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Abstract
We explain a general theory of W -algebras in the context of supersymmetric vertex
algebras. We describe the structure of W -algebras associated with odd nilpotent ele-
ments of Lie superalgebras in terms of their free generating sets. As an application, we
produce explicit free generators of the W -algebra associated with the odd principal
nilpotent element of the Lie superalgebra gl(n + 1|n).

Keywords Supersymmetric Vertex algebras · W superalgebras · Free generating sets

Mathematics Subject Classification 17B35 · 17B68 · 17B69 · 17B70

1 Introduction

The W -algebras first appeared in relation with the conformal field theory in the work
of Zamolodchikov [26] and Fateev and Lukyanov [11]. These algebras were studied
intensively by physicists, both at the classical level through Hamiltonian reduction of
Wess–Zumino–Novikov–Witten models and their connection with affine Lie algebras,
see, e.g., [5,12,14], but also using BRST formalism [7,8]. For an extensive review on
physicists works, see [6] and references therein. A definition of the W -algebras in the
context of the vertex algebra theory and quantized Drinfeld–Sokolov reduction was
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given by Feigin and Frenkel [13]; see also the book by Frenkel and D. Ben-Zvi [15,
Ch. 15]. Amore general family ofW -algebrasWk(g, f )was introduced in the articles
by Kac, Roan and Wakimoto [21] and Kac and Wakimoto [22], which depends on a
simple Lie (super)algebra g, an (even) nilpotent element f ∈ g and the level k ∈ C .
In the particular case of the principal nilpotent element f = fprin, this reduces to the
definition of [13]; see also a recent expository article by Arakawa [2] where basic
structure theorems and representation theory of W -algebras are reviewed.

In the present paper, we will be concerned with supersymmetric counterparts of the
W -algebras which can be defined by analogy with [15, Ch. 15]. SuchW -algebras have
already been studied, mostly in the physics literature; see [10,17,18]. In this context,
they are viewed as a generalization of the ‘usual’ W -algebras to the case of super-
conformal theories. The main tool for their study is the superspace and superfield
formalism. Moreover, a supersymmetric quantum Hamiltonian reduction approach
was developed in the work of Madsen and the second author [23]. We will rely on
this work and the supersymmetric vertex algebra theory developed by Heluani and
Kac [16,19] to describe the structure of the W -algebras associated with odd nilpo-
tent elements of Lie superalgebras. The supersymmetric vertex algebra theory can be
viewed as the mathematical counterpart of the superspace formalism used in physics.
Our main structural result is Theorem 4.11 which describes free generating sets of the
W -algebras.

Wewill then apply themain result to the case of the general linear Lie superalgebras.
It is well known that the Lie superalgebra gl(m|n) contains an odd principal nilpotent
element if and only if m = n ± 1. We take m = n + 1 (this can be done without a real
loss of generality) and produce explicit free generators of theW -algebra as coefficients
of a certain non-commutative characteristic polynomial; see Theorems 5.1 and 5.3.
These formulas can be regarded as supersymmetric analogues of the generators of the
principal W -algebra associated with the Lie algebra gl(n) (which can be identified
with the Wn-algebra [11] via the Miura map), as produced by Arakawa and the first
author [3]. In particular, when considering the Lie superalgebra gl(2|1), one gets the
superconformal (or super-Virasoro) algebra with 2 fermionic generators [1], [24].
Furthermore, we show that the Miura transformation used in [3] can also be applied
in the supersymmetric context to recover the generators of the W -algebra appeared in
[10,17,18].

The second author wishes to thank the School of Mathematics and Statistics at the
University of Sydney for the hospitality and warm atmosphere during his visit, as the
work on this project was under way. The work of the third author was supported by
NRF Grant # 2019R1F1A1059363.

2 Supersymmetric vertex algebras

In this section, we introduce supersymmetric vertex algebras following [16] and [19].
Proofs and additional details can be found in these references. Note that in the ter-
minology of the paper [16] these objects are called NK = 1 supersymmetric vertex
algebras.

123



Supersymmetric W -algebras Page 3 of 25 6

2.1 Notation and basic definitions

We will be considering two couples of coordinates

Z = (z, θ), W = (w, ζ ),

where z and w are even and θ and ζ are odd. Introduce the notation

C[[Z ]] := C[[z]] ⊗ C[θ ], C((Z)) := C((z)) ⊗ C[θ ].

Since θ2 = 0, we have C[θ ] = C ⊕ Cθ . Similarly,

C[Z , Z−1] := C[z, z−1] ⊗ C[θ ], C[[Z , Z−1]] := C[[z, z−1]] ⊗ C[θ ].

Furthermore, set

Z − W := (z − w − θζ, θ − ζ ),

Z j0| j1 := z j0θ j1 for j0 ∈ Z, j1 = 0, 1,

(Z − W ) j0| j1 := (z − w − θζ ) j0(θ − ζ ) j1 .

Let U = U0̄ ⊕ U1̄ be a Z/2Z-graded vector space which we will also call a vector
superspace. Accordingly, elements a ∈ U0̄ (resp. a ∈ U1̄) are called even (resp. odd)
with the parity p(a) = 0̄ (resp. p(a) = 1̄). The corresponding endomorphism algebra
End U = (End U)0̄ ⊕ (End U)1̄ is a superalgebra, where

f ∈ (End U)ı̄ ⇐⇒ f
(
(End U)j̄

) ⊂ (End U)ı̄+j̄

for any ı̄, j̄ ∈ Z/2Z.
Any element of the vector superspace U[[Z , Z−1]] := U ⊗ C[[Z , Z−1]] is called a

U-valued formal distribution. It has the form

a(Z) =
∑

j0∈Z, j1=0,1

Z j0| j1a j0| j1 ∈ U[[Z , Z−1]], a j0| j1 ∈ U . (2.1)

The super-residue of a formal distribution a(Z) is defined by

resZ a(Z) := a−1|1 ∈ U .

Since resZ Z j0| j1a(Z) = a−1− j0|1− j1, it is convenient to use the notation

a( j0| j1) := resZ Z j0| j1a(Z)

so that a j0| j1 = a(−1− j0|1− j1) and the distribution a(Z) in (2.1) takes the form

a(Z) =
∑

j0∈Z, j1=0,1

Z−1− j0|1− j1a( j0| j1).
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An EndU-valued formal distribution a(Z) is called a superfield if for any given v ∈ U
there exists N ∈ Z≥0 such that

a( j0| j1)v = 0 for all j0 ≥ N , j1 = 0, 1.

