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Abstract: We propose a-difference version of the Drinfeld-Sokolov reduction scheme,
which gives us;-deformations of the classic#l-algebras by reduction from Poisson-

Lie loop groups. We consider in detail the caseSdf,. The nontrivial consistency
conditions fix the choice of the classieamatrix defining the Poisson-Lie structure on

the loop groupl.SL,, and this leads to a new elliptic classieamatrix. The reduced
Poisson algebra coincides with the deformation of the classical Virasoro algebra previ-
ously defined in [19]. We also consider a discrete analogue of this Poisson algebra. In the
second part [31] the construction is generalized to the case of an arbitrary semisimple
Lie algebra.

1. Introduction

Itis well-known that the space of ordinary differential operators of the fjtau; 0™ 2+
...+u,_1 has aremarkable Poisson structure, often called the (second) Adler-Gelfand-
Dickey bracket [1, 12]. Drinfeld—Sokolov reduction [11] gives a natural realization of
this Poisson structure via the hamiltonian reduction of the dual space to the affine Kac-
Moody aIgebragA[n. Drinfeld and Sokolov [11] have applied an analogous reduction
procedure to the dual space of the affinizafjosf an arbitrary semisimple Lie algebra
g. The Poisson algebid&/(g) of functionals on the corresponding reduced space is called
the classical-algebra. Thus, one can associate a clas$i¢allgebra to an arbitrary
semisimple Lie algebrg. In particular, the classicalV-algebra associated td; is
nothing but the classical Virasoro algebra, i.e., the Poisson algebra of functionals on the
dual space to the Virasoro algebra (see, e.g., [19]).

It is interesting thatV(g) admits another description as the center of the universal
enveloping algebra of an affine algebra. More preciselyZ(@)_- be the center of a
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completion of the universal enveloping algelbfég) ;v at the critical levelk = —hY

(minus the dual Coxeter number). This center has a canonical Poisson structure. It was
conjectured by V. Drinfeld and proved by B. Feigin and E. Frenkel [14, 18] that as the
Poisson algebra (g)_,,v is isomorphic to the classica-algebra)V(“g) associated

with the Langlands dual Lie algebfg of g.

In [19] two of the authors used this second realization/¥falgebras to obtain
their g-deformations. For instance, tigedeformationWV,(sl,,) of W(sl,,) was defined
as the centetZ,(sl,,) of a completion of the quantized universal enveloping algebra
Uyq(sly)—nv. The Poisson structure afi,(sl,,) was explicitly described in [19] using
results of [26]. It was shown that the underlying Poisson manifold,@1,,) = W,(sl,,)
is the space of-difference operators of the forb; + tle;—l +...+t,_1Dg + 1.
Furthermore, in [19] a-deformation of the Miura transformation, i.e., a homomorphism
from W, (sl,,) to a Heisenberg-Poisson algebra, was defined. The construction [19] of
W(sl,) was followed by further developments: it was quantized [32, 15, 4] and the
guantum algebra was used in the study of lattice models [25, 3]; the Yangian analogue
of W,(sl,) was considered in [8)-deformations of the generalized KdV hierarchies
were introduced [17].

In this paper we first formulate the results of [19] in terms of first orddifference
operators ang-gauge action. This naturally leads us to a generalization of the Drinfeld-
Sokolov scheme to the settinggfifference operators. The initial Poisson manifold is
the loop groupl.SL,, of SL,, or more generally, the loop group of a simply-connected
simple Lie groups. Much of the needed Poisson formalism has already been developed
by one of the authors in [29, 30]. Results of these works allow us to define a Poisson
structure on the loop group, with respect to which ¢hgauge action is Poisson. We
then have to perform a reduction of this Poisson manifold with respect t¢-¢lagige
action of the loop grou@.V of the unipotent subgroufy of G.

At this point we encounter a new kind of anomaly in the Poisson bracket relations,
unfamiliar from the linear, (i.e., undeformed), situation. To describe it in physical terms,
recall that the reduction procedure consists of two steps: (1) imposing the constraints
and (2) passing to the quotient by the gauge group. An important point in the ordinary
Drinfeld—Sokolov reduction is that these constraints are of first class, according to Dirac,
i.e., their Poisson bracket vanishes on the constraint surface. rdifference case we
have to choose carefully the classicaiatrix defining the initial Poisson structure on
the loop group so as to make all constraints first class. If we use the standettix,
some of the constraints are of second class, and so we have to modifyriaix.

