously massless. At these singularities the

low energy effective dynamics is described by an interacting conformal field theory

(which, however, does not admit a Lagrangian description). We will have more to

say about this later.

To sum up, apart from special points/curves where a Lagrangian description is

not available, the structure of the (bosonic) N = 2 low energy effective action is

L = K J
I (φ, φ̄)∂µφ

I
∂µφJ +

1

2
Im[τIJ(φ)F IµνFJµν ] +Kj

i (H,H) ∂µH
i ∂µHj , (12.7)
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where K J
J is the (special Kähler) metric on the Coulomb branch and Ki

j the (Hy-

perKähler) metric on the Higgs branch. The complexified gauge coupling is related

to the prepotential as

τIJ =
∂2F

∂φI∂φJ
. (12.8)

We have slightly changed normalizations with respect to previous chapters. With

present normalizations, eq. (6.12), which relates the special Kähler metric to the

complexified gauge coupling matrix, reads K J
I = Im τIJ . Defining

φDJ ≡
∂F
∂φJ

, (12.9)

we can re-write (12.7) as

L = Im

[
τIJ(φ)

(
∂µφ

I
∂µφJ +

1

2
F IµνFJµν

)]
+Kj

i (H,H) ∂µH
i ∂µHj

= Im
(
∂µφ

I
∂µφDI

)
+

1

2
Im[τIJ(φ)F IµνFJµν ] +Kj

i (H,H) ∂µH
i ∂µHj .

(12.10)

Solving the theory boils down to determine the quantum exact expression of the

prepotential F and, via eqs. (12.8), the Lagrangian (12.10).

A cartoon of the quantum corrected moduli space is depicted in Figure 12.3.

12.1.2 N = 4 effective actions

Let us now consider N = 4 supersymmetry. The story here is much simpler. First,

there exist only one class of scalar fields, all transforming in the adjoint represen-

tation of the gauge group G. So, at a generic point of the moduli space, the low

energy dynamics is that of a free U(1)n N = 4 theory, with n = rankG, and the

moduli space M is parametrized by 6n neutral real scalars. Hence, at a generic

point on the moduli space, we are in an IR-free abelian Coulomb phase. Moreover,

as we already discussed in Section 6.2, the gauge coupling does not run, neither per-

turbatively nor non-perturbatively, and then M = R6n, meaning that the moduli

space is classically exact. This is, though, not boring at all. As we will discuss later,

N = 4 non-renormalization theorems, which are the strongest possible, let one get

very interesting exact results.
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Figure 12.3: N = 2 quantum corrected moduli space. The (local) product structure

remains the same as in the classical limit and the Higgs branch is also unmodified.

The same happens for the Higgs directions of the mixed branch, even though they

may be deformed in the Coulomb directions. The Coulomb branch is modified at the

quantum level, instead (but never completely lifted!). Generically, this may excise

(part or all) classical singular submanifolds.

12.2 Monopoles, dyons and electro-magnetic duality

Before proceeding, we need to recall a few properties that ordinary gauge theories

may enjoy and discuss how these are realized in supersymmetric contexts.

Let us start from a U(1) gauge theory without matter, namely electro-magnetism.

Maxwell equations in the vacuum, which in differential form notation can be written

as

d ∗ F = 0 , dF = 0 (12.11)

are invariant under the transformation F → ∗F , ∗ F → −F , which corresponds

to the exchange of electric and magnetic fields. This transformation is called S-

duality transformation. In presence of electric sources Maxwell equations can still

be invariant under S duality if one postulates the existence of magnetic sources and

the associated current jm, with the following action of S

F → ∗F , ∗ F → −F and je → jm , jm → −je. (12.12)
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where now Maxwell equations read

d ∗ F = je , dF = −jm . (12.13)

The exchange of electric and magnetic currents implies, in particular, that under a

S duality transformation electric and magnetic charges are also exchanged.

One crucial consequence of the presence of magnetic monopoles is that the elec-

tric charge is quantized. More precisely, as shown by Dirac, it turns out that a theory

with both electric and magnetic charges, q and p respectively, can be consistently

quantized only if the following condition holds

q p = 2πn with n ∈ Z . (12.14)

This is the renown Dirac quantization condition, which implies that any electric

charge is an integer multiple of an elementary charge g ≡ (2π/p)n0, for some integer

number n0. Another important consequence of eq. (12.14) is that regimes where the

electric charge is small correspond to regimes where the magnetic charge is large

and viceversa. Therefore, S duality is a strong-weak coupling duality.

Maxwell equations are not affected if adding to the action a θ-term

θ g2

32π2
Fµν F̃

µν . (12.15)

However, in presence of magnetic monopoles, a θ-term does have an interesting

physical effect. As shown by Witten, in this case the magnetic charge of a particle

contributes to its electric charge, too. Specifically, a particle with magnetic charge

p = 4π
g

and U(1) electric charge neg has the following physical charges

p =
4π

g
, q = neg −

θg2

8π2
p = neg −

θg

2π
. (12.16)

In other words, if a θ-term is present a magnetic monopole always carries an electric

charge (even if ne = 0) and such electric charge is not a multiple of some basic unit.

This is known as Witten effect. In the following, with some abuse of language, we

will refer to the U(1) charge g as the electric charge.

Dirac quantization condition is generalized in presence of dyons, which are states

carrying both electric and magnetic charges, as

q1 p2 − q2 p1 = 2πn . (12.17)

This is known as Dirac-Schwinger-Zwanziger quantization condition. An aspect

regarding eq. (12.17) and that will play a relevant rôle later is that only if the right
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hand side vanishes the corresponding states are local with respect to each other.

So, for instance, two electrically charged states are local with respect to each other

while an electrically charged state and a magnetic monopole (or a dyon) are not. As

such, they cannot be described within one and the same Lagrangian. Therefore, an

effective low energy theory where such mutually non-local objects are both present,

is believed not to admit a Lagrangian description.

Let us emphasize that the duality transformation (12.12) is not a symmetry of the

theory, since it acts on the couplings. Rather, it maps a description of the theory to

another description of the same theory. There exists another transformation, known

as T -duality transformation, which does not act on the electro-magnetic field but

shifts the θ angle by 2π and, as such, is a symmetry of the theory. These two

transformations, S and T , generate a full group, SL(2,Z) ' Sp(2,Z), the duality

group of electro-magnetism.

As SL(2,Z) 2× 2 matrices, S and T are

S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
(12.18)

The way S and T act on τ = θ/2π+ 4πi/g2, τ → −1/τ and τ → τ + 1, respectively,

shows that the group they generate acts on the complexified gauge coupling τ as a

fractional linear transformation

τ → aτ + b

cτ + d
where

(
a b

c d

)
∈ Sp(2,Z) . (12.19)

12.2.1 The Georgi-Glashow model and its (supersymmetric) generaliza-

tions

In Maxwell theory, magnetic monopoles (or dyons) are introduced by hand as extra

degrees of freedom, they are point-like and carry infinite energy. However, monopole

(and dyon)-like sources may arise as solitons, i.e. localized, finite energy, non-

singular solutions of the equations of motion, in the context of spontaneously broken

gauge theories. The first and most famous example is the Georgi-Glashow (GG)

model, a SU(2) gauge theory coupled to a scalar φ transforming in the adjoint of

SU(2) and quartic potential

V =
λ

4

(
Trφ2 − a2

)2
, (12.20)
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with a some real number. This theory undergoes Higgs mechanism which breaks

SU(2) → U(1), and admits soliton solutions carrying monopole and/or dyonic

charges under the low energy effective U(1). More specifically, there exist a magneti-

cally charged soliton, the ’t Hooft-Polyakov soliton, with charges (nm, ne) = ±(1, 0),

and a dyon, found by Julia and Zee, with charges (nm, ne) = ±(1,−1), where nm

and ne are the units of magnetic charge p = 4π
g

and electric charge g, respectively.

The reason for the 4π in place of the 2π for the magnetic charge p, as compared

with eq. (12.14) with n = 1, is just because in this theory we could add fields in the

fundamental representation of SU(2), which would carry electric charge ±g/2 and,

in terms of such minimal charge, one would get the usual Dirac quantization condi-

tion. In other words, in the GG model the elementary electric charge g = (2π/p)n0

is realized with n0 = 2. The existence of soliton solutions with both plus and minus

signs, ensure that the low-energy effective U(1) gauge theory is non-anomalous.

For generic values of the parameters (charge g, scalar field VEV a and quartic

coupling λ) these solutions are not known analytically. However, there exists a

limit in which the equations of motion can be solved exactly. This is the so-called

BPS limit (after Bogomolny, Prasad and Sommerfield), which corresponds to take

λ → 0 with g and a fixed while retaining the boundary conditions on the Higgs

field, that should tend towards a at spatial infinity. In this limit, the minimal

energy configurations (the so-called BPS states) satisfy the following relation

M =
√

2 |a
g

(q + ip)| (12.21)

where M is the mass of the soliton and q = neg and p = nm
4π
g

. It is worth noticing

that in the BPS limit all particles in the spectrum, including fundamental degrees

of freedom (gauge bosons and Higgs field), satisfy the mass formula (12.21) and so

belong to the BPS spectrum.

In presence of a θ-term, the analysis that lead to eq. (12.21) can be repeated

almost unchanged, the BPS mass formula becoming now

M =
√

2|a (ne + τ nm)| where τ =
θ

2π
+

4πi

g2
. (12.22)

Due to Witten effect, acting with the transformation θ → θ+ 2πn on the monopole

and dyon solutions, one can get a full tower of solutions with charges ±(1,−n)

and ±(1,−n − 1), n ∈ Z. Since this transformation is a symmetry of the theory,

these solutions are all physically equivalent. Note that the T -duality transformation
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θ → θ + 2π which acts on the charge vector (nm, ne) as

T : (nm, ne)→ (nm,−nm + ne) , (12.23)

acts on the complexified gauge coupling as τ → τ + 1. Plugging this into the BPS

mass formula (12.22), we see that the BPS mass formula is left invariant by the action

of T . This is consistent with the fact that since masses are physical observables,

they should be insensitive to symmetry transformations.

Looking at eq. (12.12), we see that a S transformation, which sends τ → −1/τ ,

should instead act on a charge vector as

S : (nm, ne)→ (−ne, nm) . (12.24)

If we demand eq. (12.22) to be invariant under S duality, this should then also be

accompanied by the shift a→ aτ .

More generally, a matrix A ∈ Sp(2,Z) transforming (a τ, a)T as A · (a τ, a)T ,

should correspond to a change of the vector of electric and magnetic charges as

(nm, ne) · A−1. We will re-derive this important result later.

All above analysis is (semi) classical. In particular, the derivation of the BPS

bound and the construction of the monopole and dyon solutions. One might wonder

to what extent this still holds at the full quantum level. This is something diffi-

cult to check in the GG model since an analytical handling of the quantum/strong

coupling regime is not possible in such a non-supersymmetric setup. But, as usual,

supersymmetry helps.

Let us consider N = 2 pure SYM with gauge group SU(2). Since we are going to

use slightly difference normalizations with respect to previous lectures, let us write

down the on-shell Lagrangian explicitly

L =
1

g2
Tr
[
− 1

4
FµνF

µν +
θ

32π2
g2FµνF̃

µν +DµφD
µφ− 1

2

[
φ, φ

]2

−iλσµDµλ− iψσµDµψ + i
√

2[φ, ψ]λ+ i
√

2[φ, λ]ψ
]
, (12.25)

where, in present normalizations, Dµ = ∂µ − iAaµTa. This theory has the same

bosonic content of the GG model (including a scalar potential which higgses the

theory down to U(1) in the vacuum) and shares with it its basic dynamics. As such,

it also admits magnetically charged solitons, as monopoles and dyons.

There are, however, some important differences with respect to the GG model.
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First, in the GG model the BPS limit is a rather special limit, since it consists in

ignoring the quartic Higgs field potential, while retaining the boundary conditions

on the Higgs field at spatial infinity. This is automatically the set-up we have in our

N = 2 example, since the potential is proportional to
[
φ, φ

]2
and vanishes whenever

φ is in the Cartan subalgebra, e.g. φ = a σ3, for any value of a (the gauge invariant

combination parametrizing the one-dimensional moduli space can be chosen to be

u = 1
2
〈Trφ2〉 = a2). So here the BPS limit is built in, to some extent.