Similarly, a U-valued formal distribution in two variables is an element of the vector
superspace U[[Z , Z−1,W ,W−1]]:

a(Z ,W ) =
∑

j0,k0∈Z,
j1,k1=0,1

Z j0| j1Wk0|k1a j0| j1,k0|k1 ∈ U[[Z , Z−1,W ,W−1]]

with a j0| j1,k0|k1 ∈ U . A formal distribution a(Z ,W ) is called local if

(z − w)na(Z ,W ) = 0

for some n ∈ Z≥0. We let the formal δ-distribution be defined by

δ(Z ,W ) = (θ − ζ )
∑

n∈Z
znw−n−1.

Note that for any f ∈ U[[Z , Z−1]] we have

resZ δ(Z ,W ) f (Z) = f (W ).

Since (z − w)δ(Z ,W ) = 0, the formal δ-distribution is local.
The differential operators ∂z , ∂θ , ∂w and ∂ζ act naturally on C[[Z , Z−1,W ,W−1]].

Consider two more odd differential operators

DZ = ∂θ + θ∂z, DW = ∂ζ + ζ∂w.

Then, [DZ , DZ ] = 2∂z . Set

D j0| j1
Z = ∂

j0
z D j1

Z , D( j0| j1)
Z = (−1) j1

1

j0!D
j0| j1
Z .

Lemma 2.1 Let a(Z ,W ) be a local formal distribution. Then,

a(Z ,W ) =
∑

j0∈Z≥0,
j1=0,1

D( j0| j1)
W δ(Z ,W ) c j0| j1(W ),

where the sum is finite, and

c j0| j1(W ) = resZ (Z − W ) j0| j1a(Z ,W ).
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Definition 2.2 A supersymmetric vertex algebra is a tuple (V , |0〉 , S,Y ) where V is
a vector superspace, |0〉 ∈ V is a vacuum vector, S is an odd endomorphism of V ,
and the state-field correspondence Y is a parity preserving linear map from V to the
space of End V -valued superfields

Y : V → End V [[Z , Z−1]], a �→ a(Z)

satisfying the following axioms:

• (vacuum) a(Z) |0〉 |z=0, θ=0 = a, S |0〉 = 0,
• (translation covariance) [S, a(Z)] = (∂θ − θ∂z)a(Z),
• (locality) for anya, b∈V there exists N ∈Z+ such that (z−w)N [a(Z), b(W )] = 0.

By Lemma 2.1, the locality axiom implies a finite sum decomposition

[a(Z), b(W )] =
∑

j0∈Z≥0,
j1=0,1

(
D( j0| j1)
W δ(Z ,W )

)
a(W )( j0| j1)b(W )

for a(W )( j0| j1)b(W ) := resZ (Z − W ) j0| j1[a(Z), b(W )]. The expression a(W )( j0| j1)
b(W ) is called the ( j0| j1)-th product of the superfields a(W ) and b(W ).

Definition 2.3 (1) The normally ordered product of two End V -valued formal distri-
butions a(Z) and b(Z) is defined by

: a(Z)b(Z) := a+(Z)b(Z) + (−1)p(a)p(b)b(Z)a−(Z),

where

a+(Z) =
∑

j0∈Z≥0, j1=0,1

Z j0| j1a j0| j1 and a−(Z) =
∑

j0∈Z<0, j1=0,1

Z j0| j1a j0| j1 .

(2) If j0 ≤ −2 and j1 = 0, 1, or j0 = −1 and j1 = 0, then a(Z)( j0| j1)b(Z) is given
by

a(Z)( j0| j1)b(Z) = (−1)1− j1 : (
D(−1− j0|1− j1)

Z a(Z)
)
b(Z) : .

Remark 2.4 One can check that

: a(Z)b(Z) : |0〉 |z=0,θ=0 = a(−1|1)b

and

a(Z)( j0| j1)b(Z) |0〉 |z=0,θ=0 = a( j0| j1)b

for ( j0, j1) as in part (2) of Definition 2.3.
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Lemma 2.5 (Dong’s lemma) Let a(Z), b(Z), c(Z) be pairwise local formal distribu-
tions. Then,

(
a(Z), (b( j0| j1)c)(Z)

)
is local for any j0 ∈ Z and j1 = 0, 1.

Lemma 2.6 (Uniqueness lemma) Let V be a supersymmetric vertex algebra. If a(Z)

is a superfield such that (a(Z), b(Z)) is local for every b ∈ V and a(Z) |0〉 = 0, then
a(Z) = 0.

By the uniqueness lemma and Remark 2.4,

a(Z)( j0| j1)b(Z) = (a( j0| j1)b)(Z),

and we set

: ab := a(−1|1)b =: a(Z)b(Z) : |0〉 |z=0, θ=0.

Note that for a given supersymmetric vertex algebra V , the state-field correspondence
map

Y : V → (End V )[[Z , Z−1]], a �→ a(Z),

is injective. Hence, a supersymmetric vertex algebra V can be considered as a set of
superfields Y (V ). In the following theorem, we construct a vertex algebra as a set of
superfields.

Theorem 2.7 (Existence theorem) Let V be a vector superspace and V̂ be a set of
pairwise local End V -valued superfields. Suppose Id ∈ V̂ is the constant field and
V̂ is invariant under the operator D = ∂θ + θ∂z and all ( j0| j1)-products. Then, the
superspace V with the vacuum vector Id, the operator S given by Sa(Z) = D(a(Z))

and the ( j0| j1)-products are a supersymmetric vertex algebra.

2.2 Supersymmetric Lie conformal algebras

Recall that a Lie conformal algebra (LCA) R gives rise to a vertex algebra called a uni-
versal enveloping vertex algebra V (R) [4,19]. Now we introduce its supersymmetric
analogue: that is, a supersymmetric LCA and the corresponding universal enveloping
supersymmetric vertex algebra. Consider two superalgebras:

• Let L be the associative superalgebra generated by a pair of elements � = (λ, χ),
where λ is even and χ is odd, such that

[λ, χ ] = 0, [χ, χ ] = 2χ2 = −2λ.