In this paper we do that in the case%i,. We show that there is essentially a unique
classical-matrix compatible with the-difference Drinfeld—Sokolov scheme. To the
best of our knowledge, this classigaimatrix is new; it yields an elliptic deformation of
the Lie bialgebra structure on the loop algebralpfissociated with the Drinfeld “new”
realization of quantized affine algebras [10, 22]. The result of the correspindingDrinfeld—
Sokolov reduction is the-deformation of the classical Virasoro algebra defined in [19].

We also construct a finite difference version of the Drinfeld—Sokolov reduction in
the case o6 L,. This construction gives us a discrete version of the (classical) Virasoro
algebra. We explain in detail the connection between our discrete Virasoro algebra and
the lattice Virasoro algebra of Faddeev—Takhtajan—\Volkov [34-36, 13]. We hope that
our results will help to clarify further the meaning of the discrete Virasoro algebra and
its relation to various integrable models.
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The construction presented here can be generalized to the case of an arbitrary simply-
connected simple Lie group. This is done in the second part of the paper [31] written by
A. Sevostyanov and one of us.

The paper is arranged as follows. In Sect. 2 we recall the relevant facts of [11]
and [19]. In Sect. 3 we interpret the results of [19] from the point of view-ghuge
transformations. Section 4 reviews some background material on Poisson structures
on Lie groups following [29, 30]. In Sect. 5 we apply the results of Sect. 4 to the
g-deformation of the Drinfeld—Sokolov reduction in the caseSdf,. In Sect. 6 we
discuss the finite difference analogue of this reduction and compare its results with the
Faddeev-Takhtajan—Volkov algebra.

2. Preliminaries

2.1. The differential Drinfeld—Sokolov reduction in the caselgf Let M,, be the
manifold of differential operators of the form

L=0" +uy(s)0" 2+ ...+ up_2(s)0 + upn_1(s), (2.2)

whereu;(s) € C((s)).

Adler [1] and Gelfand-Dickey [12] have defined a remarkable two-parameter family
of Poisson structures afv,,, with respect to which the corresponding KdV hierarchy
is hamiltonian. In this paper we will only consider one of them, the so-called second
bracket. There is a simple realization of this structure in terms of the Drinfeld—Sokolov
reduction [11], Sect. 6.5. Let us briefly recall this realization.

Consider the affine Kac-Moody aIgebféﬂ associated tal,; this is the central
extension R

0— CK — sl, — Lsl, — 0,

see [20]. LetM,, be the hyperplane in the dual spacesAl:g), which consists of linear
functionals taking value 1 oK. Using the differentialit and the bilinear form tA B
onsl,, we identify M,, with the manifold of first order differential operators

9, + A(s),  A(s) € Lsl,,.

The coadjoint action of the Lie grOLé)\Ln onsA[Z factors through the loop groupSL,,
and preserves the hyperplahg,. The corresponding action gfs) € LSL,, on M, is
given by

9(5) - (@5 + A()) = g(s)(Ds + A(s))g(s) ™, (2.2)
or
A(s) = g()A(8)9(s) " — Dsg(s) - g(s) ™

Consider now the submanifolt;” of M,, which consists of operatofg + A(s),
whereA(s) is a traceless matrix of the form

(2.3)
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To each element of M,/ one can naturally attach aif" order scalar differential
operator as follows. Consider the equatibn¥ = 0, where

LIJH
lIlnfl

Wy
Due to the special form (2.3) df, this equation is equivalent to af' order differential
equationZ - ¥; = 0, whereL is of the form (2.1). Thus, we obtainamap M) — M,,
sendingl to L.

Let V be the subgroup of L,, consisting of the upper triangular matrices, dn§l

be its loop group. Iy € LN andW is a solution ofZ - ¥ = 0, thend’ = gW is a solution
of £/ - ¥ =0, whereL’ = gLg~1. But ¥; does not change under the action/a¥.

Thereforer (L) = 7(L£), and we see that factors through the quotient df// by the
action of LN. The following proposition describes this quotient.

Proposition 1 ([11], Proposition 3.1).The action oL N on M,/ is free, and each orbit
contains a unique operator of the form

0 wi up ... Up_2Up_1
-100... 0 0

o, + 0-10... 0 0 . (2.4)

But for £ of the form (2.4),r(£) is equal to the operatdr given by formula (2.1).
Thus, we have identified the mapwith the quotient of\/,” by LN and identifiedM,,
with M /LN.

The quotientd,” /LN can actually be interpreted as the result of hamiltonian re-
duction. Denote by, (resp.,n_) the upper (resp., lower) nilpotent subalgebragf
thus,n. is the Lie algebra ofV.