A more important difference regards the BPS mass formula (12.22). This formula

is reminiscent of the bound that massive states in the N = 2 spectrum should satisfy

and which 1/2 supersymmetry preserving states (short representations) saturate,

M ≥ |Z|. This suggests that, in presence of charged solitons in the spectrum, the

N = 2 central charge may be related to their electric and magnetic charges. Witten

and Olive showed that this is indeed the case. In present normalizations the N = 2

algebra and the corresponding bound read

{Q1
α, Q

2
β} = 2

√
2εαβZ , M ≥

√
2 |Z| . (12.26)

Starting from the Lagrangian of pure N = 2 SYM one can compute the correspond-

ing supercurrents S1
αµ and S2

αµ by Nöether method. Recalling that QI
α =

∫
d3xSIα 0

one finds (after dropping contributions which trivially vanish at spatial infinity) that

{Q1
α, Q

2
β} =

2
√

2

g2
εαβ

∫
d3x ∂i

[(
F a0i − iF̃ a0i

)
φa

]
= 2
√

2εαβZ

{Q1

α̇, Q
2

β̇} =
2
√

2

g2
εα̇β̇

∫
d3x ∂i

[(
−Fa0i + iF̃a0i

)
φa
]

= 2
√

2εα̇β̇Z
∗ ,

(12.27)

where in last equalities we have used eq. (12.26). The electric and magnetic charges

of the U(1) low energy effective theory in the GG model (and similarly herein) are

q = − 1

ag

∫
d3x ∂i

(
F 0i
a φ

a
)

= gne , p = − 1

ag

∫
d3x ∂i

(
F̃ a0iφa

)
=

4π

g
nm . (12.28)

So we finally find (after taking into account the effect of a non-trivial θ-term) that

ReZ = ane , ImZ = aτnm (12.29)

and hence eq. (12.22). This shows that in presence of monopoles (and dyons) the

supersymmetry algebra must be modified with the addition of a non-trivial central
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charge and the latter measures their electric and magnetic charges (as in the original

GG model in the BPS limit, also in this supersymmetric version fundamental degrees

of freedom satisfy the BPS mass formula). From a geometric viewpoint this should

not come as a surprise. Supersymmetry charges are space integrals. In calculating

their anticommutators one has to deal with surface terms, which one usually neglects.

However, as shown in eqs. (12.28), in presence of electric and magnetic charges these

surface terms are non-zero and give rise, consistently, to a non-vanishing Z.

Note that unlike the GG model here the relation between masses and charges

of BPS states, eq. (12.22), does not come from a (semi) classical analysis but it

is dictated by the supersymmetry algebra. Hence, it cannot be spoiled quantum

mechanically and should remain valid even when perturbative and non-perturbative

corrections are taken into account. BPS states are in short representations and

quantum corrections cannot generate the extra degrees of freedom needed to convert

a short multiplet in a long one. So, BPS saturated states remain so also at the

quantum level in a supersymmetric theory. They are protected operators.

That eq. (12.22) persists quantum mechanically does not mean that the quanti-

ties therein do not undergo renormalization. For one thing, in N = 2 we know that

the gauge coupling τ runs (at one loop and non perturbatively). Therefore, upon

taking into account renormalization effects, while by its very definition the central

charge Z is still a linear combination of conserved (electric and magnetic) abelian

charges, the coefficients multiplying nm and ne will be replaced by some (holomor-

phic) functions, which we dub a and aD, of the strong coupling scale Λ and field

VEVs

Z = a ne + aD nm . (12.30)

In the classical limit a2 = 1
2
〈Trφ2〉 and aD = aτ . But one expects this not to be

true at the full quantum level. In particular, of aD in terms of a could be different.

Seiberg and Witten proposed the following exact relation between a and aD

aD ≡
∂F
∂a

that is τ =
daD
da

, (12.31)

with F the prepotential. We will provide evidence for the proposal (12.31) later.

Here, just notice that this way, in the semi-classical limit, where Fcl = 1
2
τa2,

eq. (12.30) correctly reduces to (12.29). But, unlike (12.29), it is by construction

renormalization group invariant.

One of our main goals in the following will be to check the proposal (12.31) and

compute the exact expression of a and aD in terms of the scalar field VEVs and
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Λ. Given this information, the masses of all BPS states (fundamental fields as well

as magnetic monopoles and dyons) will be known exactly in terms of the moduli

parameters. More importantly, finding the exact expressions of a and aD amounts

to find the exact expression for τ and hence, by (12.10), the full effective action!

This discussion can be repeated for N = 4 SYM, which is also expected to

admit charged solitons in its spectrum. There, however, the relation aD = τa is

not renormalized, since in this case τ is classically exact, as so is the moduli space.

This has important consequences which we will come back to, when discussing the

quantum properties of N = 4 SYM.

So far, we have been considering pure N = 2 SU(2) SYM. One may want to

add matter fields, i.e. hypermultiplets. This amounts to add to the Lagrangian the

superpotential term

F∑

i=1

(√
2H i

1ΦH i
2 +miH

i
1H

i
2

)
+ h.c. . (12.32)

For equal masses, the theory has a SU(F ) flavor symmetry, which is broken to

U(1)F for generic values of mi. One can repeat previous computations, calculate

the contribution of H1 and H2 to the supercurrent and, in turn, to the central charge

mass formula (12.30). The end result is

Z = a ne + aD nm +
F∑

i=1

1√
2
miSi , (12.33)

where Si are global conserved U(1) charges under which H i
1 and H i

2 have charges

+1 and −1, respectively.

There exist generalizations of this story. The GG model can be generalized

to a gauge theory with gauge group G spontaneously broken to a (not necessarily

abelian) subgroup H by some Higgs-like field transforming in the adjoint represen-

tation of G. Thanks to the topological nature of soliton solutions, it turns out that

an analysis on their existence can be carried out in the context of homotopy theory.

In particular, inequivalent solutions are classified by the homotopy group Π2(G/H).

This is isomorphic to Π1(H)G, the subgroup of closed paths in Π1(H) which can be

contracted to a point when H is embedded in G. If G is simply connected, Π1(H)G is

isomorphic to Π1(H) and non-trivial soliton solutions are hence classified by Π1(H).

For example, in the original GG model we have Π2(G/H) = Π2(SU(2)/U(1)) =

Π1(U(1)) = Z, and one family of magnetic monopoles with integer charge is indeed
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present. The same happens in GUT theories. Taking, e.g. GGUT = SU(5) one has

Π2(G/H) = Π2(SU(5)/SU(3) × SU(2) × U(1)) = Π1(SU(3) × SU(2) × U(1)) =

Π1(U(1)) = Z, so again magnetic monopoles are expected to exist. This is not the

case in the Standard Model, where the gauge group is not simple, G = SU(2)×U(1)Y

and, more importantly, Π1(H)G = 0. This is because the generator of the unbroken

electromagnetic U(1) gets contributions both from the generator of U(1)Y and from

the Cartan of SU(2). This implies that any closed path in U(1) may be deformed

to lie completely in U(1)Y , which, unless this path is trivial, cannot be deformed

to a point in G. This means that Π1(H)G = 0 and hence magnetic monopoles do

not exist. Interestingly (recall the discussion around eq. (12.14)), that the electric

charge happens to be quantized can be seen as an evidence in favor of the existence

of monopoles and, in turn, of GUT theories.

Exactly as for the original GG model, this more general story finds a natural

embedding in supersymmetric contexts. One such situation is nothing but the low

energy effective theories describing the N = 2 and N = 4 Coulomb branches we are

actually interested in. There, we have a gauge theory with gauge group G broken

to its Cartan subalgebra H = U(1)n, where n = rankG. From previous general

analysis, it follows that magnetically charged solitons are present in the spectrum.

Most of what we said about the supersymmetric generalization of the GG model

holds unchanged. In particular, the IR-free effective theory is form-invariant under

electro-magnetic duality transformations which are the natural generalization to

n > 1 of eq. (12.19), and act on the couplings as

τIJ →
(
ALI τLM +BIM

) (
CJNτNM +DJ

M

)−1
(12.34)

where now M ≡
(
A B

C D

)
∈ Sp(2n,Z). The vector of electric and magnetic charges

is now a 2n-component row vector (nIm, neJ). The corresponding BPS mass formula

which generalizes (12.30) is

Z = aI neI + aD,I n
I
m = a · ne + aD · nm , (12.35)

where, in the second step, matrix multiplication is understood and (12.31) is now

aDI ≡ ∂F/∂aI . Finally, the addition of (massive) flavors changes the central charge

formula in a way similar to eq. (12.33).

Let us conclude this section with a comment which will be relevant later. As

already noticed, electro-magnetic duality transformations are not symmetries of the

theory. They just express the equivalence of abelian theories coupled to massive
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sources under a Sp(2n,Z) redefinitions of electric and magnetic charges. It is a

redundancy of the effective Lagrangian description. The point, though, is that

when a moduli space is present (which is the case we will actually be concerned

with), this redundancy can capture important features of the theory. That this is

the case, can be seen as follows.

Suppose there is a moduli space of vacua and that the effective dynamics on this

moduli space is described by n abelian gauge fields and a bunch of massless, neutral

scalars, collectively dubbed φ, which parametrize M. Upon traversing a closed

loop in M the physics must be the same at the beginning and at the end of the

loop. However, the Lagrangian does not need to: it is enough for it to be invariant

modulo an electro-magnetic duality transformation. Geometrically, this corresponds

to say that the matrix of couplings τIJ is a section of a Sp(2n,Z) bundle. In matrix

notation, this means that upon making a circle in the φ moduli space, the matrix τ

should transform as

τ(e2πiφ) = (A · τ(φ) +B) (C · τ(φ) +D)−1 . (12.36)

The element M =
(
A B

C D

)
∈ Sp(2n,Z) is called monodromy around the loop. If the

closed loop does not encircle any singularity, the monodromy is the identity element

of Sp(2n,Z). If it does, the monodromy is instead a non-trivial element of Sp(2n,Z).

As we discussed at length, singularities on the moduli space are associated to

massive particles becoming massless, there. The monodromy matrix tells about the

nature of such particle. Since masses are physical observables, the BPS mass formula

(12.35) should be invariant under monodromies. Hence, as already emphasized for

the case n = 1, a matrix A ∈ Sp(2n,Z) transforming (aD, a)T as A · (aD, a)T ,

should correspond to a change of the vector of electric and magnetic charges as

(nm, ne) · A−1. This means that, in general, the action of the monodromy changes

the quantum numbers of charged states.

Now, the state of vanishing mass at a given singularity on the moduli space should

be invariant under the action of the monodromy associated to the singularity itself

(it is the properties of such massless state which determine the monodromy matrix).

That is to say, it should be a left eigenvector of the matrix A with unit eigenvalue.

Let us specify, for simplicity, to the case G = SU(2) for which the duality group

is Sp(2,Z). It is not difficult to see that the Sp(2,Z) matrix for which the vector
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(nm, ne) is an eigenvector with unit eigenvalue is

A(nm, ne) =

(
1 + 2nmne 2n2

e

−2n2
m 1− 2nmne

)
. (12.37)

This means that at a singularity with monodromy matrix of the form above, a state

with charges ±(nm, ne) becomes massless.

In fact, any state with charges l(nm, ne) with l ∈ Z is left invariant by the action

of (12.37). However, stable dyons require lnm and lne to be relatively prime, which

is the case only for l = ±1. One way to see it is the following. Suppose to start from

a BPS saturated state with charges (Nm, Ne) and mass M =
√

2|Z|. Such state can

decay into states whose sum of masses should be less or equal M . For each of these

states we have Zi = a · nie + aD · nim and Mi ≥
√

2|Zi|. Since charge conservation

implies that Z =
∑
Zi, it follows from triangle inequality that |Z| ≤∑i |Zi| which

in turn implies that

M ≤
∑

i

Mi . (12.38)

In order for the decay to occur the above bound should be saturated, which implies

|Z| =
∑

i |Zi| (so also the states with charges (nim, n
i
e) should be BPS). This can

happen if and only if the vectors (Nm, Ne) and (nim, n
i
e) are proportional, that is if

Nm and Ne are not relatively prime, (Nm, Ne) = l(nm, ne). If they are, instead, the

decay cannot occur.

12.3 Seiberg-Witten theory

Let us now come back to our original problem. We would like to look at asymp-

totically free N = 2 gauge theories and try to see what can we say about their low

energy effective dynamics. As anticipated, we will focus on the Coulomb branch,

which is the only part of the moduli space which can be modified at the quantum

level. What this boils down to is determining the exact expression of the prepo-

tential F , more specifically of the generalized complexified gauge coupling matrix,

whose imaginary part is the metric on the Coulomb branch.

Our starting point is some UV-free N = 2 matter-coupled Lagrangian. This

means that if, say, the gauge group is SU(N) and matter multiplets transform in

the (anti)fundamental representation of SU(N), we must require that F < 2N , since

the one-loop coefficient (which captures the full perturbative expression for the β

function) is proportional to 2N − F , in this case.
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One thing which will play an important role later is the R-symmetry breaking

pattern. Let us first focus on pure SYM. Besides a compact component, SU(2)R,

under which all bosons in the N = 2 vector multiplet are singlets and the two

gaugini transform as a doublet, there is also a U(1)R symmetry, under which (both)

gaugini have R(λ, ψ) = 1. This symmetry is anomalous and, following the same

discussion we had for N = 1 SYM, one can see that it gets broken as

U(1)R −→ Z4T (Adj) , (12.39)

since now the anomaly coefficient is now A = 2T (Adj).

The fact that R(ψ) = 1 implies that the adjoint scalars φ have R(φ) = 2,

meaning that on the Coulomb branch the residual symmetry gets further broken.

For example, we will see later that for G = SU(2) Coulomb branch vacua preserve

a Z4 subgroup of the full Z8 and, therefore, each point on the Coulomb branch is

paired with its mirror under the residual Z2, which acts non-trivially on M. For

G = SU(3) a Z2 subgroup survives, only, while for higher ranks the U(1)R is fully

broken.