• Let K be another associative superalgebra generated by a pair of elements ∇ =
(T , S), where T is even and S is odd, such that

[T , S] = 0, [S, S] = 2S2 = 2T .
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Note that L and K are isomorphic via the map λ �→ −T and χ �→ −S.
Set

(Z − W )� = (z − w − θζ )λ + (θ − ζ )χ.

Given a formal distribution a(Z ,W ) of two variables Z and W , consider the formal
Fourier transformation

F�
Z ,W a(Z ,W ) = resZ exp

(
(Z − W )�

)
a(Z ,W )

which can be expanded as

F�
Z ,W a(Z ,W ) =

∑

j0∈Z≥0, j1=0,1

(−1) j1�( j0| j1)c j0| j1(W ),

where

�( j0| j1) = (−1) j1
λ j0χ j1

j0!
and c j0| j1(W ) is defined in Lemma 2.1.

Define the �-bracket (a, b) → [a�b] of a local pair
(
a(Z), b(Z)

)
by

[a�b](W ) := F�
Z ,W [a(Z), b(W )].

Proposition 2.8 The�-bracket satisfies the following properties for all pairwise local
distributions (a(Z), b(Z), c(Z)):

(1) (sesquilinearity)

[Sa�b] = χ [a�b], [a�Sb] = −(−1)p(a)(S + χ)[a�b];

(2) (skew symmetry)

[b�a] = (−1)p(a)p(b)[a−�−∇b],

where
[a−�−∇b] =

∑

j0∈Z≥0, j1=0,1

(−1) j1(−� − ∇)( j0| j1)a( j0| j1)b

for −� − ∇ = (−λ − T ,−χ − S) with

[χ, S] = 2λ and [χ, T ] = [λ, T ] = [λ, S] = 0;

(3) (Jacobi identity)

[a�[b
c]] = −(−1)p(a)[[a�b]�+
c] + (−1)(p(a)+1)(p(b)+1)[b
[a�c]],

where
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(i) 
 = (γ, η) with [γ, η] = [γ, γ ] = 0 and [η, η] = −2γ ,
(ii) � + 
 = (λ + γ, ζ + η) with [λ, η] = [λ, γ ] = [ζ, γ ] = [ζ, η] = 0.

This motivates the following definition.

Definition 2.9 A supersymmetric Lie conformal algebra (LCA) R is a Z/2Z-graded
K-module endowed with odd bilinear mapR⊗R → L⊗R, called �-bracket, given
by a finite sum expansion

a ⊗ b �→ [a�b] =
∑

j0∈Z≥0, j1=0,1

(−1) j1�( j0| j1)a( j0| j1)b

with a( j0| j1)b ∈ R, satisfying the following properties:

(1) (sesquilinearity) In L ⊗ R we have

[Sa�b] = χ [a�b], [a�Sb] = −(−1)p(a)(S + χ)[a�b] ,

where S and χ obey the relation [S, χ ] = 2λ;
(2) (skew symmetry) In L ⊗ R we have

[b�a] = (−1)p(a)p(b)[a−�−∇b],

where
[a−�−∇b] =

∑

j0∈Z≥0, j1=0,1

(−1) j1(−� − ∇)( j0| j1)a( j0| j1)b

for −� − ∇ = (−λ − T ,−χ − S) satisfying

[χ, S] = 2λ and [χ, T ] = [λ, T ] = [λ, S] = 0;

(3) (Jacobi identity) In L ⊗ L′ ⊗ R we have

[a�[b
c]] = −(−1)p(a)[[a�b]�+
c] + (−1)(p(a)+1)(p(b)+1)[b
[a�c]],

where

(i) 
 = (γ, η) such that [γ, η] = [γ, γ ] = 0 and [η, η] = −2γ ,
(ii) � + 
 = (λ + γ, ζ + η) such that [λ, η] = [λ, γ ] = [ζ, γ ] = [ζ, η] = 0.

Note that the tensor product sign is often omitted in the notation.
The next theorem provides an equivalent definition of supersymmetric vertex alge-

bras in terms of �-brackets; cf. [20, Thm. 4.1].

Theorem 2.10 A supersymmetric vertex algebra is a tuple (V , S, [ � ], |0〉 , : :) such
that

(i) (V , S, [ � ]) is a supersymmetric Lie conformal algebra.
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(ii) (V , S, |0〉 , : :) is a unital differential superalgebra, where S is an odd derivation
of the product : :, and the following properties hold:

: ab : −(−1)p(a)p(b) : ba := (−1)p(a)p(b)
∑

j≥1

(−T ) j

j ! (b(−1+ j |1)a),

:: ab : c : − : a : bc ::=
∑

j≥0

a(−2− j |1)(b( j |1)c)

+(−1)p(a)p(b)
∑

j≥0

b(−2− j |1)(a( j |1)c). (2.2)

(iii) The �-bracket and the product : : are related by the non-commutative Wick
formula :

[a� : bc :] =
∑

k≥0

λk

k! [a�b](k−1|1)c + (−1)(p(a)+1)p(b) : b[a�c] : . (2.3)

The properties (2.2) of the product : : are referred to as the quasi-commutativity
and quasi-associativity, respectively.

Definition 2.11 (1) A set B = {ai | i ∈ I } of elements in a supersymmetric vertex
algebra V strongly generates V if the set of monomials

{ : a j1a j2 . . . a js : | j1, . . . , js ∈ I , s ∈ Z≥0}

spans V . If s = 0, the monomial is understood as |0〉. For s > 2 the product in
the monomial is applied consecutively from right to left.

(2) An ordered set B = {ai | i ∈ I } ⊂ V freely generates a supersymmetric vertex
algebra V if the set of monomials

{ : a j1a j2 . . . a js : | jr ≤ jr+1 and jr < jr+1 if p(a jr ) = 1̄}

forms a basis of V over C.

Theorem 2.12 Let R be a supersymmetric Lie conformal algebra with an ordered
C-basis B = {ai | i ∈ I }. Then, there exists a unique supersymmetric vertex algebra
V (R) such that

(i) V (R) is freely generated by B,
(ii) the operator S on V (R) is defined by S(: ab :) =: (Sa)b : +(−1)p(a) : a(Sb) :,
(iii) the �-bracket on R extends to the �-bracket on V (R) via the Wick formula

(2.3).

Definition 2.13 For a given supersymmetric Lie conformal algebra R, the super-
symmetric vertex algebra V (R) in Theorem 2.12 is called the universal enveloping
supersymmetric vertex algebra associated to R.
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2.3 Supersymmetric nonlinear LCAs

In this section, we follow Section 3 of [9] to introduce nonlinear supersymmetric
LCAs. We omit the arguments which are straightforward supersymmetric analogues
of those in [9].