The manifoldM,, has a canonical Poisson structure, which is the restriction of the
Lie-Poisson structure oa‘i (such a structure exists on the dual space to any Lie algebra).
The coadjoint action oLN on M, is hamiltonian with respect to this structure. The
corresponding moment map : M,, — In_ ~ Ln} sendsd, + A(s) to the lower-
triangular part ofA(s). Consider the one-point orbit dfV,

0 00...00
~100...00
;-] 0-10...00
0 00...00
0 00...-10

Then M, = u=1(J). HenceM,, is the result of hamiltonian reduction éf,, by LN
with respect to the one-point orhit
The Lie-Poisson structure avl,, gives rise to a canonical Poisson structure\dn,
which coincides with the second Adler-Gelfand-Dickey bracket, see [11], Sect. 6.5. The
Poisson algebra of local functionals #,, is called the classicalV-algebra associated
to sl,,, and is denoted byV(sl,,).
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Remark 1.For o € C, let M, ,, be the hyperplane in the dual spacegtp, which

consists of linear functionals ait,, taking the valuex on K. In the same way as above
(for o = 1) we identify M,, ,, with the space of first order differential operators

ads + A(s), A(s) € Lsl,.
The coadjoint action is given by the formula
A(s) = g(s)A(s)g(s) ™t — adsg(s) - g(s)

The straightforward generalization of Proposition 1 is true foramy C. In particular,
for = 0 we obtain a description of the orbits M’ under the adjoint action af N.
This result is due to B. Kostant [23].

Drinfeld and Sokolov [11] gave a generalization of Proposition 1 vefieis replaced
by an arbitrary semisimple Lie algebgaThe special case of their result, corresponding
toa =0, is also due to Kostant [23]. O

The Drinfeld—Sokolov reduction can be summarized by the following diagram:

J
M)« M,

Y Y

M, =M//LN ¢ ~ M,/LN

There are three essential properties of the Lie-Poisson structuté,ahat make
the reduction work:

(i) The coadjoint action of.SL,, on M,, is hamiltonian with respect to this structure.

(i) The subgroupLN of LSL, is admissible in the sense that the sp&cef LN-
invariant functionals o/, is a Poisson subalgebra of the space of all functionals
onM,,.

(i) Denote by ,; the function onlM,,, whose value ad + A € M,, equals thei ;)
entry of A. The ideal inS generated by;; +d;_1;,¢ > j, is a Poisson ideal.

We will generalize this picture to thgdifference case.

2.2. The Miura transformationLet F,, be the manifold of differential operators of the
form

o, + 7 (2.5)
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where}""; v; = 0.

We have a mapn : F, — M,, which is the composition of the embedding
F. — M, and the projection : M) — M,,.

Using the definition ofr above m can be described explicitly as follows: the image
of the operator (2.5) unden is then™ order differential operator

O +us( )24+ t1(s) = (@ va(s)) - (D + 0a(s).

The mapm is called the Miura transformation.

We want to describe the Poisson structurefonwith respect to which the Miura
transformation is Poisson. To this end, let us consider the restriction of the gauge action
(2.2) to the opposite triangular subgrod@V_; letz : M,, — Ln, ~ Ln* be the
corresponding moment map. The manifdld is the intersection of two level surfaces,
Fn = p~YJ) N X0). It is easy to see that it gives a local cross-section for both
actions (in other words, the orbits &fV and LN_ are transversal t&,,). HenceF,,
simultaneously provides a local model for the reduced spadgs= ;~1(J)/LN and
7i-1(0)/LN_. The Poisson bracket @A, that we need to define is the so-called Dirac
bracket (see, e.g., [16]), where we may regard the matrix coefficieptastubsidiary
conditions, which fix the local gauge. The computation of the Dirac bracket for the
diagonal matrix coefficients; is very simple, since their Poisson brackets with the
matrix coefficients ofz all vanish onF,,. The only correction arises due to the constraint
ZZL: v; = 0.

[1)enote byv; .., the linear functional otF,,, whose value on the operator (2.5) is the
m!" Fourier coefficient of;(s). We obtain the following formula for the Dirac bracket
onF,:

n—
{Vim,vik} = MO, —k,

1 .
{Vim, vk} = —Em5m7,k, 1< 7.

Since F,, and M,, both are models of the same reduced space, we immediately
obtain:

Proposition 2 ([11], Proposition 3.26).With respect to this Poisson structure the map
m : F, — M,, is Poisson.