Interestingly, unlike N = 1, the addition of matter does not restore an anomaly-

free U(1)R symmetry, in general. Indeed, given that R(φ) = 2, from the cubic

superpotential term ∼ H1ΦH2 one sees that the hyperscalars are neutral. Hence,

their fermionic partners ψ1 and ψ2 have R(ψ1, ψ2) = −1. So, if the hypermultiplets

transform in the representation r of the gauge group G, the U(1)R is broken at the

quantum level as

U(1)R −→ Z4T (Adj)−4F T (r) , (12.40)

if adding F hypermultiplets. There can be specific situations where the represen-

tation under which the hypermultiplets transform and their number may actually

restore the full U(1)R symmetry. For example, taking G = SU(N) and F hypers in

the fundamental representation, one gets U(1)R → Z4N−2F . However, for F = 2N

the full U(1)R R-symmetry is restored, in agreement with the vanishing of the β

function and the supposedly conserved R-charge in superconformal field theories.

Let us start considering pure SYM and take, for definiteness, the gauge group to

be G = SU(N). Following our general discussion in section Section 12.1.1 the low

energy Coulomb branch effective (bosonic) Lagrangian looks like

L = Im(∂µφ
I
∂µφDI) +

1

2
Im[τIJ(φ)F IµνFJµν ] (12.41)
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where I = 1, 2, . . . , N − 1. Solving the theory amounts to find the exact expression

for the prepotential F or, which is the same, for the effective abelian gauge coupling

matrix τIJ , as a function of Λ, the SU(N) strong coupling scale, and of scalar field

VEVs. From non-renormalization theorems we know that the complexified gauge

coupling matrix τIJ gets one-loop and non-perturbative corrections, only, and reads

(we refer collectively to a as the common VEV of all scalar fields φI)

τIJ(a,Λ) =
2N

2πi
CIJ log

Λ

a
+
∞∑

n=1

dIJ,n

(
Λ

a

)2Nn

, (12.42)

where 2N is the one-loop β-function coefficient, CIJ is some constant matrix that

can be computed in perturbation theory, dIJ,n’s weight n-instanton corrections and

we used eq. (9.45). Since the model is Higgsed at a scale a, which can be taken

arbitrarily large, these instanton effects can be made arbitrarily small and are cal-

culable. So, in principle, one could compute τIJ , and hence solve the low energy

effective theory exactly, by evaluating all instanton contributions. In practice, this

is hard. Seiberg and Witten came-up with a more physical approach to determine

τIJ , which is the one we will follow. We start analyzing the simplest case, N = 2

SYM with gauge group SU(2).

12.3.1 N = 2 SU(2) pure SYM

N = 2 SYM with G = SU(2) admits a one-dimensional moduli space. At a generic

point of the moduli space the gauge group is broken to U(1). The gauge invariant

coordinate on the (classical) moduli space can be chosen to be

u =
1

2
〈trφ2〉 = a2 , (12.43)

where 〈φ〉 = aσ3 is the (adjoint) scalar field VEV. The u here corresponds to what

we called u2 in eq. (12.5).

The above formula is valid classically. Quantum corrections may change the

relation between u and a. In what follows, we will keep on calling u the coordinate

on the quantum moduli space but the above equation will be modified as

u =
1

2
〈trφ2〉 = a2 + quantum corrections . (12.44)

While classically a =
√
u, quantum mechanically one could expect a more general

relation, a = a(u), which only in the classical limit reduces to a =
√
u.
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The abelian low energy effective Lagrangian is

L = Im

[
τ(φ)

(
1

2
FµνFµν + ∂µφ ∂

µφ

)]
= Im

[
τ(φ)

1

2
FµνFµν + ∂µφ ∂

µφD

]
,

(12.45)

and it is univocally determined knowing the exact expression of τ , which is fixed

once determining the exact expression for the prepotential F , since τ = ∂2F/∂φ∂φ.

Our goal, in the following, will then be to find the exact expression for F and hence

of the analogous of (12.42) which in this case becomes

τ(a,Λ) =
1

2πi
log

(
Λ4

a4

)
+
∞∑

n=1

dn

(
Λ4

a4

)n
. (12.46)

The first thing one should readily notice is that F cannot be a holomorphic function

of a all along M; it should be multivalued. Indeed, if this were not the case,

Im τ(a) = Im ∂2F(a)/∂a∂a (and similarly Re τ(a)) would be a harmonic function.

As such, it could not be positive definite everywhere (unless it were a constant, which

cannot be since the gauge coupling runs). Hence, there would necessary be regions

in the moduli space where Im τ(a) would be negative, making the effective gauge

coupling squared g2 being negative, too. This would correspond to the propagation

of negative norm states, that cannot be. We need Im τ > 0. The way out is to allow

for different local descriptions which requires F(a) to be defined only locally, say in

a neighborhood of the classical region u → ∞. In regions where τ(a) approaches

zero, we need a different (but equivalent) description of the theory. Note that this

corresponds to regions where the gauge coupling is very large, eventually infinite, so

strongly coupled regimes. Geometrically, the moduli space should admit singularities

and in the vicinity of such singularities we expect a different coordinate patch with

respect to a (in other words, a is not a ”good coordinate” on the whole moduli space

M).

In order to understand how different local descriptions can emerge, we have

to understand how electric-magnetic duality is realized in the low energy effective

theory. The action (12.45) can be re-written as

L =
1

2
Im [τ(φ)FµνFµν ] +

1

2
∂µ

(
φD

φ

)†
J ∂µ

(
φD

φ

)
where J =

(
0 i

−i 0

)
, (12.47)

where φD ≡ ∂F/∂φ. The scalar kinetic term is invariant under Sp(2,R) transfor-
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mations acting on φD and φ as
(
φD

φ

)
→ M

(
φD

φ

)
where M †JM = J . (12.48)

This is the continuum version of the duality group of electro-magnetism previously

defined and it is generated by

S =

(
0 −1

1 0

)
, Tb =

(
1 b

0 1

)
where b ∈ R . (12.49)

To see how the duality group acts on the Maxwell kinetic term we should first write

the Lagrangian introducing a Lagrange multiplier field ADµ, so to have both the

equation of motion and the Bianchi identity emerging as field equations. This is

needed, so to put Fµν and F̃µν on equal footing (the Bianchi identity ∂νF̃
µν = 0

has been solved for in terms of the gauge potential, hence obscuring the duality).

Recalling that Fµν = Fµν + iF̃µν , we can write the Maxwell term action as

S =

∫
Im

[
1

2
τ(φ)

(
Fµν + iF̃µν

)(
F µν + iF̃ µν

)]
+

∫
ADµ∂νF̃

µν . (12.50)

where ADµ should be treated as an independent field, with field strength FDµν =

∂µADν − ∂νADµ.

In doing the path integral one should now integrate over Fµν and ADµ indepen-

dently. Path integrating over AD we get the equation ∂νF̃
µν = 0, namely dF = 0,

which implies F = dA and we are left with the original path integral. But one can

path integrate over F , first. Integrating by parts, the second term in eq. (12.50)

becomes 2FDµνF̃
µν and completing the square one gets

S =

∫
Im

[
1

2
τ(φ)

{(
Fµν + iF̃µν

)
+

1

τ(φ)

(
FDµν + iF̃Dµν

)}2

− 1

τ(φ)

1

2

(
FDµν + iF̃Dµν

)2
]
, (12.51)

where we used the identity
(
Fµν + iF̃µν

)(
F µν
D + iF̃ µν

D

)
= 2i FDµνF̃

µν , which holds

because FµνF
µν
D = F̃µνF̃

µν
D . Performing the Gaussian path integral over F one gets

back the original action (up to an overall normalization) but now in terms of the

dual gauge field ADµ as

S =

∫
Im

[
− 1

τ(φ)

1

2

(
FDµν + iF̃Dµν

)(
F µν
D + iF̃ µν

D

)]
. (12.52)
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So we see that, as expected, the effect of a S-duality transformation which transforms

the gauge coupling as τ → τD = −1/τ , is to replace a gauge field, to which electric

sources couple locally, by a dual gauge field, to which magnetic sources couple

locally. The other generator of Sp(2,R), Tb, does not act on the gauge field but on

the coupling, only, shifting the θ angle. In order for it not to change the physics,

one should take b ∈ Z, hence obtaining the actual electro-magnetic duality group,

which is Sp(2,Z). We will henceforth call T the generator T1, to be consistent with

conventions in Section 12.2.

In our previous discussion, we argued that whenever Im τ(a) approaches 0, a dif-

ferent description of the (same) physics should hold. The above discussion suggests

what that can be: an S-dual description in terms of a magnetic dual gauge field

ADµ, with τ → τD = −1/τ and φ and φD exchanged, see eq. (12.48).

Note, in passing, that the way the duality group acts on (φD, φ), and in turn

on (aD, a), eq. (12.48), provides further evidence for the BPS mass formula (12.30)

and the proposed relation (12.31). To see this, let us couple the low energy effective

theory to a charged hypermultiplet with charge ne. Its coupling to the adjoint chiral

superfield Φ is fixed by N = 2 supersymmetry to be
√

2neH1ΦH2 . (12.53)

On the moduli space this induces a mass for the (BPS!) hypermultiplet whose cor-

responding central charge would then be Z = nea. By a S-duality transforma-

tion, which acts on the adjoint scalar as eq. (12.48), it is clear that for a magnetic

monopole with magnetic charge nm we would have Z = nmaD (with aD = ∂F/∂a)

and, for dyons, the more general formula (12.30).

Singularities and monodromies

We now have all ingredients to understand the singularity structure of the moduli

space and the physical meaning of such singularities.

Let us start looking at the (semi)classical region, namely u → ∞. There one

can safely use the classical relation u = a2 and the one-loop expression for the

prepotential

Fone−loop =
i

2π
a2 log

a2

Λ2
. (12.54)

From this expression we can compute aD which is

aD =
∂F
∂a

=
i

π
a

(
log

a2

Λ2
+ 1

)
. (12.55)
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Let us take a counterclockwise contour in the u plane, say u→ e2πiu, with very large

|u|. Since in such semiclassical region u = a2 we see that a transforms as a → −a.

For aD, instead, using (12.55), we get

aD →
i

π
(−a)

(
log

e2πia2

Λ2
+ 1

)
= −aD + 2a . (12.56)

So, there is a non-trivial monodromy, which acts on the vector (aD, a) as

(
aD

a

)
→M∞

(
aD

a

)
where M∞ =

(
−1 2

0 −1

)
(12.57)

Note that, consistently with previous general discussion, M∞ ∈ Sp(2,Z). More

specifically, M∞ = −T−2, with T the generator previously defined.

The log term in aD and the non-trivial monodromy show that a and aD are

multivalued functions: there is a branch cut extending from infinity, due to the

log term in the one-loop running. Given the singularity at u = ∞, there must be

singularities also somewhere else on the u plane, with their associated monodromies

Mi.

�1

�2

>

>
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P
u 1

Figure 12.4: The equivalence of a contour around infinity and one circling all singu-

larities on the u-plane. P is a base point for loops γ∞ and γi, i = 1, 2, . . . , k.

Since, as shown in Figure 12.4, a contour circling around infinity can be deformed

(it is topologically equivalent) to a contour circling around all other singularities,

say we have k of them, the following consistency relation should hold, in general

M∞ = M1M2 ...Mk . (12.58)
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Now, how many singularities, besides that at u =∞, do we have on the u plane?

The R-symmetry breaking pattern helps, here. As already discussed, the U(1) R-

symmetry of the original theory is anomalous and broken to Z8 at the quantum

level. Since φ has R-charge 2, on the moduli space, parametrized by u ∼ 〈Trφ2〉,
this is further broken to Z4. The residual Z2 symmetry acting on the moduli space

changes u as u → −u. Therefore, singularities should come in pairs on the moduli

space, but at the fixed points of the Z2 action u = ∞, 0. We conclude that if we

had one only more singularity beside the one at infinity, this should be at u = 0.

But this cannot be. If there were just one singularity at u = 0, because of

(12.58) we would have M0 = M∞. But then, since a2 is left invariant by M∞,

u = a2 would be a good global coordinate on the full moduli space, not just in the

classical region. Then, F(a) would be a holomorphic function of a and so Im τ(a)

a harmonic function. But then, the latter could not be positive definite (unless it

were a constant, which we know it is not).

So, we conclude that there must be at least two singularities besides that at

infinity, located at, say u = ±u0. If this is this case, u = 0, which is a singular

point on the classical moduli space, will not be a singular point anymore in the

quantum theory. In order to have a singularity at u = 0 one should have at least

three singularities on M. As we will see, this cannot be either. Having two (and

only two) singularities onM, located at u = ±u0, happens to be the only consistent

possibility.

A natural question to ask is what the nature of the particles becoming massless

at u = ±u0 is. Interestingly, unlike to what happens classically, singularities in the

quantum moduli space are not associated to enhanced gauge symmetry, namely to

extra massless gauge bosons. This can be understood as follows. If an interacting

non-abelian Coulomb phase were there in the IR, a conserved R-symmetry should

be present (the superconformal R-symmetry). As we have already discussed, singu-

larities on M occur at u 6= 0. Hence, if conformal invariance should be preserved,

then the dimension of u (more precisely, the dimension of the operator U of which

u is the VEV) at the singularity should be zero. In a SCFT the dimension of an

operator is proportional to its R-charge, which for the operator u is R(u) = 4 since

R(φ) = 2. Therefore, at the singularity the operator u would have non-vanishing

scaling dimension and a VEV would break conformal invariance. This suggests that

a non-abelian Coulomb phase cannot emerge in the IR. The extra massless degrees

of freedom cannot be gauge bosons.
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The analysis of the previous section, suggests what the other possibility could be.