For a positive integer n, consider aK-moduleR = ⊕
ζ∈N/n Rζ with (N/n)-grading

so that gr(a) = ζ for a ∈ Rζ . The grading gr is naturally extended to the grading of
the tensor algebra T (R) by

gr(a ⊗ b) = gr(a) + gr(b).

Set

T (R)(ζ )− =
⊕

ζ ′<ζ

T (R)ζ ′ .

Definition 2.14 Suppose that R is endowed with a nonlinear �-bracket

[Rζ �Rζ ′ ] ⊂ L ⊗ T (R)(ζ+ζ ′)− ,

satisfying skew symmetry, sesquilinearity and Jacobi identity in Definition 2.9. Then,
R is called supersymmetric nonlinear Lie conformal algebra.

Proposition 2.15 Let R be a supersymmetric nonlinear LCA. Then, the normally
ordered product and �-bracket admit unique extensions to the linear maps

T (R) ⊗ T (R) → T (R), A ⊗ B �→: AB :,
T (R) ⊗ T (R) → L ⊗ T (R), A ⊗ B �→ [A�B],

in such a way that for any a, b ∈ R and A, B,C ∈ T (R) we have

(i) [a�b] is defined by the �-bracket on R,
(ii) : aB := a ⊗ B,
(iii) : 1A :=: A1 := A,
(iv) : (a ⊗ B)C : − : a : BC :: is defined by the quasi-associativity,
(v) [A�(b ⊗ C)] and [(a ⊗ B)�C] are defined by the Wick formula.

For a given supersymmetric nonlinear LCAR, consider the two-sided ideal J (R)

of T (R) generated by elements of the form

(: ab : −(−1)p(a)p(b) : ba :) − (−1)p(a)p(b)
∑

j≥1

(−T ) j

j ! b(−1+ j |1)a,

where
[b�a] =

∑

j0∈Z≥0, j1=0,1

(−1) j1�( j0| j1)b( j0| j1)a.
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Then, the �-bracket and the product : : on T (R) induce a well-defined �-bracket
and product on the quotient

V (R) = T (R)/J (R).

Since V (R) satisfies quasi-commutativity, quasi-associativity and Wick formula, it is
a supersymmetric vertex algebra which is called the universal enveloping supersym-
metric vertex algebra ofR; cf. Definition 2.13.

Proposition 2.16 For a given ordered basisB ofR, the supersymmetric vertex algebra
V (R) is freely generated by B.

3 Good filtered complexes of supersymmetric nonlinear LCAs

Here, we reproduce some useful facts about bigraded complexes. Proofs can be
obtained by suitable supersymmetric versions of the arguments in [9, Sec. 4]. Introduce
the notation


 = Z

2
, 
+ = Z≥0

2
, 
′+ = Z>0

2
.

Let g be a graded vector superspace and R = K ⊗ g be a nonlinear Lie conformal
algebra such that

g =
⊕

p,q∈
, p+q=Z+,


∈
′+

gp,q [
], R =
⊕

p,q∈
, p+q=Z+,


∈
′+

Rp,q [
], (3.1)

where
Rp,q [
] =

⊕

n≥0

Sn ⊗ gp,q
[

 − n

2

]
.

The universal enveloping supersymmetric vertex algebra V (R), which is strongly
generated by a basis {ai | i ∈ I } ofR, has the 
′+-grading

V (R) =
⊕


∈
′+

V (R)[
]

where

V (R)[
] = spanC{ : ai1ai2 . . . ais : | ik ∈ I , aik ∈ R[
k], ∑s
k=1 
k = 
}.

We assume that

V (R)[
1](n0|n1)V (R)[
1] ⊂ V (R)
[

1 + 
2 − n0 − n1

2
− 1

2

]
.
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Consider a 
-filtration and a Z-grading of R induced from (3.1)

F pR =
⊕

p′≥p,
q,


Rp′,q [
], Rn =
⊕

p+q=n

Rp,q ,

and the corresponding filtration and Z-grading of V (R) defined by

V (R)n = spanC{ : ai1ai2 . . . ais : | ik ∈ I , aik ∈ Rpk ,qk ,
∑s

k=1 pk + qk = n},
F pV (R) = spanC{ : ai1ai2 . . . ais : | ik ∈ I , aik ∈ Rpk ,qk ,

∑s
k=1 pk ≥ p}.

Set

F pV (R)n = F pV (R) ∩ V (R)n, F pV (R)n[
] = F pV (R)n ∩ V (R)[
]

and consider the associated graded algebra

gr V (R) =
⊕

p,q∈


grp,qV (R),

where

grp,qV (R)[
] = F pV (R)p+q [
]/F p+ 1
2 V (R)p+q [
],

grp,qV (R) = F pV (R)p+q/F p+ 1
2 V (R)p+q =

⊕


∈
′+

grp,qV (R)[
].

Suppose a differential map d : V (R) → V (R) satisfies

d(F pV (R)n) ⊂ F pV (R)n+1, d(V (R[
]) ⊂ V (R)[
]. (3.2)

Then, we set for the cohomology spaces

F pHn(V (R), d) = Ker(d|F pV (R)n )/Im d ∩ F pV (R)n,

grp,q H(V (R), d) = F pH p+q(V (R), d)/F p+ 1
2 H p+q(V (R), d).

In addition, for the graded differential map d gr : gr V (R) → gr V (R) induced from
d, we define cohomology spaces by

H p,q(gr V (R), d gr) = Ker d gr|grp,q V (R)/Im d gr ∩ grp,qV (R).

Definition 3.1 Let d be a differential on V (R) satisfying (3.2).

(1) We say d is almost linear differential ofR if

d gr(gp,q [
]) ⊂ gp,q+1[
];
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or, equivalently, d(gp,q [
]) ⊂ gp,q+1[
] ⊕ F p+ 1
2 V (R)p+q+1.

(2) A differential d is called a good almost linear differential of R if

H p,q(g, d gr) = 0 if p + q �= 0.