2.3. Theg-deformations o#V(sl,,) and Miura transformation.In this section we sum-
matrize relevant results of [19].

Let ¢ be a non-zero complex number, such tlagt< 1. Consider the spac#1,, ,
of ¢-difference operators of the form

L=D"+t(s)D" 1 +... +t,_1(s)D +1, (2.6)

wheret;(s) € C((s)) foreachi =1,... ,n,and [D - f](s) = f(sq).

Denote by; ,,, the functional oo\, ,, whose value at is them!™ Fourier coefficient
of t;(s). LetR, 4 be the completion of the ring of polynomialsdy,,,, ¢ =1,... ,N —
1;m € Z, which consists of finite linear combinations of expressions of the form

Z c(ma, ... ,mg) tiymy - Lipmps (2.7)

ma+...+m=M
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wherec(my, ... ,my) € C. Given an operator of the form (2.6), we can substitute the
coefficientst; ,,, into an expression like (2.7) and get a number. Therefore elements of
R, define functionals on the spade,, ,.

In order to define the Poisson structurebfy, 4, it suffices to specify the Poisson
brackets between the generatqrs . LetT;(z) be the generating series of the functionals
ti,m:

E(z) = Z ti,rnzim~
meZ
We define the Poisson brackets betwegn's by the formulas [19]

m _am _ ,m(N—j)
menw =Y (1) 2 Anenw

meEZ

min(i, N —7j) wa"
(M) T T 28)

r=1

min(i, N —j5) w

- ¥ 5(%1]‘*) Ty (2)Tjar(w), i < 3.

r=1
In these formulag(x) =, ., ™, and we use the convention thg(z) = 1.
Remark 2.Note the difference betweef(s) andT;(z). The former is a Laurent power
series, whose coefficients aneimbers The latter is a power series infinite in both
directions, whose coefficients dumctionalson M,, ,. Thus,T;(z) is just the generating
function for the functionals; ,,,. We use these generating functions merely to simplify

our formulas for the Poisson brackets (so that we do not have to write a Poisson bracket
between each individual paly,,, andt; ).

Remark 3.The parametey in formula (2.8) corresponds to2 in the notation of [19].
O

Now consider the spacg, , of n-tuples ofg-difference operators
(D + A1(8),- .., D+ A (9)). (2.9)

Denote by); ,,, the functional onM,, ,, whose value is thex" Fourier coefficient of
Ai(s). We will denote byA;(z) the generating series of the functionals,,:

Al(z) = Z )\i,7nzim~
mEZ
We define a Poisson structure &1 , by the formulas [19]:

{Ai(2), Ai(w)} = (%)m 1—¢™(1— qm(N—l))Ai(Z)Ai(w)’

meZ 1- qu (210)

woN—1 m _.om)2
el ) (1-qg )A,;(Z)Aj(w), i< j

z 1—gmN

== X

met (2.11)

Now we define they-deformation of the Miura transformation as the nrap :
Fn,q — My q, Which sends the-tuple (2.9) to
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L=(D+M\(s)(D +Xalsq7Y)... (D +An(sg7 ™), (2.12)
i.e.
ti(s)= D A Aiplsg Y Agi(sg ™), (2.13)
J1<...<Ji

Proposition 3 ([19]). The mapm, is Poisson.

2.4. g-deformation of the Virasoro algebraHere we specialize the formulas of the
previous subsection to the casesof (we will omit the index 1 in these formulas). We
have the following Poisson bracket @itfz):

(TG:), T} =Y (%)m ]i:;]::T(z)T(w) +6 (%) ) C"q) . (2.14)
meZL

The ¢-deformed Miura transformation reads:
A(z) — T(2) = A(2) + A(zq) L. (2.15)

The Poisson bracket afu(z):

{A(2), A(w)} = Z (%)m 1- q:: A(2)A(w). (2.16)

meZ 1+(]

3. Connection with g-Gauge Transformations

In this section we present the results of [19] in the formg-difference Drinfeld—Sokolov
reduction.

3.1. Presentation via first orderdifference operatorsBy analogy with the differential
case, it is natural to consider the manifdld, , of first order difference operators
D + A(s), whereA(s) is an element of the loop groupS'L,, of SL,,. The groupLSL,,
acts on this manifold by thg¢-gauge transformations

9(s) - (D + A(s)) = g(sg)(D + A(s))g(s) ™, 3.1

i.e.g(s) - A(s) = g(sq)A(s)g(s) .