The only other states in the spectrum (at least that we know ) are monopoles and

dyons. For example, magnetic monopoles are very heavy at weak coupling, because

of the BPS mass formula (12.30) and tend to become light at strong coupling. So it

might very well be that these are the states becoming massless at the strong coupling

singularities. Note that if this is the case, by the reasoning in the previous paragraph

we conclude that they cannot sit in vector multiplets (which would include spin 1

particles). So they should correspond to hypermultiplets. Indeed, in the N = 2

version of the GG model, this was explicitly shown to be the case!

As a corollary, one would expect that the singularity at a = 0 of the classi-

cal moduli space, where extra massless gauge bosons did become massless, should

disappear at quantum level. From the exact expression we will eventually get for

a = a(u), we will see that this is indeed the case: the point a = 0 (which would cor-

respond to 〈φ〉 = 0) does not belong to the moduli space, at quantum level (similarly

to what happens for N = 1 SU(N) SQCD with F = N).

Let us then focus on the strong coupling singularities at u = ±u0. Note that

u0 should be proportional to Λ2, since in the classical limit, Λ → 0, one should

recover the (only one) singularity at u = 0. Hence, from now on, without loss of

generality, we will take u0 = Λ2. The structure of the moduli space, with punctures

and associated monodromies, is depicted in figure 12.5.

x x

1

⇤2�⇤2

u

�1�2

�3

>

> >

Figure 12.5: The u plane with the three singularities at ∞,Λ2,−Λ2. The mon-

odromies associated to the three cycles γi must satisfy the consistency relation

M∞ = MΛ2M−Λ2 .

To find the structure of the monodromy matrices MΛ2 and M−Λ2 notice that they
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should have a form like (12.37) in terms of the (integer) electric and magnetic charges

(nm, ne), (n′m, n
′
e) of the corresponding massless states. Imposing the consistency

relation M∞ = MΛ2M−Λ2 and using (12.57) one finds that the unique solution

(modulo physically equivalent solutions, remember the comment after eq. (12.22))

is

(nm, ne) = ±(1, 0) , (n′m, n
′
e) = ±(1,−1) (12.59)

corresponding to monodromy matrices

MΛ2 =

(
1 0

−2 1

)
, M−Λ2 =

(
−1 2

−2 3

)
. (12.60)

So, we finally see what the nature of the singularities is: at u = Λ2 a monopole with

charge ±(1, 0) becomes massless and at u = −Λ2 a dyon with charge ±(1,−1) does.

Note, in passing, that MΛ2 = ST 2S−1 and M−Λ2 = TST 2S−1T−1 = TMΛ2T−1,

which nicely agrees with the fact that the residual Z2 symmetry connecting u = Λ2

and u = −Λ2 shift the θ angle by 2π.

One might wonder if there can be more than two singularities on M. For this

to be the case, one should be able to solve an equation like (12.58) with k > 2,

with M∞ given by (12.57) and the Mk’s having a structure as (12.37) with integers

(nim, n
i
e). While a general proof is not available, one can explicitly show, for not too

large values of k, that there are no solutions for k > 2. Further evidence suggesting

that k = 2 is the correct answer will be provided shortly.

Seiberg-Witten curve

Given the knowledge of the singularity structure of the moduli space and its mon-

odromies, we want now to construct holomorphic functions a = a(u) and aD = aD(u)

satisfying the monodromies (12.57) and (12.60), and from them obtain the exact

expression for the complexified gauge coupling τ(u). A holomorphic function is uni-

vocally determined by its singularities. Therefore, if we are able to find a function

with the correct monodromies around u = ∞,Λ2,−Λ2, we can be sure we get the

correct answer. In principle, this can be done, following the so-called differential

equation approach, but we will follow a different, more geometric pattern. This

was the approach originally pursued by Seiberg and Witten and also the one which

makes it easier and more natural to understand generalizations to richer theories

(i.e. theories with more general gauge groups and including matter, as well).
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The crucial observation comes from the property that we have learned τ = τ(u)

should have: a complex quantity with positive definite imaginary part and on which

the group Sp(2,Z) acts as a fractional linear transformation, eq. (12.19). Such

quantities are fundamental in the theory of Riemann surfaces, where they describe

their moduli, the positivity condition ensuring regularity of the surface. In the case

at hand, the relevant Riemann surface is just a torus, or equivalently, using the

language of algebraic geometry, an elliptic curve. This curve can be written as a

complex surface

y2 = (x− Λ2)(x+ Λ2)(x− u) , (12.61)

where u parametrizes the modulus τ of the torus and x and y are complex coordi-

nates. Varying u we vary τ and hence eq. (12.61) describes a family of tori. If we

associate to any point on the Coulomb branch parametrized by the complex quan-

tity u a holomorphic varying torus, its modulus will have the same properties we

expect for the complexified gauge coupling τ : a holomorphic section of a Sp(2,Z)

bundle with positive imaginary part, Im τ > 0.

A way to understand that (12.61) describes a torus is as follows. From eq. (12.61)

we see that y is the square root of a polynomial in x so we can look at the x-plane

consisting into two sheets with branch points at Λ2, −Λ2, u and ∞, gluing along

the branch cuts (the two sheets corresponding to the ±y branches). One can take

one branch cut between −Λ2 and Λ2 and the second one between u and ∞. The

two sheets can be thought as spheres and the branch cuts as tubes connecting them.

Topologically, this is a torus, see figure 12.6.
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Figure 12.6: On the left the elliptic curve in the (two sheeted) x plane. A and B are

the two one-cycles of the torus. On the right the corresponding torus.
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On a torus the are two independent, non-trivial homology one-cycles, the A and

the B cycles, which we can take as in the figure. Degenerate tori (that is tori where

some cycles shrink to zero size) occur when any two zero’s of eq. (12.61) coincide.

In other words, when one of the branch cuts disappears. In particular, for u = Λ2

the B cycle shrinks to zero size, for u =∞ the A cycle shrinks to zero size and for

u = −Λ2 a linear combination of the two, A+B, does.

The basis of one-cycles is not unique, but defined up to Sp(2,Z) transformations

which act as (
B

A

)
→M

(
B

A

)
where M ∈ Sp(2,Z) . (12.62)

The modulus of the torus τ(u) corresponds to the ratio of the periods ω and ωD

τ(u) =
ωD
ω

, (12.63)

the integrals over the A and B cycles of the unique holomorphic (closed) one-form

on the torus, Ω = dx/y

ω =

∮

A

dx

y
, ωD =

∮

B

dx

y
with

dx

y
=

dx√
(x− Λ2)(x+ Λ2)(x− u)

. (12.64)

Note that the periods ω and ωD inherit from the A and B cycles the transformation

properties under Sp(2,Z) and so also the same monodromies at the three singular

points u =∞,±Λ2, where two branch points collide.

The identification between the SU(2) gauge theory and the above family of

tori parametrized by u holds via identifying the modulus of the torus with the

complexified gauge coupling, and the periods with the u derivative of a and aD,

that is

τ =
ωD
ω
≡ τ(a) =

∂aD
∂a

=
∂aD/∂u

∂a/∂u
, (12.65)

with the identification

∂a

∂u
= ω =

∮

A

dx

y
,
∂aD
∂u

= ωD =

∮

B

dx

y
, (12.66)

up to an overall normalization that we will fix momentarily. Note, in passing, that

since u is globally defined, a and aD have the same monodromies of the periods ω

and ωD, in perfect agreement with the equivalence between transformations (12.62)

and (12.48).

Integrating in u on both sides one obtains

a =

∮

A

dx

y
du ≡

∮

A

dλ , aD =

∮

B

dx

y
du ≡

∮

B

dλ , (12.67)
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where the one-form differential dλ (also known as Seiberg-Witten differential) can

be easily computed

∂dλ

∂u
=
dx

y
=

dx√
(x2 − Λ4)(x− u)

−→ dλ =
(x− u)dx

y
, (12.68)

up to exact forms. Using the above definition of A and B cycles, and deforming

them so to lie entirely along the cuts between −Λ2 and Λ2 and between Λ2 and u,

respectively, one can express the integrals (12.67) as

a(u) =

√
2

π

∫ Λ2

−Λ2

dx

√
x− u√
x2 − Λ4

(12.69)

aD(u) =

√
2

π

∫ u

Λ2

dx

√
x− u√
x2 − Λ4

, (12.70)

where the overall normalization has been fixed by requiring that for u → ∞ one

recovers the (semi)classical result (12.55).

Using the identity

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dx xβ−1(1− x)γ−β−1(1− zx)−α , (12.71)

one can finally recast (12.69) and (12.70) in terms of hypergeometric functions

a(u) =
√

2(Λ2 + u)1/2 F (−1

2
,
1

2
, 1;

2

1 + u/Λ2
) (12.72)

aD(u) = i
Λ− u/Λ

2
F (

1

2
,
1

2
, 2;

1− u/Λ2

2
) . (12.73)

One can invert (12.72) to obtain u(a) and insert the result into (12.73) to obtain

aD(a). Integrating with respect to a yields F(a). Equivalently, deriving with respect

to a yields τ(a) and, hence, the exact expression of the low energy effective action

(12.45)!

Let us emphasize again that the expression one gets for F(a) is not globally

defined on the moduli space, and different analytic continuations should be used in

different patches. For example, near u = Λ2, better to use S-dual coordinates, where

the role of what is electric and what is magnetic is inverted. This is represented in

figure 12.7.

As a check that the result we got describes the coupling τ entering the effective

Lagrangian (12.45), one can expand (12.73) and (12.72) around u = 0,Λ2 and −Λ2

and show agreement with the expected (singular) behavior for aD and a, including

the monodromies (12.57) and (12.60).
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Figure 12.7: The quantum moduli space Mq of pure SYM with G = SU(2) rep-

resented as a sphere, obtained by adding the point at infinity to the complex u

plane. The space is covered by three distinct regions where a local, weakly coupled

Lagrangian can be written using appropriate coordinates, i.e. the appropriate du-

ality frame. No local Lagrangian exists which would be globally defined on Mq.

What are classical and strongly coupled regions is not an invariant concept, since it

depends on the coordinate frame.

• For u→∞ we have a ∼ √u and aD ∼ i
π

√
u log u

Λ2 ∼ i
π
a log a

Λ
.

This reproduces the (semi)classical result (12.55) and so also the correct mon-

odromy (12.57). Note that in this case there is no choice of (nm, ne) giving a

vanishing mass (for M∞ it does not exist a left eigenvector with unit eigen-

value), in agreement with the fact that at u→∞ there are no extra massless

particles in the spectrum.

• For u→ Λ2 we have a ∼ i
π
aD log aD

Λ
and aD ∼ (u− Λ2).

So we see that a is singular at u ∼ Λ2 while aD vanishes. This is the correct

behavior for a magnetic monopole with charge nm becoming massless at u =

Λ2, in agreement with what we previously found. Again, the monodromy MΛ2

in eq. (12.60) is correctly reproduced.

• For u→ −Λ2 we have a− aD ∼ (u+ Λ2) and a ∼ i
π
(aD − a) log aD−a

Λ
.

This shows that at u = −Λ2 we have a singularity where a = aD, which gives

a massless dyon with opposite electric and magnetic charges, ne = −nm, again

in agreement with previous results, including the monodromy M−Λ2 .
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There are other non-trivial checks one can make. For example, one can expand

τ(u), eq. (12.65), in (inverse) powers of u, at large u, and compare with (12.46),

using u = a2. This gives perfect agreement with the instanton coefficients d1 and

d2, which have been independently calculated.

As anticipated, an inspection of the exact solution (12.72) shows that for no

values of u the scalar field VEV a becomes 0. So, the point a = 0 is not part of the

quantum exact moduli space, as anticipated. This is consistent with the claim that

nowhere on the moduli space extra massless gauge bosons arise.

To sum-up, at a generic point of the moduli space the effective theory is a N = 2

abelian free theory. At two special points, u = Λ2,−Λ2 the effective theory is N = 2

SQED with one massless flavor. Just, to have a local description one should use a

dual frame, since monopoles couple locally to an effective Lagrangian written in

terms of the dual gauge field ADµ and dyons with charge (1,−1) couple locally to an

effective Lagrangian written in terms of the gauge field ADµ−Aµ. In this sense the

word ”monopole” or ”dyon” is just conventional and adapted to the large u region,

where the theory is semiclassical and local in terms of the gauge field Aµ, in which

monopoles and dyons appear as non-perturbative states (for instance, in the ADµ

frame it is an electron which looks as a non-perturbative state).

12.3.2 Intermezzo: confinement by monopole condensation

Before discussing generalizations of this model, there is one (very nice) consistency

check one can do.

Let us start from N = 2 SU(2) SYM and add a mass m to the chiral superfield Φ

belonging to theN = 2 vector multiplet, that is W = mTrΦ2. This breaks explicitly

N = 2 to N = 1. For m � Λ we can use the UV Lagrangian, integrate Φ out and

end-up with pure N = 1 SU(2) SYM at low energy, which admits two isolated

supersymmetric vacua with charge confinement and mass gap. As we discussed in

Lecture 10, by supersymmetry this same scenario should hold even if m� Λ. In this

regime, the low-energy N = 2 effective description we discussed before should be

approximately valid and we should use it, adding to it the small mass perturbation.