In the rest of this section, we assume that V (R)[
] has finite dimension for any

 ∈ 
′+ and d is a good almost linear differential ofR. Take bases

B p
g [
] = { ei | i ∈ I p

g [
] } for some index sets I p
g [
],

B p
R[
] = {e(i,n) | e(i,n) = Snei , ei ∈ B p

g [
′], 
′ + n

2
= 
},

of gp,−p[
]∩Ker d gr andRp,−p[
]∩Ker d gr = H p,−p(grR, d gr)[
], respectively.
Then,

BR :=
⊔


∈
′+, p∈


B p
R[
] = { e(i,n) | e(i,n) = Snei , i ∈ Ig }

is a basis of H(grR, d gr), where

Ig :=
⊔


∈
′+, p∈


I p
g [
].

Proposition 3.2 (1) H(gr V (R), d gr) is freely generated by BR.
(2) H p,−p(gr V (R), d gr)[
] has the basis

B p
V (R)

[
] = { : e(i1,n1)e(i2,n2) . . . e(ik ,nk ) : }
,

where the sets of indices (it , nt ) ∈ I pt
g [
t ] × Z≥0 satisfy the conditions:

(i) (it , nt ) ≤ (it+1, nt+1),
(ii) if e(it ,nt ) and e(it+1,nt+1) are odd, then (it , nt ) < (it+1, nt+1),

(iii)
∑k

t=1 it = p,
(iv)

∑k
t=1

(

t + nt

2

) = 
.

For ei ∈ gp,−p[
] ∩ Ker d gr, there exists an element fi ∈ F p+ 1
2 V (R)0[
] such

that Ei = ei + fi ∈ F pV (R)0[
] ∩ Ker d. Set

H p,−p(g, d)[
] = span { Ei | i ∈ I p
g [
] }, H(g, d)[
] =

⊕

p∈


H p,−p(g, d)[
].

Theorem 3.3 (1) H(V (R), d) = H0(V (R), d).

(2) If the K-module H(R, d) = K ⊗ H(g, d) admits a nonlinear supersymmetric
LCA structure, then

H(V (R), d) � V (H(R, d)).
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6 Page 14 of 25 A. Molev et al.

4 BRST cohomology

We are now in a position to define supersymmetricW -algebras via BRST cohomology
following [23]. We will rely on the supersymmetric vertex algebra theory developed
by Heluani and Kac [16,19] to describe the structure of the W -algebras associated
with odd nilpotent elements of Lie superalgebras.

4.1 BRST complex

Let g be a finite-dimensional simple Lie superalgebra with a ( 12Z)-grading g =⊕
i∈ 1

2Z
g(i) satisfying the following conditions:

(i) There exists h ∈ g0̄ such that g(i) = {a ∈ g | 1
2 [h, a] = ia}.

(ii) There are odd elements fodd ∈ g(− 1
2 ) and eodd ∈ g( 12 ) such that

span{e, eodd, h, fodd, f } � osp(1|2),

where (e, h, f ) is an sl2-triple.

We will suppose that g is equipped with a non-degenerate invariant bilinear form ( | )
normalized by the conditions (e| f ) = 1

2 (h|h) = 1.
Introduce two supersymmetric vertex algebras.

(1) Let g = {a | a ∈ g} be the vector superspace defined by g1̄ = g0̄ and g0̄ = g1̄.
The supersymmetric current nonlinear LCA is

Rcur := K ⊗ g

endowed with the �-bracket

[a�b] = (−1)p(a)p(b)[a, b] + k χ(a|b).

(2) Set n = ⊕
i>0 g(i) and n− = ⊕

i<0 g(i). Then, there are bases

{uα | α ∈ I+} and {uα | α ∈ I+}

of n and n−, respectively, parameterized by a certain index set I+, such that
(uα|uβ) = δα,β . Introduce two vector superspaces

φn � n ⊂ g, φn− � n− ⊂ g,

spanned by the respective families of elements φb and φa with b ∈ n and a ∈ n−.
Consider the supersymmetric nonlinear LCA Rch = K ⊗ (φn ⊕ φn−) endowed
with the �-bracket

[φa
�φb] = [φb�φa] = (a|b).
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Supersymmetric W -algebras Page 15 of 25 6

Due to the results of Sect. 2.3, the two above supersymmetric nonlinear LCAs give
rise to respective universal enveloping supersymmetric vertex algebras V (Rcur) and
V (Rch). Their tensor product

C(g, fodd, k) = V (Rcur) ⊗ V (Rch)

also carries a supersymmetric vertex algebra structure. Introduce the element d by

d =
∑

α∈I+
: (uα − ( fodd|uα))φα : +1

2

∑

α,β∈I+
(−1)p(α)p(β) : φ[uα,uβ ]φβφα : , (4.1)

where φα = φuα
, φα = φuα , p(α) = p(uα) and p(α) = p(uα).

Proposition 4.1 The �-brackets between d and elements in C(g, fodd, k) have the
form:

[d�a] =
∑

α∈I+
(−1)p(a)p(α) : φα[uα, a] : +

∑

α∈I+
(−1)p(α)k(χ + S)φα(uα|a),

[d�φα] = 1

2

∑

α,β∈I+
(−1)p(α)p(β) : φβφ[uβ ,uα] :,

[d�φα] = (−1)p(α)uα − ( fodd|uα) +
∑

β∈I+
(−1)p(α)p(β) : φβφ[uβ ,uα] : .

Proof The formulas are verified by a direct calculation in the same way as for the
supersymmetric classical W -algebras; see [25]. ��

Set Q := d(0|0). Then, by the Wick formula (2.3), we have

Q(: A B :) =: Q(A) B : +(−1)p(A) : A Q(B) : . (4.2)

Proposition 4.2 The linear map Q on C(g, fodd, k) satisfies Q2 = 0.

Proof This follows by a direct computationwith the use of Proposition 4.1 andproperty
(4.2). ��

By taking the cohomology of the BRST complexC(g, fodd, k)with the differential
Q, we can now define the corresponding supersymmetricW -algebra as in [23]; cf. [2]
and [15, Ch. 15].

Definition 4.3 The supersymmetric W-algebra associated to g, fodd and k ∈ C is

W (g, fodd, k) = H(C(g, fodd, k), Q).

Proposition 4.4 Let A, B ∈ C(g, fodd, k) satisfy Q(A) = Q(B) = 0 and C be any
element in C(g, fodd, k). Then, the following holds:
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6 Page 16 of 25 A. Molev et al.

(1) Q(SA) = Q(: AB :) = 0 and Q([A�B]) = 0;
(2) S(QC), : Q(C) B : and [Q(C)�B] belong to the image of Q.