Now we consider the submanifoM;{ C M, 4 which consists of operatorS +
A(s), where A(s) is of the form (2.3). It is preserved under thegjauge action of the
groupLN.

In the same way as in the differential case, we define ama‘er{’q — Mg
which sends each eIementM;L{q to ann'™ orderg-difference operatof. of the form
(2.6). Itis clear that the may, factors through the quotient df[qu by LN. Now we
state thej-difference analogue of Proposition 1.
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Lemma 1. The action oL N on M,‘L{q is free and each orbit contains a unique operator
of the form

t1 to tz...th—1 1
-100... 00
0 0

p+| 0 10 . (3.2)
0 00... 0O
0 00...-10
Proof. The proof is an exercise in elementary matrix algebrad-erl, ... , n, denote
by My, the subset of matrices frorMiq satisfying the property that all entries in
their rowsi = a + 1,... ,n are zero except for the,¢ — 1) entry that is equal to

—1. We will prove that givemA(s) € Mg, o > 1, there existg(s) € LN, such that

9(sq)A(s)g(s)~* € Mg, . Since the condition is vacuous far=n, i.e. M . = M,/ ,
this will imply that eachL. N-orbit in M;{.q contains an element of the form (3.2).

To prove the statement for a given we will recursively eliminate all entries of
the ol row of A(s) (except the ¢, o — 1) entry), from right to left using elementary
unipotent matrices. Denote l&y; ;(x) the upper unipotent matrix whose only non-zero
entry above the diagonal is thé {) entry equal tac. At the first step, we eliminate
the (, n) entry A, ,, of A(s) by applying thez-gauge transformation (3.1) wig{(s) =
Eo—1.n(—Aq.n(s))- Then we obtain a new matrik’(s), which still belongs taV/;y
but whose §, n) entry is equal to 0. Next, we apply thegauge transformation by
Eo—1n-1(—A4. ,_1(s)) to eliminate thed, n — 1) entry of A’(s), etc. It is clear that at
each step we do not spoil the entries that have already been set to 0. The product of the
elementary unipotent matrices constructed at each step gives us an gjéshenf. N
with the desired property thg{sq) A(s)g(s) ™ € M;j,gl.

To complete the proof, it suffices to remark that{s) andA’(s) are of the form (3.2),
andg(sq)A(s)g(s)~* = A'(s) for someg(s) € LN, thenA(s) = A’(s) andg(s) = 1.
O

For L ofthe form (2.4)77,(£) equals the operatdrgiven by formula (2.6). Thus, we
have identified the map, with the quotient of\/,] , by LN andM,, , with M/, /LN.

Remark 4.Inthe same way as above we can prove the following more general statement.
Let R be a ring with an automorphism It rives rise to an automorphism 6fL,, (R)
denoted by the same character. DefMg{n as the set of elements 6fL,,(R) of the

form (2.3). Let the groupV(R) act onM/, (R) by the formulag - A = (7 - g)Ag™™.

Then this action ofV(R) is free, and the quotient is isomorphic to the 4t , (R) of
elements of5L,,(R) of the form (3.2) (i.e. each orbit contains a unique element of the
form (3.2)). Note that the proof is not sensible to whetherId or not.

Whenr = Id, this result is well-known. It gives the classical normal form of a linear
operator. Moreover, in that case R. Steinberg has proved that the sutyse{K) of
SL,(K), whereK is an algebraically closed field, is a cross-section of the collection of
regular conjugacy classes$ti.,, (K) [33], Theorem 1.4. Steinberg defined an analogous
cross-section for any simply-connected semisimple algebraic group [33]. His results can
be viewed as group analogues of Kostant's results on semisimple Lie algebras [23] (cf.
Remark 1). Steinberg’s cross-section is used in the definition of the discrete Drinfeld—
Sokolov reduction in the general semisimple case (see {31]).

1 We are indebted to B. Kostant for drawing our attention to [33]
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3.2. Deformed Miura transformation viggauge action.Let us attach to each element
of F, 4 theg-difference operator

Ai(s) 0 ... 0 0
—1 Xo(sqg7Y) ... 0 0
A=D+ | o , (3.3)
0 0 ... _1(sg7™? 0
0 0o ... -1 An(sq™™h)

where[ /-, Ai(sq~ 1) = 1.

Letm, : F, 4 — My, be the composition of the embedditfg , — M,/ and
T M, — M /LN ~ M, ,. Using the definition ofr, above, one easily finds
that for A given by (3.3)m,(A) is the operator (3.2), whettg(s) is given by formula
(2.13).