But how the moduli space can be lifted giving back just two isolate (gapped) vacua?

How can the otherwise massless photon get a mass, since, following our discussion

in Section 12.1 we know that there are no light charged fields?

The addition of a mass term with m � Λ makes the effective theory becoming
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an N = 1 abelian gauge theory with a massive (neutral) chiral multiplet Φ. Let us

dub U = TrΦ2 the chiral superfield whose lowest component VEV u parametrizes

the (original) N = 2 moduli space. At a generic value of u, there are no massless

(or nearly massless) chiral superfields other than U so we easily see that the F-term

equation we have to impose on the space of D-flat directions cannot be satisfied

since
∂W

∂U
= m 6= 0 , (12.74)

and the moduli space is lifted. But then, what about the two N = 1 supersymmetric

vacua we expect to survive? The results we got in the previous section contain the

answer. We have learned that there exists two special points on the complex u-

plane where extra massless degrees of freedom arise. One such points is u = Λ2

where a massless magnetically charged hypermultiplet is present and should hence

be included in the effective theory. Let us describe our theory near u = Λ2. There,

better to use S-dual variables, for which the superpotential reads

W =
√

2H1ΦDH2 +mU , (12.75)

where ΦD is the S-dual of Φ and U should be thought of as a function of ΦD, now.

The D-term equations from the coupling to the (magnetic dual) U(1) gauge field

imply that |H1| = |H2| (recall that H1 and H2 have conjugate internal quantum

numbers and hence are oppositely charged under the U(1) gauge symmetry), while

the F-term equations read

√
2H1H2 +m

du

daD
= 0 , aDH1 = aDH2 = 0 . (12.76)

Since du/daD 6= 0 (u is a good global coordinate on u!) we get the following answer

m = 0 : H1 = H2 = 0 , aD = any

m 6= 0 : H1 = H2 =

(
− m√

2

du

daD

∣∣∣
aD=0

)1/2

, aD = 0 . (12.77)

For m = 0 we recover (tautologically) the N = 2 moduli space. For m 6= 0, since

H1 and H2 are (magnetically) charged, their VEVs break the U(1) gauge symmetry

and give a mass to the abelian gauge field (to all the N = 1 gauge multiplet, in

fact). So, we end up with a supersymmetric vacuum with a mass gap. This same

reasoning holds also at u = −Λ2, where the role of the massless magnetic monopole

is played by a massless dyon. So, the N = 2 moduli space is fully lifted but at

two points, where there are supersymmetric vacua with mass gap. Exactly what we
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expect. The exact answer we got for the original N = 2 model is just right to give

what should hold for the N = 1 massive theory under study!

This is nice, but, superficially, there is still a point of concern. The two N = 1

supersymmetric vacua are confining ones. Here, instead, the dynamics is more of

a Higgs-like mechanism, where a scalar monopole or a dyon field condense. The

point is that the Higgs mechanism taking place is not the usual condensation of an

electrically charged field, but of a magnetically (or dyonically) charged one.

To understand what that means let us recall some basics of the usual Higgs

mechanism, where electrically charged fields condense.

The condensation of the electric charge has the effect that any background elec-

tromagnetic field gets screened. This implies that electric sources in the theory are

(almost) free, since their electric fields can be absorbed by the vacuum condensate

and their interaction energy drops off exponentially. Magnetic charges behave very

differently. The magnetic field lines have no condensate where to end on. The re-

sult is that magnetic field lines tend to be expelled from the vacuum (this is the

well-known Meissner effect taking place in superconductors). The minimum energy

configuration is for the magnetic field to be confined to a thin flux tube connecting

opposite magnetic charges. Therefore, in the Higgs mechanism, electric charges are

screened and magnetic charges are confined (note: this is strict confinement).

In the model above what condenses (let us focus, momentarily, on the vacuum

at u = Λ2) is not an electric charged state, but a magnetically charged one. By

electro-magnetic duality it follows that here magnetic charges are screened, while

electric charges are confined. So, eventually, we do have a confining vacuum (due to

a magnetic dual of the Meissner effect)! This is a concrete realization of an old idea,

due to ’t Hooft and others, that confinement in non-Abelian gauge theories maybe

due to monopole condensation. The point u = −Λ2, where a dyonic field condense,

is just related to the latter by a different electro-magnetic duality rotation. There,

both electric and magnetic charges are confined but dyonic charges proportional to

(1,−1) won’t, they will just be screened. This is known as oblique confinement, also

proposed by ’t Hooft long ago.

The result we got is beautiful from several point of views. First, it shows that

the presence of magnetically charged solitons becoming massless somewhere on the

moduli space is necessary to match N = 2 dynamics with N = 1 via holomorphic

decoupling, one of our guiding principles all along this course. Second, it gives an

a posteriori consistency check about the claim that two and only two singularities
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should be there onM. Finally, it shows (at least in this softly broken N = 2 model)

that confinement is due to monopole condensation, providing a concrete realization

of the old idea that this could in fact be the way electric charge gets confined.

12.4 Seiberg-Witten theory: generalizations

Till now we have been focusing on pure N = 2 SYM with gauge group SU(2). The

story can be generalized to gauge groups with higher rank and/or coupled to matter

fields.

We are not going to discuss these generalizations in detail and refer the interested

reader to the references at the end of this lecture. Still, we want to make a few

remarks and discuss in some detail one (very instructive) example.

For G = SU(2) and no matter we learned that the moduli space, whose complex

dimension is one, is the complex plane u with two singularities at u = ±u0 (beside

the singularity at infinity), exchanged by the residual Z2 R-symmetry. At these two

singularities magnetically charged objects, a monopole and a dyon, respectively,

become massless. The metric on the moduli space can be described via an auxiliary

elliptic curve, a Riemann surface Γ(u) of genus n = 1 (a torus), whose modulus τ

can be explicitly computed and corresponds (in fact, its imaginary part does) to the

metric itself, the only unknown in the low energy effective action.

Gauge groups with higher ranks mean moduli spaces M with complex dimen-

sion n, locally Cn/WG, where WG is the Weyl group of the gauge group G, n the

gauge group rank and uI , I = 1, . . . , n, gauge invariant coordinates on M, see

e.g. eqs. (12.5). As already discussed, these theories are generalizations of the

(N = 2 supersymmetric version of the) GG model. As such, they admit several

types of charged soliton-like solutions which, in the BPS limit, satisfy the BPS mass

formula (12.35). The low energy effective action is form-invariant under electro-

magnetic duality rotations, which are generated by Sp(2n,Z). Again, one finds

that on the quantum exact moduli space there are singularities where magnetically

charged states become massless. The prepotential is not globally defined and dif-

ferent charts (duality frames) should be used. In order to extract the metric on the

moduli space, one can again make use of auxiliary elliptic curves Γ(uI), generaliza-

tions of the curve (12.61), which are genus n Riemann surfaces, now, and can be

described as a double-sheeted x plane with n+ 1 branch cuts. The period matrices

τ of these genus n two-dimensional surfaces, which are defined in analogy to the
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modulus of a torus and whose imaginary part is in fact positive, get identified with

the gauge coupling matrices τ . Hence, they determine the metric on the moduli

space and, in turn, the exact low energy effective action (12.41).

A genus n Riemann surface, figure 12.8, can be characterized in terms of n pairs

of homology cycles AI and BI and, correspondingly, period integrals defined as

ωIL =

∮

AI
ΩL , ωD

J
L =

∮

BJ

ΩL I, J, L = 1, . . . , n , (12.78)

where ΩL are n independent holomorphic one-forms, generalizations of the unique

holomorphic differential Ω defined on genus 1 surfaces, eqs. (12.64). The period

matrix is given by

τ = ωD · ω−1 (12.79)

(to be understood as a matrix equation), which ensures that Im τ > 0. The identi-

fication goes as before. In particular, the period matrix (12.79) gets identified with

the gauge coupling matrix and the periods with the u derivative of aI and a J
D , that

is

ωIL =
∂aI
∂uL

=

∮

AI

∂dλ

∂uL
, ωD

J
L =

∂a J
D

∂uL
=

∮

BI

∂dλ

∂uL
(12.80)

and

aI =

∮

AI
dλ , a J

D =

∮

BJ

dλ , (12.81)

where dλ is again the Seiberg-Witten differential.

…..

A1
A2 An�1 An

BnBn�1B1 B2

> > >>

>>> >

Figure 12.8: A genus n Reimann surface with the basis of homology cycles AI , BJ .

What about adding matter? The presence of matter fields opens-up the possi-

bility for Higgs branches. However, in what follows we will focus on the Coulomb

branch only, since, as already emphasized, that is the only component of the moduli

space which gets modified at the quantum level. Note, also, that since we want

to keep the theory UV-free, matter is constrained, there cannot be too much. For
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example, adding matter to SU(2) SYM one can add up to three hypermutiplets in

the fundamental representation or, if allowing a vanishing β function, four hyper-

multiplets in the fundamental representation or one in the adjoint (the latter case

corresponds to N = 4 SYM).

While matter fields do not change the dimension of the Coulomb branch (and

so the genus of the corresponding Seiberg-Witten curve), they do change its singu-

larity structure. One way to see this is to notice that hypermultiplets enjoy two

contributions to their (effective) mass: the bare mass mi and, whenever the adjoint

chiral superfield Φ gets a VEV, the one inherited from the N = 2 supersymme-

try preserving cubic coupling, see eq. (12.32). So, one expects new singularities on

the moduli space wherever the two mass contributions cancel each other and the

(charged) hypermultiplets become effectively massless. Notice, further, that in order

to understand the monodromy associated to these singularities, one should use the

generalized BPS mass formula

Z = a · ne + aD · nm +
F∑

i=1

1√
2
miSi , (12.82)

in place of (12.35).

In order to construct the curves Γ(uI) concretely, one should follow the same

logical steps we discussed for the SU(2) theory, some of the guiding principles being

matching their singularity structure with the appearance of massless particles in

the N = 2 theory spectrum, R-symmetry (and in this case also flavor symmetry)

considerations as well as agreement, by holomorphic decoupling or scale matching,

with curves with less flavors or smaller gauge groups. In any event, one ends up

with equations like

y2 = f(x, uI ,mi,Λ) , (12.83)

where uI , the moduli space coordinates, parametrize the period matrix τ of the

curves, eq. (12.79), mi are hypermultiplet bare masses (where i = 1, . . . , F ) and Λ

is the strong coupling scale (we are assuming, for simplicity, that the gauge group

G is simple).

It should be remarked that different parametrizations can be used to represent

the curve associated to the moduli space of a given theory. Some may be more useful

than others, depending what one wants to look at. For this reason, in the literature

(and in the references at the end of this lecture) different parametrizations can be

found. Needless to say, they are all physically equivalent, as they should. We will

see one such example shortly.
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Admittedly, despite the clear logical steps and guiding principles one can follow,

some amount of educated guesswork is usually needed to find the correct curves.

That is to say, there is no general recipe for constructing the Seiberg-Witten curve

for an arbitrary theory.

Interestingly, a systematic way to construct a large class of Seiberg-Witten curves

does exist and relies on M-theory, where a physical meaning can be given to the

Riemann surfaces (the curves) themselves. Four-dimensional N = 2 theories can be

engineered from M5 branes wrapped on suitably chosen two-dimensional compact

surfaces. At low energy, smaller than the typical size of the surface, the theory

becomes effectively four-dimensional and preserves N = 2 supersymmetry. Such

Riemann surfaces are nothing but the Seiberg-Witten curves! This makes several

properties of the low energy effective theory having a geometrical interpretation

which often helps and a plethora of interesting results have been obtained following

this approach.

As already stressed, there are a number of consistency checks one can make on

the curves (12.83). For example, by making one hypermultiplet massive, that is

taking its mass mi large, eventually mi →∞, one can integrate the hypermultiplet

out and end on a theory with one flavor less, and then show that the limit of the

corresponding curve agrees with the curve with one less hypermultiplet. Similarly,

by letting one of the vacuum expectation values becoming large, one obtains a limit

in which the gauge group is higgsed at high energy, e.g. SU(N) → SU(N − 1).

Again, the corresponding limit of the SU(N) curve should agree with the curve for

SU(N − 1).

12.4.1 A case study: N = 2 SU(2) SQCD with one flavor

To make the above discussion a bit more concrete, we will now discuss in some de-

tail one of the simplest generalizations of the original Seiberg-Witten model, namely

N = 2 SQCD with gauge group SU(2) and one massive hypermultiplet in the fun-

damental representation. The proposed corresponding Seiberg-Witten curve reads

y2 = x2(x− u)− Λ6
1 + 2mΛ3

1 x , (12.84)

where, with obvious notation, Λ1 is the strong coupling scale.

Let us first check that upon holomorphic decoupling one recovers the curve for

pure SU(2) SYM. If we send m→∞ keeping mΛ3
1 fixed, the flavor decouples and,
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using the scale-matching relation Λ4 = mΛ3
1, one ends up with the curve

y2 = x2(x− u) + 2Λ4 x . (12.85)

This is indeed the curve of pure SU(2) SYM, although in a different parametrization

(and normalization) with respect to eq. (12.61). Let us see how the curves (12.61)

and (12.85) are related.