Proof By sesquilinearity of supersymmetric LCAs, for any X ∈ C(g, fodd, k) we
have S(QX) = −Q(SX). Hence, the first properties in (1) and (2) hold. The second
properties follow from (4.2). By the Jacobi identity of supersymmetric LCAs, for
X ,Y ∈ C(g, fodd, k) we have

Q([X�Y ]) = −[Q(X)�Y ] + (−1)p(X)+1[X�Q(Y )]

which gives the third properties in (1) and (2). ��

Corollary 4.5 The supersymmetric W-algebra W (g, fodd, k) is a supersymmetric ver-
tex algebra.

4.2 Building blocks of supersymmetricW-algebras

For any ā ∈ ḡ set

Jā = ā +
∑

β∈I+
(−1)p(ā)p(β̄) : φβφ[uβ ,a] : ∈ C(g, fodd, k).

Proposition 4.6 For the element d defined in (4.1), we have

[d� Jā] =
∑

β∈I+
(−1)p(a)p(β) : φβ(Jπ≤0[uβ ,a] + ( fodd|[uβ, a])) :

+
∑

β∈I+
(−1)βk (S + χ)φβ(uβ |a),

where π≤0 : g → ⊕i≤0g(i) is the projection map with the kernel ⊕i>0g(i).

Proof By the Wick formula,

[d� Jā] = [d�ā] +
∑

β∈I+
(−1)p(ā)p(β̄)[d � : φβφ[uβ ,a] :]

= [d�ā] +
∑

β∈I+
(−1)p(ā)p(β̄) : [d �φβ ]φ[uβ ,a] : (4.3)

+
∑

β,γ∈I+, k≥1

λk

2k! (−1)p(β̄)(p(γ )+p(a)+1)
(
: φγ φ[uγ ,uβ ] :

)

(k−1|1) φ[uβ ,a]

+
∑

β∈I+
(−1)p(ā)p(β̄) : φβ [d�φ[uβ ,a]] : . (4.4)
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Since the coefficients of� j0χ in [φ[uβ ,a] � : φγ φ[uγ ,uβ ] :] are all zero, the coefficients
of � j0χ in

[: φγ φ[uγ ,uβ ] : �φ[uβ ,a]] = (−1)p(β)p(ā)[φ[uβ ,a] −�−∇ : φγ φ[uγ ,uβ ] :]

are also 0 so that the expression in (4.4) vanishes. The second term in (4.3) equals

∑

β,γ∈I+

1

2
(−1)p(β̄)(p(γ )+p(a)+1) : : φγ φ[uγ ,uβ ] : φ[uβ ,a] : .

By the quasi-associativity in (2.2) and the fact that φn̄
( j |1)φm = 0 for any n ∈ n and

m ∈ n− with j ≥ 0, we have

: : φγ φ[uγ ,uβ ] : φ[uβ ,a] : = : φγ : φ[uγ ,uβ ]φ[uβ ,a] : : .

The remaining computations are straightforward, and they are analogous to the clas-
sical case in [25]. ��
Proposition 4.7 If a, b ∈ ⊕

i≤0 g(i) or a, b ∈ ⊕
i>0 g, then

[Jā � Jb̄] = (−1)p(a)p(b̄) J[a,b] + k (S + χ)(a|b).

Proof This is verified by a direct computation. ��
Introduce the vector superspaces

r+ = φn ⊕ Jn̄ and r− = Jḡ≤0 ⊕ φn̄− ,

where

Jn̄ = span {Jb | b ∈ n̄} and Jḡ≤0 = span {Jā | a ∈
⊕

i∈Z≤0

g(i)}.

It is not difficult to see that both R+ = K ⊗ r+ and R− = K ⊗ r− are supersym-
metric nonlinear LCAs and that C(ḡ, fodd, k) decomposes into the tensor product of
supersymmetric vertex subalgebras:

C(ḡ, fodd, k) = V (R+) ⊗ V (R−).

Lemma 4.8 (Künneth lemma) Let V1 and V2 be vector superspaces and di : Vi → Vi ,
i = 1, 2, be differentials. If d : V1 ⊗ V2 → V1 ⊗ V2 is defined by

d(a ⊗ b) = d1(a) ⊗ b + (−1)p(a)a ⊗ d2(b),
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then

H(V , d) � H(V1, d1) ⊗ H(V2, d2).

Proposition 4.9 The differential Q has the properties

Q(V (R+)) ⊂ V (R+) and Q(V (R−)) ⊂ V (R−), (4.5)

so that
W (ḡ, fodd, k) = H(V (R+), Q) ⊗ H(V (R−), Q). (4.6)

Proof The inclusions (4.5) follow from Propositions 4.1 and 4.6. The decomposition
(4.6) is then implied by the Künneth lemma. ��

4.3 Generators of supersymmetricW-algebras

We now aim to describe the cohomologies H(V (R+), Q) and H(V (R−), Q).

Proposition 4.10 We have H(V (R+), Q) = C so that W (ḡ, fodd, k) =
H(V (R−), Q).

Proof Set Kn̄ = (−1)p(n̄) Jn̄ − ( fodd|n) for n ∈ n and introduce the superspace

r ′+ = φn ⊕ Kn̄, Kn̄ = span {Kn̄ | n̄ ∈ n̄}.

Then, R+ = K ⊗ r ′+. Define the conformal weight 
 and the bigrading on r ′+ by


(φn) = 
(Kn̄) = jn, gr(φn) = ( jn − 1,− jn), gr(Kn̄) = ( jn − 1,− jn + 1),

assuming that n ∈ g( jn). The graded differential Q gr associatedwith Q is good almost
linear (see Sect. 3) and

H(r ′+, Q gr) = 0.