First, as previously noticed, in a normalization where charged fields transforming

in the adjoint representation of the gauge group have integer charges, those of fields

transforming in the fundamental are half integers. Hence, in making a comparison

between gauge theory with and without matter, it is convenient to first change the

normalization we used to treat SU(2) pure SYM and multiply, in eq. (12.30), ne by

2, so to ensure ne to still be an integer, and divide a by 2, so to ensure that (12.30) is

unchanged. This change of conventions corresponds to the following transformation

on the vector (aD, a) (
aD

a

)
→
(

1 0

0 1/2

)(
aD

a

)
, (12.86)

which changes monodromy matrices as
(
a b

c d

)
→
(

1 0

0 1/2

)(
a b

c d

)(
1 0

0 2

)
=

(
a 2b

c/2 d

)
. (12.87)

With these normalizations, the monodromy matrices (12.57) and (12.60) become

M∞ =

(
−1 4

0 −1

)
, MΛ2 =

(
1 0

−1 1

)
, M−Λ2 =

(
−1 4

−1 3

)
(12.88)

The corresponding elleptic curve reads

y2 = x2(x− u) +
1

4
Λ4 x , (12.89)

which, by a constant rescaling of Λ, coincides with (12.85).

As compared to (12.61), the above expression makes it less transparent the points

on the complex plane u where singularities arise, namely where two branch points

collide and the curve degenerates. To this aim, regardless the parametrization one is

using, it suffices to compute the discriminant of the x-poynomial, ∆ =
∏

i<j(αi−αj)2

(where αi are the roots of the polynomial), and find the values of u such that some

roots coincide. For a cubic polynomial of the form

x3 + bx2 + cx+ d , (12.90)
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we have ∆ = b2c2 − 4c3 − 4b3d+ 18bcd− 27d2 which applied to eq. (12.89) gives

∆ =
1

16
Λ8(u2 − Λ4) , (12.91)

which vanishes at u = ±Λ2, in agreement with our previous analysis. More generally,

the roots αi of the x-polynomial (i.e. the branch points) are functions of the parame-

ters of the theory which, in the pure SYM SU(2) are just u and Λ, αi = αi(u,Λ). The

explicit form of these functions (and their number!) depends on the parametrization

chosen to describe the elliptic curve. For example, in the parametrization (12.61)

they are α1 = Λ2, α2 = −Λ2, α3 = u, while in the parametrization (12.89) they are

α1 = 0, α2 = 1/2(u+
√
u2 − Λ4), α3 = 1/2(u−

√
u2 − Λ4). What does not (and can-

not) change, instead, are the number and the locations of the singularities on the u

plane (namely the values of u for which two or more roots coincide), nor the nature

of the particles becoming massless there, since these are physical information.

Let us now go back to the curve (12.84), and look at the singularity structure

of the moduli space of N = 2 SQCD with F = 1 more carefully. As compared to

pure SYM, we expect now three singularities at finite distance in the u plane. This

can be seen as follows. Let us first suppose the mass m to be very large. Then, at

roughly the scale |m| the hypermultiplet decouples and, below that scale the theory

behaves, effectively, as SU(2) SYM. This suggests that the structure of the moduli

space in the region |u| � |m2| should be the same of the pure SU(2) theory, with

two singularities at u ' ±Λ2. Moreover, following our general discussion, we expect

a third singularity where the hypermultiplet becomes effectively massless. For m

large, this could only happen in the large VEV region where u = a2. One can then

easily see that a balance between the bare mass and the one coming from the cubic

term in the superpotential, eq. (12.32), will occur at u ' m2. Consistently with

holomorphic decoupling, sending m → ∞ this third singularity is pushed all the

way to infinity and one recovers, correctly, the pure SU(2) SYM moduli space of

figure 12.5.

Let us now consider the other extreme case, namely m = 0. While a mass term

for the hypermultiplet completely breaks the R-symmetry, in the massless case there

is a preserved Z6 R-symmetry at the quantum level. The u coordinate has R-charge

4 and one can then easily see that each point on the u plane preserve a Z2 symmetry.

Hence, in the massless case we expect three (strong coupling) singularities, related

by the broken Z3 generators.

These expectations can be checked analytically from the curve (12.84), by com-
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puting the discriminant and the three roots expanding the result for large, respec-

tively small m. The discriminant of the x-polynomial (12.84) is

∆ = 4m2u2Λ6
1 − 32m3Λ9

1 − 4u3Λ6
1 − 27Λ12

1 + 36umΛ9
1 . (12.92)

Let us consider first the large mass regime, m � Λ1, eventually m → ∞ keeping

mΛ3
1 = Λ4 fixed. One can compute ∆ at u ' m2 and find ∆ = 0 + O[(Λ1/m)3)].

Similarly, at u2 = ±8Λ4, one finds ∆ = 0 ± O[(Λ1/m)3/2)]Λ4, as expected. In the

massless case, m = 0, the discriminant reduces to ∆ = −4u3Λ6
1 − 27Λ12

1 and one

easily sees that the three singularities are instead located at

u =

(
−27

4
Λ6

1

)1/3

, (12.93)

which shows, as anticipated, that they all are in the strong coupling region and get

transformed one another by Z3 rotations. Clearly, one can interpolate between these

two extreme cases by continuously increasing (decreasing) m. Figure 12.9 shows how

the moduli space changes as we vary the hypermultiplet mass.

x x

u

⇤2
0�⇤2

0

x
m2

x x

u

x

⇤2
1

e2/3⇡i⇤2
1

e4/3⇡i⇤2
1

add 

mass x x

u

⇤2
0�⇤2

0

mass 

infinity
!!

Figure 12.9: The moduli space of N = 2 SQCD with F = 1 as the hypermultiplet

mass is varied. In the limit of infinite mass one recovers the pure SU(2) moduli

space, rightmost figure.

Interestingly, the nature of the hypermultiplet becoming massless at the three

singularities depends on m. When m is large, the two strong coupling singularities

(and the associated monodromies) are basically the same as the pure theory, and

the corresponding massless particles are a monopole and a dyon, respectively. At

u ' m2 the (elementary) hypermultiplet becomes massless, which is an electrically

charged object. So, for m → ∞ the (p, q) charge of the massless particles are

(1, 0), (1,−1), (0, 1). As we decrease |m| the three singularities become closer and

closer and more and more similar to those of the massless theory, which are related
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by Z3 rotations. So there is less and less a clear distinction between hypermultiplets

coming from solitons or from elementary objects. In fact, in the massless case the

(p, q) charge of the massless particles can be easily computed to be (1, 0), (1, 1), (1, 2),

which is very different from the massless spectrum in the large mass case. This does

not hurt. The mass is a UV parameter and, as we change it, we do change the

theory. Hence, that the physics changes should not come as a surprise.

Notice, finally, that at any given singularity, regardless the value of m, there

always exists a dual frame where the massless particle is ”electric” and the effective

theory is then nothing but N = 2 SQED with one massless flavor.

Argyres-Douglas theories

In this model there is a choice of UV parameters which makes one of the singular

points of the u-plane special. Let us first recap. The roots of the x-polynomial are

functions of the Coulomb branch parameter u, the strong coupling scale Λ1 and the

hypermultiplet bare mass m, αi = αi(u,Λ1,m). There exists three different ways

to collide two branch points, which correspond to the three singularities of the u-

plane discussed above, where two roots coincide and the A or B or A + B cycles

collapse and one hypermultiplet (no matter its nature) becomes massless. This is

what happens for generic values of m. Can something more singular happen?

Let us choose the mass m to be m = (3/2)ωΛ1 with ω3 = 1. With this choice

the Seiberg-Witten curve (12.84) becomes (we set for simplicity Λ1 = 1 and ω = 1)

y2 = x2(x− u) + 3x− 1 , (12.94)

and the discriminant (12.92) reads

∆ = 9u2 − 108− 4u3 + 54u− 27 . (12.95)

Singularities on the u-plane occur at those values of u for which the discriminant

vanishes. In the present case it so happens that two singularities on the u-plane

merge. There is one singularity at u = −15/4 where two roots of the x-polynomial

coincide and another one at u = 3 where all three roots coincide. Indeed, when

u = −15/4 we get y2 = (x+ 2)2(x− 1/4) while for u = 3 the Seiberg-Witten curve

becomes y2 = (x− 1)3 and all branch points coincide at x = 1. This means that at

u = 3 both A and B cycles shrink and all three (mutually non local!) hypermultiplets

become massless.
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This is something not specific to SU(2) SQCD with one flavor, but it can hap-

pen whenever the gauge group rank is larger than one or, as in the present case,

if matter is added to pure SYM: there exist special points on the moduli space,

known as Argyres-Douglas (AD) points, where mutually non-local objects become

simultaneously massless. This means that there does not exist a duality frame in

which all (light) fields are electric and that the theory cannot be as simple as SQED

coupled to massless flavors. What this effective theory can be?

It is believed that at points where mutually non-local objects becomes simul-

taneously massless the theory enjoys an interacting (as opposed to free) conformal

phase. At first sight this might sound surprising. Coleman-Gross theorem states

that in four dimensions any theory of scalars, spinors and abelian gauge fields is

IR-free. Our low energy effective theory is abelian and, as we already emphasized,

there are no points whatsoever on the moduli space where new gauge bosons, besides

those associated to U(1)n, where n = RankG, become massless. So there seems not

to be room for an interacting fixed point.

Actually, as we already observed, what is special about these AD points is that

cycles having non-vanishing intersections (like the A and B cycles of the two-torus)

simultaneously shrink. Physically, this corresponds to, e.g. a dyon and a monopole,

or a dyon and an electrically charged object becoming simultaneously massless. This

is a situation where the Coleman-Gross theorem cannot be proven, since the theory

lacks a Lagrangian description. As we now discuss, there are strong arguments

suggesting that at such points the theory enjoys an interacting abelian Coulomb

phase.

Let us consider a (not necessary supersymmetric) CFT in four dimensions and

focus on operator scaling dimensions and Lorentz spins. The latter can be repre-

sented as (j+, j−), the two eigenvalues being SU(2) quantum numbers. Unitarity

and conformal symmetry provide lower bounds on the scaling dimensions of various

operators. For instance, for an operator annihilated by special conformal generators

Kµ and for which either j+ or j− vanish, and as such dubbed antichiral or chiral

primary operator respectively, the following inequality holds

∆ ≥ j+ + j− + 1 . (12.96)

For non-chiral primaries, instead

∆ ≥ j+ + j− + 2 . (12.97)

Equality in the above equations holds for free fields.
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Let us consider the field strength operator Fµν . This is the sum of two conformal

primary operators, schematically F± = F ±∗ F , whose Lorentz spins are (1, 0)

and (0,1), respectively. One can show that the states associated to the conserved

currents J±µ = ∂νF±µν = ∗dF± satisfy the equation ||J±µ 〉|2 = 2(∆ − 2), where ∆ is

the conformal dimension of Fµν . So we see that ∆ = 2 if and only if the currents are

null vectors, J± = 0, which are nothing but the Bianchi identity and the equation

of motion of a free Maxwell theory. Conversely, if F is not free ∆ > 2 and both

J+ and J− are different from zero. Since they are descendants of different primary

fields, they are linearly independent and, in turn, this implies that both the electric

current Je = J+ + J− and the magnetic current Jm = J+ − J− are non zero. So we

conclude that in a CFT any interacting field strength must couple both to electric

and magnetic charged objects. In other words having both elementary monopoles

and electric charges allow an abelian gauge theory to have a non-trivial fixed point,

while QED without elementary monopoles cannot have a non-trivial fixed point (in

agreement with Coleman-Gross theorem).

We have seen that in our theory (for a proper choice of the UV mass parameter)

at the u = 3 singularity mutually non-local objects become massless and so, by the

above argument, the IR dynamics is believed to be described by an interacting fixed

point, a so-called Argyres-Douglas theory.

In all this discussion supersymmetry did not play any role. Not surprisingly,

however, the extra constraints imposed by N = 2 supersymmetry let one get more

clues on the property of this interacting fixed point, for example by providing the

exact scaling dimension of some CFT operators. As discussed in Section 6.3, a new

feature of the superconformal algebra as compared with the conformal algebra is

that there is another symmetry generator under which operators transform, the R-

symmetry. In the N = 2 superconformal algebra this is U(2)R and therefore CFT

operators are also characterized by the U(1)R charge R and SU(2)R ”spin” I. From

the superconformal algebra, one can show that a chiral primary operator (a state

with j− = 0 and annihilated by the supercharge Q
i

α̇) satisfies the relation

∆ = 2I +
1

2
R ≥ 2I + j+ + 1 . (12.98)

Let us now consider the N = 2 vector superfield. In N = 2 superfield formalism

this is a scalar superfield U satisfying the chiral constraint

Dα̇iU = 0 where i = 1, 2. (12.99)
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Using N = 2 unconstrained superfield formalism one can show that in N = 1

language this has the same field content of a chiral superfield Φ and a gaugino

superfield Wα. The lowest component of U , that we dub u, has I = 0 and Lorentz

spin (0, 0), so ∆(u) = 1
2
R(u) ≥ 1. This implies that ∆(F+) ≥ 2 and, when the

equality is saturated we have that dF+ = 0 (recall previous discussion). When

R(u) = 2 (and hence ∆(u) = 1) the superfield U satisfies also the equation

Dα(iDj)
α U = 0 . (12.100)

which is then equivalent to say that the field is free and there is a null state, dF+ = 0.