By Theorem 3.3, we have H(V (R+), Q) = C. ��
To describe H(V (R−), Q), recall that

Q(Jā) =
∑

β∈I+
(−1)p(ā)p(β) : φβ(Jπ≤0[uβ ,a] + ( fodd|[uβ, a])) :

+
∑

β∈I+
(−1)p(β̄)kSφβ(uβ |a) (4.7)

and

Q(φm̄) = 1

2

∑

β∈I+
(−1)p(m̄)p(β) : φβφ[uβ ,m] : . (4.8)
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Consider the conformal weight 
 and the bigrading on r− satisfying


(Jā) = 1

2
− ja, 
(φm̄) = − jm,

gr(Jā) = ( ja,− ja), gr(φm̄) = (
jm + 1

2
,− jm + 1

2

)
,

where a ∈ g( ja) and m ∈ g( jm) for ja ≤ 0 and jm < 0. Note that


(φβ) = jβ, gr(φβ) = ( − jβ + 1

2
, jβ + 1

2

)
,

where uβ ∈ g(− jβ). Since 
(S) = 1
2 and gr(S) = (0, 0), every term in (4.7) has

conformal weight 1
2 − ja and every term in (4.8) has conformal weight − jm . The

bigradings of terms in (4.7) are given by

gr(: φβ Jπ≤0[uβ ,a] :) = (
ja + 1

2
,− ja + 1

2

)
,

gr(φβ( fodd|[uβ, a])) = ( ja,− ja + 1),

gr(Sφβ(uβ |a)) = (
ja + 1

2
,− ja + 1

2

)
. (4.9)

The bigradings of terms in (4.8) are

gr(φm̄) = (
jm + 1

2
,− jm + 1

2

)
, gr(: φβφ[uβ ,m] :) = ( jm + 1,− jm + 1). (4.10)

Theorem 4.11 Let Ker (ad fodd) = { uα | α ∈ J } with an index set J . Then,

(1) W (ḡ, fodd, k) is freely generated by |J | elements as a differential algebra,
(2) there exists a free generating set of the form

{ uα + Aα | α ∈ J },

where Aα ∈ F jα+ 1
2 V (R−)0[ 12 − jα] for uα ∈ g( jα).

Proof Since we know that W (g, fodd, k) = H(V (R−), Q), it is enough to show (1)
and (2) for H(V (R−), Q). The conformal weight and bigrading on r− induce those
on V (R−). With respect to the conformal weight and bigrading, Q induces the graded
differential Q gr. The bigradings listed in (4.9) and (4.10) show that

Q gr(Jā) =
∑

β∈I+
(−1)p(ā)p(β)φβ( fodd|[uβ, a]), Qgr(φm̄) = 0.

Note that V (R−)0 ∩ r− = Jg≤0 and V (R−)1 ∩ r− = φn̄− . Since Q gr(r−) = φn̄− , we
have H p,q(r−, Q gr) = 0 when p+q �= 0 and so Q is a good almost linear differential
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map. Furthermore, Ker(Q gr|r−) = {Ja |a ∈ Ker(ad fodd)} ⊕ φn̄− ; hence,

H(r−, Q gr) = {Ja | a ∈ Ker(ad fodd)}.

Thus, using Theorem 3.3, we arrive at (1) and (2). ��

5 Generators ofW(g, fprin, k) for g = gl(n+ 1|n)
Consider the Lie superalgebra g = gl(n+1|n)with the basis {Ei, j |i, j = 1, . . . , 2n+
1} and the Z/2Z-grading defined by p(Ei, j ) = i + j mod 2 with the commutation
relations

[Ei, j , Ei ′, j ′ ] = δ j,i ′Ei, j ′ − (−1)(i+ j)(i ′+ j ′) δi, j ′ Ei ′, j .

Take the odd principal nilpotent element in the form

fprin =
2n∑

p=1

Ep+1,p.

By Proposition 4.6, for C(ḡ, fprin, k) and any m ≥ l, we have

Q(Jm,l) = (−1)mk Sφl,m +
m∑

j=l+1

(−1)l+ j+1 : φl, j Jm, j :

+
m−1∑

i=l

(−1)(i+m)(m+l+1) : φi,m Ji,l : +(−1)lφl,m+1 + (−1)mφl−1,m,

where we set φ j,i = (−1)i+1φEi j for i > j and Ji, j = JEi, j
for i ≥ j .

We will be working with operators on C(ḡ, fprin, k) of the form
∑N

t=0 At St with
At ∈ C(ḡ, fprin, k), which act on an arbitrary element X ∈ C(ḡ, fprin, k) by the rule

N∑

t=0

At S
t (X) =

N∑

t=0

: At (S
t (X)) : .

In particular, for the operator Ai, j = δi j k S + (−1)i+1 Ji, j on C(ḡ, fprin, k) we have

Ai, j (X) = δi j k S(X) + (−1)i+1 : Ji, j X : .
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Consider the (2n + 1) × (2n + 1) matrix

A :=

⎡

⎢⎢⎢
⎢⎢
⎣

A1,1 −1 0 · · · · · · 0
A2,1 A2,2 −1 · · · · · · 0
...

...
...

...
...

...

A2n,1 A2n,2 A2n,3 · · · A2n,2n −1
A2n+1,1 A2n+1,2 A2n+1,3 · · · A2n+1,2n A2n+1,2n+1

⎤

⎥⎥⎥
⎥⎥
⎦

whose entries are operators on C(ḡ, fprin, k). Then, the column (or row) determinant
of A is given by the formula

cdetA =
2n∑

N=0

∑

0=i0<i1<···<iN+1=2n+1

Ai1,i0+1Ai2,i1+1 . . . AiN+1,iN+1. (5.1)

Write

cdetA = W0 + W1S + · · · + W2n+1S
2n+1

for certain elements Wp ∈ C(ḡ, fprin, k). Clearly, W2n+1 = k2n+1.

Theorem 5.1 All elements W1, . . . ,W2n belong to the W-algebra W (ḡ, fprin, k).

Proof One readily verifies that

Q
2n+1∑

p=0

WpS
p =

2n+1∑

p=0

Q(Wp)S
p − WpS

pQ

so that QAm,l = (−1)m+l+1Am,l Q + (−1)m+1Q(Jm,l). Therefore,

Q Ai1,i0+1 . . . Aip+1,i p+1 . . . AiN+1,iN+1

=
N∑

p=0

(−1)i p
(
Ai1,i0+1 . . .

(
(−1)i p+1+1Q(Ji p+1,i p+1)

)
. . . AiN+1,iN+1

)

−Ai1,i0+1 . . . Aip+1,i p+1 . . . AiN+1,iN+1Q.

Hence, the property Wp ∈ W (g, fprin, k) will follow if we show that
∑2n

N=0 BN = 0,
where we set

BN =
N∑

p=0

(−1)i p
(
Ai1,i0+1 . . .

(
(−1)i p+1+1Q(Ji p+1,i p+1)

)
. . . AiN+1iN+1

)
.

Using the relations

Ji, j = (−1)i+1(Ai, j − δi, j kS) and : φ j,i Ji ′, j ′ := (−1)(i+ j+1)(i ′+ j ′+1) : Ji ′, j ′φ j,i :

123



6 Page 22 of 25 A. Molev et al.

we find that

(−1)i p+1+1Q(Ji p+1,i p+1)

= −kS(φi p+1,i p+1 ) +
i p+1∑

j=i p+2

(−1)i p+ jφi p+1, j (Aip+1, j − δi p+1, j kS
)

+
i p+1−1∑

i=i p+1

(−1)i p+i (Ai,i p+1 − δi,i p+1kS
)
φi,i p+1 + (−1)i p+i p+1φi p+1,i p+1+1 − φi p,i p+1

and
−kS(φi p+1,i p+1) + (−1)i p+i p+1+1φi p+1,i p+1 S + Sφi p+1,i p+1 = 0.

Therefore,

(−1)i p+1+1Q(Ji p+1,i p+1) =
i p+1∑

j=i p+2

(−1)i p+ jφi p+1, j Ai p+1, j

+
i p+1−1∑

i=i p+1

(−1)i p+i Ai,i p+1φ
i,i p+1 + (−1)i p+i p+1φi p+1,i p+1+1 − φi p ,i p+1

so that BN can be expressed as

N∑

p=0

Ai1,i0+1 . . . Aip,i p−1+1

[( i p+1∑

j=i p+2

(−1) jφi p+1, j Ai p+1, j + (−1)i p+1φi p+1,i p+1+1
)

+
( i p+1−1∑

i=i p+1

(−1)i Ai,i p+1φ
i,i p+1 − (−1)i pφi p,i p+1

)]
Aip+2,i p+1+1 . . . AiN+1,iN+1.

By the quasi-associativity property, we have

(φi p+1, j Ai p+1, j )(Aip+2,i p+1+1 . . . AiN+1,iN+1) = φi p+1, j (Aip+1, j (Aip+2,i p+1+1 . . . AiN+1,iN+1)),

(Ai,i p+1φ
i,i p+1 )(Aip+2,i p+1+1 . . . AiN+1,iN+1) = Ai,i p+1(φ

i,i p+1 (Aip+2,i p+1+1 . . . AiN+1,iN+1))

for j = i p+2, . . . , i p+1 and i = i p+1, . . . , i p+1, so that vanishing of the telescoping
sum implies that

∑2n
N=0 BN = 0. ��

Lemma 5.2 Suppose that {vp | p = 0, . . . , 2n} is a basis of Ker (ad fodd) such that

Jv̄p = 1

2 (2n + 1 − p). Take Vp ∈ W (g, fprin, k) of the form Vp = Jv̄p + wp

satisfying the conditions

(i) Vp and wp have the conformal weight
1
2 (2n + 1 − p),

(ii) wp lies in the differential algebra generated by Jā for 
Jā < 
Vp .
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Then, the set {Vp | p = 0, . . . , 2n} freely generates the W-algebra W (g, fprin, k).

Proof A generating set of the form {V ′
p = Jv̄p + w′

p | p = 0, . . . , 2n} satisfying the
required conditions (i) and (ii) exists by Theorem 4.11. Set

Wm := subalgebra freely generated by {Vm, Vm+1, . . . , V2n},
W ′

m := subalgebra freely generated by{V ′
m, V ′

m+1, . . . , V
′
2n}.

We will show by a (reverse) induction that Wm = W ′
m for all m = 0, . . . , 2n. Note

that W2n = W ′
2n , since w2n and w′

2n are constants. Now suppose that Wp = W ′
p for

some p ≤ 2n. Then, Vp−1 − V ′
p−1 ∈ Wp = W ′

p by condition (ii). Hence, we can
conclude that V ′

p−1 = Vp−1 + (w′
p − wp) ∈ Wp−1 and, similarly, Vp−1 ∈ W ′

p−1.
This shows that Wp−1 = W ′

p−1. Thus, W ′
0 = W0 and since W (g, fprin, k) = W ′

0,
the lemma follows. ��
Theorem 5.3 The set of coefficients {Wp | p = 0, . . . , 2n} of cdetA freely generates
W (g, fprin, k) as a differential algebra.

Proof Note that for i ≥ j we have


Ai, j (X) = 1

2
(i − j + 1) + 
X ,

and each term in (5.1) satisfies


Ai1,i0+1Ai2,i1+1...AiN+1,iN+1(X) = 2n + 1

2
+ 
X .

A direct calculation gives

W2n−k =
2n+1−k∑

l=1

(−1)kl Jk+l,l + w2n−k for k = 0, 1, . . . , 2n,

where 
2n−k = 2n+1
2 − 2n−k

2 and w2n−k can be expressed as a normally ordered
product of the elements Ji, j with 0 ≤ i − j ≤ k and their derivatives. It remains to
apply Lemma 5.2. ��
Example 5.4 Let g = gl(2|1). Then, fprin = E21 + E32 and

A =
⎡

⎣
A1,1 −1 0
A2,1 A2,2 −1
A3,1 A3,2 A3,3

⎤

⎦ .

The column determinant of A is

cdetA = A1,1A2,2A3,3 + A3,1 + A2,1A3,3 + A1,1A3,2

= (kS)3 + W2S
2 + W1S + W0.
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where

W2 = k2(J1,1 + J2,2 + J3,3),

W1 = k(−J1,1 J2,2 − J1,1 J3,3 − J2,2 J3,3 − J2,1 + J3,2 − k J ′
2,2),

W0 = −J1,1 J2,2 J3,3 − J2,1 J3,3 + J1,1 J3,2 + J3,1
+k J ′

3,2 + k J1,1 J
′
3,3 − k J ′

2,2 J3,3 + k J2,2 J
′
3,3 + k2 J ′′

3,3,

and X ′ := [S, X ]. Hence, W (g, fprin, k) is freely generated by W0,W1 and W2. ��
As in [3], by taking the quotient of the W -algebra W (g, fprin, k) over the super-

symmetric vertex algebra ideal generated by the elements Ji, j with i > j we recover
the presentation of the W -algebra via the Miura transformation; cf. [10,17,18]:

cdetA �→ (
kS + J1,1

)(
kS − J2,2

)(
kS + J3,3

)
. . .

(
kS − J2n,2n

)(
kS + J2n+1,2n+1

)
.
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