For an interacting vector multiplet eq. (12.100) does not hold, but just (12.99), there

are no null states and electric and magnetic currents cannot vanish.

Let us now consider the Coulomb branch of N = 2 SU(2) one-flavor SQCD. At

a generic point we have a free Maxwell theory described by a free N = 2 U(1) vector

multiplet U with ∆(u) = 1. What changes in the IR theory if we add a relevant

operator in the UV theory, like a mass term for the one flavor?

If we shift the elementary hypermultiplet UV mass m, the prepotential of the

effective theory is modified. The leading order operator at a given point on the

moduli space can be obtained by expanding the variation of the prepotential: the

constant term would not contribute, the linear one,
∫
d4θU , using eqs. (12.99) and

(12.100) can be shown to be a total space-time derivative so the leading term is

proportional to U2 and provides a shift of the effective coupling τ . The same holds at

singular points of the Coulomb branch where one hypermultiplet becomes massless,

since a mass term can be absorbed in a shift of U and again the linear term in U

does not contribute.

At an interacting fixed point, instead, U is chiral but eq. (12.100) is not satisfied

anymore. This implies that at such special point, if it exists, the leading effect is

the linear one ∫
d4θmU , (12.101)

since this is not anymore a total space-time derivative. Therefore we get

∆(m) + ∆(U) = 2 , (12.102)

which shows that m is a source for the CFT operator U .

Let us now go back to the special point u = 3,m = 3/2 of our model where the

IR dynamics is a SCFT, and let us expand the curve (12.94) around such point in
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terms of shifted variables (M, ũ, x̃) defined as

m =
3

2
+M , u = 3 + 2M + ũ , x =

1

3
u+ x̃ . (12.103)

We get

y2 = x̃3 − 2(M + ũ)x̃− (ũ+
4

3
M2) + . . . , (12.104)

where the dots are higher order terms in M and ũ, which are small in a neighborhood

of the fixed point. From the above equation we see that in order to see the cubic

singularity at ũ = M = 0, meaning that nothing should dominate against x̃3 in

(12.104), we have to assign the following relative scaling to x̃,M and ũ

∆(x̃) : ∆(M) : ∆(ũ) = 1 : 2 : 3 . (12.105)

So in eq. (12.104) we can drop ũ x̃ and M2 terms and get the simplified expression

y2 = x̃3 − 2Mx̃− ũ (12.106)

at the SCFT point. Remarkably, from the scaling dimensions of the coefficients of

the curve (12.106) one can extract the scaling dimensions of CFT operators. Indeed,

from (12.106) it follows that

[y] =
3

2
[x̃] , [ũ] = 3[x̃] , [M ] = 2[x̃] . (12.107)

Recalling that a ∼ (ũ/y)dx̃ gives the mass of BPS particle and should then have

scaling dimension one we conclude that

[x̃] =
2

5
, [ũ] =

6

5
, [M ] =

4

5
, [y] =

3

5
. (12.108)

From these relations we learn a few interesting facts:

• We get the exact scaling dimension of ũ, and this is larger than 1, showing we

are at an interacting fixed point, as expected. Notice, further, that since in

the UV u = 1
2
Trφ2 has dimension ∆ = 2, we see that u acquires an order one

anomalous dimension along the RG flow, in agreement with the idea that we

are at a strongly coupled fixed point.

• ∆(ũ) + ∆(M) = 2, in agreement with the idea that M is the dual coupling to

Ũ , and
∫
d4θMŨ a deformation out the fixed point theory.

• Since ∆(ũ) < 2,
∫
d4θMŨ is a relevant deformation.
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As already remarked, Argyres-Douglas fixed points do not exist only for the

theory we have been considering. For instance, as far as SU(2) SQCD, there exist

Argyres-Douglas CFTs for any F ≤ 3. The same happens for the other minimal

generalization of the original Seiberg-Witten model, namely pure SYM with gauge

group SU(3) (which is actually the first instance where this phenomenon was dis-

covered) and several generalizations thereof.

12.5 N = 4: Montonen-Olive duality

A central role in understanding the low energy effective dynamics of N = 1 and

N = 2 supersymmetric gauge theories we discussed so far, has been played by

two strong-weak coupling dualities. Both these dualities were loosely referred to as

electric-magnetic dualities, but their nature is quite different. For N = 1 theories,

this is an IR equivalence between two different theories, with different gauge groups

and matter content. For N = 2 it is an equivalence between different IR descriptions

of one and the same theory: the duality acts on the effective abelian action describing

vacua on the Coulomb branch.

Increasing further the number of supersymmetries one could wonder if yet an-

other type of duality would emerge. The answer is for the affirmative and, as we

will see, it turns out that this is an exact duality, i.e. a duality acting not just at

the level of the IR effective action. In order to understand what this duality is and

how it comes about, we should do a step back.

Let us start again from the Georgi-Glashow model we discussed in Section 12.2.1.

In the BPS limit, all states satisfy the BPS mass formula (12.22). Combined with

Dirac quantization condition, this implies that states carrying magnetic charge are

very heavy at weak coupling and states carrying electric charge are heavy at strong

coupling (and viceversa). Therefore, one could imagine that at strong coupling the

rôles of electric (fundamental) and magnetic (solitonic) sources are interchanged,

and that the theory at strong coupling is a theory of light monopoles. This idea was

put forward by Montonen and Olive which suggested that the GG model could have

two completely equivalent descriptions, one in terms of electric sources and one in

terms of magnetic sources, the two being exchanged under S duality (which indeed

interchanges electric and magnetic couplings).

There are two non-trivial evidences in favor of such a duality in the GG model.

The first is that the BPS mass formula (12.22) is invariant under S duality, and
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this is a necessary condition for Montonen-Olive (MO) duality to hold. The second

such evidence has to do with monopole interforce. Starting from the ’t Hooft-

Polyakov monopole solution, one can show that there is no interactions between two

monopoles, while there is a non-vanishing interaction between a monopole and an

anti-monopole. If duality is correct, since upon S transformations monopoles and

gauge bosons are exchanged, the same should hold for the W+ and W− bosons, in

the GG model. This has been shown to be the case. Basically, in the BPS limit

the (massless) Higgs field contributes exactly the opposite to the photon in the

interactions between W ’s with equal charge, which therefore do not exert any force

between each other, and exactly the same to the photon in the interactions between

W ’s with opposite charge, so the two add in this case.

These are both quite non-trivial properties that the GG model enjoys, but not

enough to conclude that MO duality is realized in there. For example, there is no

guarantee that the semiclassical BPS mass formula (12.22) holds at quantum level

(differently from theories with extended supersymmetry). So the very existence

of monopole-like states cannot be proven in the full quantum theory. Moreover, in

order for the duality to hold, monopoles and W± bosons should carry the same spin.

This cannot be verified in the GG model. If the ’t Hooft-Polyakov monopole has any

fixed integer spin it must be spherically symmetric classically, as the explicit soliton

solution actually is. So this does not tell what the actual spin of the configuration

is. Naive semi-classical quantization suggests that monopole are spinless, but not

having an understanding of the full quantum version of GG model (exact spectrum

and symmetries), one cannot draw any definitive conclusions about this, either.

Finally, beside monopoles, also dyons exists in the semi-classical spectrum of the

GG model. What is their role in the all picture? Notice, further, that the gauge

coupling is a parameter only classically since it runs quantum mechanically so it

is not even completely clear what MO duality actually means in the full quantum

theory. More generally, the MO duality is non-perturbative in nature and it cannot

be verified in a perturbative framework, unless one has some control over the full

quantum dynamics of the system (perturbative and non-perturbative), something

we can hardly achieve in a non-supersymmetric framework.

What about the supersymmetric version of this story?

The persistence of (12.22) at the quantum level ensured by the N = 2 supersym-

metry algebra could suggest that exact S duality could be realized in N = 2 the-

ories. However, the other necessary condition, namely that monopoles should have
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the same quantum numbers of massive gauge bosons, does not hold. It has been

explicitly shown that magnetically charged states (the ’t Hooft-Polyakov monopole

and the Julia-Zee dyon) sit in hypermultiplets, which do not accommodate spin one

particles. In fact, we have seen that in N = 2 theories a quite different duality is

realized, which is not an exact duality but rather an electro-magnetic duality which

holds at the level of the IR effective theory.

What about N = 4 SYM? Differently from N = 2, N = 4 SYM is believed to

realize exact S duality. There are several facts which suggest this to be plausible.

First, as shown in Lecture 3, it follows from supersymmetry algebra representa-

tions that in N = 4 massive representations cannot be anything but BPS multiplets

containing spin one particles. This implies that monopoles sit in vector multiplets,

as gauge bosons do, differently from N = 2 SYM. So they transform under the same

Lorentz representations. In N = 4 SYM all physical states (massive or massless) sit

in BPS saturated vector multiplets, which is the only possible N = 4 representation

in theories without gravity.

Second, differently from N = 2, in N = 4 the BPS bound (12.22) does not

only hold true at quantum level, but non-renormalization theorems guarantee that

the quantities therein are classically exact. Hence, the U(1) couplings entering

the effective Lagrangian (12.1) do not renormalize, implying that the matrix τIJ is

proportional to the exactly marginal (and non-abelian!) UV-coupling τ

τIJ = CIJ τ , (12.109)

where CIJ is a constant matrix (which, in a suitably chosen basis for the Cartan

generators, can be made proportional to the Cartan matrix of the gauge group).

This suggests that, unlike for N = 2 theories, the electro-magnetic duality of the

effective theory may propagate all the way to the UV and imply a stronger form

of duality. More precisely, the Sp(2n,Z) transformations (12.34) contain transfor-

mations which would act on the (non-abelian) UV coupling τ , via eq. (12.109), as

τ → τ + 1 and τ → −1/τ , and these generate the group Sp(2,Z) ' SL(2,Z) (this

is true for gauge groups whose corresponding Lie algebra is simply laced, general-

izations to non simply-laced algebras will be discussed later). This implies, in turn,

that theories with UV couplings τ related by SL(2,Z) transformations should be

physically equivalent. That is to say, not only theories where electrically charged,

respectively magnetically charged states are the fundamental degrees of freedom are

expected to be physically equivalent, as originally proposed by Montonen and Olive:
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all theories whose fundamental degrees of freedom are dyonic states related to purely

electric ones by a SL(2,Z) transformation should. Notice how different this duality

is with respect to the N = 2 IR dualities discussed previously, which act at the level

of free IR effective abelian theories. Here we are claiming that different interacting

theories, with different UV couplings, are physically equivalent. It is a non-abelian

version of electro-magnetic duality of Maxwell theory, where the gluons of the S-dual

(or more generally SL(2,Z)-dual) theory are seen as non-abelian monopoles (more

generally dyons) of the original theory, and viceversa.

Another argument in favor of MO duality in N = 4 SYM comes from the fol-

lowing observation. If a given theory enjoys MO duality, the BPS spectrum of any

theory related to the latter by a SL(2,Z) transformation should be the same. There-

fore, not only monopoles and dyons should carry the same Lorentz representations

as gauge bosons: the whole spectrum of the theory should be duality invariant. In

particular, given that massive gauge bosons are BPS states with charges ±(0, 1),

there should also be in the theory all BPS states which can be obtained acting on

±(0, 1) with SL(2,Z) ⊂ Sp(2n,Z) transformations (more precisely, one state for all

relatively prime choice of electric and magnetic charges, recall the discussion at the

end of Section 12.2.1). An equivalent way to make the same statement is that in

theories where MO duality is realized, the charge lattice of BPS states should be

invariant under SL(2,Z) transformations. Several evidence and consistency checks

were given showing this to be the case for N = 4 SYM.

One could wonder what the connection between the (massive) BPS states of

the abelian effective theory and the UV (massless) non-abelian SL(2,Z) invariant

spectrum could be. The Coulomb branch of N = 4 SYM is classically exact and

therefore at its origin the full non-abelian symmetry is recovered (this is the so-called

superconformal phase of N = 4 SYM). Let us start from an arbitrary point of the

Coulomb branch whose BPS state mass spectrum is given by

M =
√

2|aIneI + aD,In
I
m| , (12.110)

where aD,I = τIJa
J and τIJ = CIJτ , with τ the non-abelian gauge coupling (we

assume for simplicity the gauge group to be simple). Note that at fixed τIJ , the

smaller aI the smaller aD,I , and the lighter the BPS mass spectrum. Let us move

towards the origin of the Coulomb branch, aI = 0. Since aD,I = τIJa
J is an exact

relation, also aD,I = 0, there. Hence, under the assumption that the process is

smooth, at the origin where the full non-abelian gauge symmetry is recovered, all

BPS states become massless. These are nothing but the non-abelian fundamental
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and monopole-like states predicted by MO duality (in fact, since the theory at the

origin of field space is a conformal field theory, the notion of particles is ill defined

so, strictly speaking, one should better talk about operators belonging to a CFT).

Note, in passing, that this argument does not only apply toN = 4 SYM but actually

to any exactly conformal supersymmetric theory with a Coulomb branch, so also

to N = 2 SCFTs (one such example being N = 2 SU(2) SYM coupled to four

hypermultiplets transforming in the fundamental representation).

One independent argument in favor of MO duality in N = 4 SYM comes, finally,

from string (and M) theory. There, it exists an intricate set of dualities between

different string theories which implies, as a by-product, MO duality of N = 4. The

self-consistency of this web of dualities has passed many tests and it is regarded as

yet another indication for the duality of N = 4 SYM.

We said that MO duality can be seen as a non-abelian version of the electric-

magnetic duality of Maxwell theory. This is roughly correct but a bit oversimplified,

since the non-abelian nature of the gauge group G makes the duality map more

involved than for Maxwell theory. In particular, a S-duality transformation has in

general a non-trivial action also on the gauge group (and even on the algebra, in

some cases), and transforms it into the so-called magnetic dual Ĝ, as we now review.

The very idea of a magnetic gauge group was originally proposed by Goddard,

Nuyts and Olive (GNO) when trying to extend to non-abelian monopoles Dirac

quantization condition of electro-magnetism. For Maxwell theory, Dirac quantiza-

tion condition comes from the requirement that a theory with both electric and

magnetic charges can be consistently quantized. Requiring that Dirac quantization

condition is satisfied for non-abelian monopoles, determines the magnetic group Ĝ

(the group to which magnetic monopoles couple electrically) starting from a group

G. And the two differ, in general. The group Ĝ is often called the GNO-dual

of G in the physics literature, while in the mathematical literature is called the

Langlands-dual of G, because of its role in the Langlands program.

Let us consider a gauge theory with compact and connected Lie group G and

algebra g. The Lie algebra ĝ of the magnetic gauge group Ĝ is specified by its roots

α̂ being the co-roots of g, that is

α̂ = 2
α

α · α , (12.111)

where α are the roots of g. From these definitions one concludes that simply-laced

Lie algebras, i.e. su(N), so(2N), e6, e7 and e8 are self-dual, ĝ ' g, as well as f4 and
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g2. The Lie algebras so(2N + 1) and sp(2N), instead, are exchanged between each

other.

From eq. (12.111) it also follows that if g is not simply laced the S-transformation

is not τ → −1/τ , but actually τ → −1/ngτ , with ng = 2 for f4, so(2N + 1) and

sp(2N), and ng = 3 for g2 and reads

S̃ =

(
0 1/

√
ng

−√ng 0

)
, (12.112)

which we dub S̃ to distinguish it from S defined in eq. (12.18). Note that S̃ 6∈
SL(2,Z). This implies that for non simply-laced Lie algebras the actual duality

group is not SL(2,Z) but a certain infinite discrete subgroup of SL(2,R). More

precisely, it is an extension of the group Γ0(ng) by the generator S̃, where Γ0(ng)

is the subgroup of SL(2,Z) consisting of the matrices whose lower left entry is a

multiple of ng, and it is generated by T and ST ngS.

This was about the Lie algebra ĝ. To define properly the magnetic group Ĝ we

first need to recall a few facts about semi-simple Lie algebras and compact groups.

Given an algebra, a group is not univocally determined. Groups sharing the

same algebra are locally isomorphic but may differ by their global structure, which

is univocally determined by their center. So, we can define a group GK starting from

the unique simply connected Lie group G̃ an algebra g admits (a simply connected

group is a group whose first homotopy group is trivial) via the relation

GK = G̃/K where K ⊂ Z(G̃) , (12.113)

Z(G̃) being the center of G̃. Compact groups of semi-simple Lie algebras have

abelian finite (hence discrete) centers, and so is K ⊂ Z(G̃) in eq. (12.113). Using

that K is abelian, from eq. (12.113) it follows that

Z(GK) = Z(G̃)/K , (12.114)

while from K being discrete one can conclude that

Π1(GK) = K . (12.115)

The magnetic group Ĝ is defined as the group with algebra ĝ (12.111) and whose

center is related to that of the electric group G via the relation

Z(Ĝ) =
Z(G̃)

Z(G)
= Π1(G) , (12.116)
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where G̃ is the simply connected group with same algebra of G, and the second

equality follows from eqs. (12.114) and (12.115). From (12.116) we see that S du-

ality exchanges the centre and the fundamental group, since Z(Ĝ) = Π1(G). This

shows that S duality interconnects topological and algebraic properties of the group,

in agreement with the exchange of electric and magnetic degrees of freedom (and

corresponding currents).

The case of su(N): SU(N), SU(N)/ZN and their siblings

In order to make the above discussion a bit more concrete, in the following we would

like to specialize to N = 4 SYM with gauge group SU(N). In this case the Dynkin

diagram is simply-laced so ĝ = g and the duality group is SL(2,Z), with generators

S and T . The difference is only at the level of groups. Since SU(N) is simply

connected and its center is ZN , it follows from eq. (12.116) that Ĝ is in this case

SU(N)/ZN .

In Section 10.1.1 we have seen how Wilson line operators (which can be thought

of as worldlines of external electrically charged particles) can be used to probe

the phase of a gauge theory. One can also consider external magnetically charged

particles, the corresponding line operators being the so-called ’t Hooft lines. Dyons,

instead, are associated to mixed Wilson-’t Hooft line operators.

A non-abelian gauge theory without matter fields or with matter in the adjoint

representation as it is the case for N = 4 SYM, admits Wilson line operators

transforming in any representation of the gauge group. These are in one-to-one

correspondence with the weight lattice Λw of g (modulo the Weyl group WG, which

for SU(N) is SN , the group of permutations of N elements). As shown by GNO, for

non-abelian gauge theories the consistency of Dirac quantization condition restricts

magnetic monopole charges, and hence the spectrum of ’t Hooft lines, to Λco−root(g).

For simply-laced algebra, as su(N), this is the same as the root lattice, which is a

subgroup of the weight lattice Λw. Therefore, ’t Hooft lines are less than Wilson

lines in SU(N). More precisely, Wilson lines can sit in any representation of SU(N)

(they are so-called genuine line operators and act as order parameters, as we have

seen in Section 10.1.1), while ’t Hooft lines can only sit in the adjoint or tensor

products thereof.

What about the GNO-dual, whose gauge group is SU(N)/ZN? Here the situa-

tion is somewhat reversed. Wilson lines are labelled by representations of the group,

which for SU(N)/ZN are a subset of those of SU(N) in that they correspond to the
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root lattice Λroot(g) ⊂ Λw(g). For example, Wilson lines in the fundamental repre-

sentation are not allowed. On the contrary, ’t Hooft lines are not anymore restricted

by Dirac quantization condition, and they are labelled by the weight lattice Λw(g).

The genuine line operators which can serve as order parameters are ’t Hooft lines,

now. In particular, we can have ’t Hooft lines in the fundamental representation.

The SL(2,Z) generator T shifts the θ angle by 2π. This is a symmetry of

the SU(N) gauge theory, but not of the SU(N)/ZN theory, whose θ-periodicity is

instead 2πN :

SU(N) : θ periodicity [0, 2π) , SU(N)/ZN : θ periodicity [0, 2πN) .

Upon shifting θ → θ + 2π nothing happens in SU(N), the shift just permutes

line operators and maps their spectrum into itself. The SU(N)/ZN theory is not

invariant under the same shift, the spectrum of line operators changes (and this

happens for any shift θ → θ + 2πn with n = 1, . . . , N − 1). So, starting from

G = SU(N), acting with S and T , we get a family of theories which can labelled

as (SU(N)/ZN)0, (SU(N)/ZN)1, . . . , (SU(N)/ZN)N−1. All these theories look the

same, locally, but differ by the spectrum of allowed line operators. The order pa-

rameters are Wilson lines for SU(N), ’t Hooft lines for (SU(N)/ZN)0 and, as one

can easily guess, mixed Wilson-’t Hoof lines for (SU(N)/ZN)n. This is summarized

in Figure 12.10.
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Figure 12.10: Some of the different gauge theories in the SL(2,Z) duality orbit of

N = 4 SYM with algebra g = su(N).
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More generally, in N = 4 SYM with gauge group G, a Wilson line operator

is labeled by a representation R of G while a ’t Hooft line operator is labeled by

a representation R̂ of the magnetic dual group Ĝ (and a mixed Wilson-’t Hooft

line operator by a suitable R × R̂ representation). Under the action of S a Wilson

line operator in the theory with gauge group G maps to a ’t Hooft line operator

in the theory with the dual group Ĝ and viceversa. Non-trivial evidence for MO

duality requires that given a Wilson line operator in the theory with gauge group

G, it exists a ’t Hooft line operator for the theory with dual gauge group Ĝ with

precisely the same quantum numbers as the original Wilson line operator. In other

words, the charge lattice should go one into the other upon S duality. The duality

further predicts that the correlation functions of dual operators are also the same. In

particular, S duality predicts that the expectation value of a ’t Hooft line operator

gets mapped to the expectation value of a Wilson line operator in the dual theory

and, more generally to the expectation value of mixed Wilson-’t Hooft line operators

in the theory obtained from G acting with the proper element of the duality group.

Several consistency checks have been done in the literature, showing this to be the

case.

In closing, let us remark again that in flat space local physics does not depend

on global issues. In particular, the Lagrangian depends on the choice of the algebra

and not on the gauge group, and so do correlation functions of local operators.

Therefore, for g = su(N) it does not matter whether the gauge group is SU(N)

or SU(N)/ZN (in any of its variants). What changes is the spectrum of allowed

line operators that one can use to probe the theory. But as far as local physics,

the theory is what it is, no matter how one probes it. For example, we have seen

in Section 10.1.1 that in YM theory the VEV of the Wilson loop operator is 0 and

this is associated to a one-form (electric) symmetry being preserved. Since local

dynamics is independent of the global topology of the gauge group, there should

not be a difference between, say, G = SU(N) or G = (SU(N)/ZN)0. However, for

G = (SU(N)/ZN)0 the genuine line operator which may serve as order parameter

is the ’t Hooft line operator. Recalling the discussion in Section 12.3.2, we expect a

’t Hooft operator to follow a perimeter law if the theory is in a confining phase and

therefore its VEV should be 6= 0. This has its counterpart at the level of one-form

symmetries: (SU(N)/ZN)0 does not have any electric one-form symmetry but a

magnetic one-form symmetry Z(1)
N , which is spontaneously broken in the confining

phase

Confinement: 〈Tf (γ)〉 6= 0 Broken magnetic Z(1)
N (12.117)
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where Tf (γ) is a ’t Hooft operator in the fundamental representation. So, eventually,

we see that SU(N) and (SU(N)/ZN)0 gauge theories do differ, but do so at the level

of one-form symmetries, which have no effect on local dynamics (similar reasonings

could be done verbatim for the whole (SU(N)/ZN)n family, with n = 1, . . . , N −1).

What about N = 4 SYM? At the origin of field space the theory is in an

interacting (super)conformal phase. The Z(1)
N one-form is spontaneously broken, no

matter the duality frame one describes the theory with: there are no scales in the

problem and the VEV of any order parameter, being it a Wilson, ’t Hooft or mixed

Wilson-’t Hooft operator is constant and different from 0, as seen in Section 10.1.1.

At a generic point of the moduli space, N = 4 SYM is instead in a Coulomb phase.

As discussed in Section 10.1.1, in such a Coulomb phase there is an enhancement of

the one-form symmetry as

Z(1)
N −→

[
U(1)(1)

e × U(1)(1)
m

]N−1
, (12.118)

U(1)
(1)
e and U(1)

(1)
m being electric and magnetic one-form symmetries with respect

to which Wilson operators and ’t Hooft operators are charged, respectively (mixed

Wilson-’t Hooft operators will be charged under both). Their VEVs are all 6= 0

since at low enough energy the theory is (trivially) conformal. Therefore, the whole

continuous one-form symmetry (12.118) is (spontaneously) broken.

The above discussion concerns extended operators and, as we already pointed

out, local physics is insensitive to these issues, in flat space. Things become more

relevant when putting the theory on compact manifolds, because even local dynamics

may be affected. For example, suppose to put the theory on R3×S1. By wrapping a

line operator on S1 one gets a local operator on R3. So theories which only differ by

the spectrum of line operators in four dimensions, may have different local structure

in three dimensions (even a different number of vacua, as for example N = 1 SYM

with gauge groups SU(N) or SU(N)/ZN on R3 × S1).

More details about what we have discussed in this section (including further

insights one can achieve rephrasing this story in the language of generalized sym-

metries) can be found in the references below.

12.6 Exercises

1. Consider the N = 2 pure SYM Lagrangian (12.25) and compute the super-

currents S1
αµ and S2

αµ by Nöether method. Recalling that the supersymmetry
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charges are related to the supercurrent as QI
α =

∫
d3xSIα 0 (I = 1, 2), derive

eqs. (12.27).

2. Consider a rank one N = 2 supersymmetric gauge theory and a BPS state

with charges (nm, ne) on the Coulomb branch. Suppose this state becomes

massless at some point u0 of the moduli space. Derive the expression of the

monodromy matrix at u0, eq. (12.37).

3. Consider the three following parametrizations of the elliptic curve for N = 2

SU(2) SYM

y2 = (x− Λ2)(x+ Λ2)(x− u)

y2 = x2(x− u) +
1

4
Λ4x

y2 = (x2 − u)2 − Λ4

Show that they are physically equivalent, i.e. that the number and the loca-

tions of the singularities on the u plane as well as the nature of the particles

becoming massless there, do not depend on which curve one considers.
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