Therefore we obtain

Lemma 2. The mapm, coincides with thg-deformed Miura transformatiom,.

Remark 5.Let G be a simply-connected semisimple algebraic group @velret V;
be thei" fundamental representation 6f (in the caseG = SL,, V; = A‘C"), and
xi : G — Cbethe corresponding charactes(g) = Tr(g, V;). Defineamap : G — C”
by the formulap(g) = (x1(9), . - . , x»(g)). By constructionp is constant on conjugacy
classes. In the case = SL,, the mapp has a cross-section: C* — SL,(C):

The composition o p, restricted taV/;’ ; coincides with the map;. Moreover,m; can

n

be interpreted as the restriction o the subset of L,, consisting of matrices of the

form (3.3). Hencen, sends {4, ... , \,) to the elementary symmetric polynomials
t; = Z >‘j1)‘j2 . )‘jﬂ
J1<...<Js

which are the characters of the fundamental representatiosis of As we mentioned
above, Steinberg has defined an analogue of the cross-seétipan arbitrary simply-
connected semisimple algebraic group [33].

Formula (2.13) expressing(z) in terms of the\;(z)’s can be thought of as @&
deformation of the character formula of tifé fundamental representations $f.,,. It
is interesting that the same interpretation is also suggested by the definitioy(«f,)
as the center of a completion of the quantized universal enveloping algg@?tg),hv
[19]. Namely,t;(z) is then defined as thq-(deformed)Atrace of the so-callédoperator
acting onA’C" considered as a representation{sl,,), see [26, 19] (note also that
ti(2) is closely connected with a transfer-matrix of the corresponding integrable spin
model). O
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Thus, we have now representgd,, , as the quotient of the submanifoM;L{q of
the manifold),, 4 of first orderg-difference operators by the action of the graufy
(acting byg-gauge transformations). We have also interpreted;ttieformed Miura
transformation in these terms. In the next sections we discuss the Poisson structure on

M,, 4, Which gives rise to the Poisson structure/efy, , given by explicit formula (2.8).
4. Poisson Structures

4.1. Overviewln view of the previous section, the following diagram is theifference
analogue of the diagram presented at the end of Sect. 2.

M, € My, q = (LG, 1)

Y 4

Mpg=M] JLN ¢ -~ M,,/LN

As inthe differential case, in order to defing-deformation of the Drinfeld—Sokolov
reduction we need to find a Poisson structyffen 1, , and a Poisson-Lie structure
on LSL, satisfying the following properties:

(i) TheactionLSL, x M, , — M, 4 by g-gauge transformations is Poisson.

(i) The subgroupLN of LSL, is admissible in the sense that the algebSjaof
LN-invariant functionals on\/,, , is a Poisson subalgebra of the algebra of all
functionals onM,, 4.

(iii) Denote byu,; the function onM,, ,, whose value ab + A € M,, , equals thei ;)
entry of A. The ideal inS, generated by;; + d;—1 ;,% > j, is a Poisson ideal.

Geometrically, the last condition means tiett, , is a Poisson submanifold of the
quotientM,, ,/LN.

For the sake of completeness, we recall the notions mentioned abovi! beta
Poisson manifold, andl’ be a Lie group, which is itself a Poisson manifold. An action
of H on M is called Poisson it x M — M is a Poisson map (here we equipx M
with the product Poisson structure). In particular, if the multiplication Hap H — H
is Poisson, thei#{ is called a Poisson-Lie group.

Inthis section we describe the general formalism concerning problems (i)—(iii) above.
Then in the next section we specializefy , and give an explicit solution of these
problems.

4.2. Lie bialgebras.Let g be a Lie algebra. Recall [9] thatis called a Lie bialgebra, if
g* also has a Lie algebra structure, such that the dualimap— AZ2gis a one-cocycle.
We will considerfactorizableLie bialgebrasg, ) satisfying the following conditions:
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(1) There exists a linear map : g* — g, such that both, andr_ = —r} are Lie
algebra homomorphisms.
(2) The endomorphism= r, — r_ is g-equivariant and induces a linear isomorphism

g"— g

Instead of the linear operater € Hom(g*, g) one often considers the corresponding
elementr of g®2 (or a completion 0§®? if g is infinite-dimensional). The element
(or its image in the tensor square of a particular representatignietalled a classical
r-matrix. It satisfies the classical Yang-Baxter equation:

[r12,713] + [r12, 23] + [r13,723] = O. 4.1)

Interms orr, §(z) = [r,z],Vz € g (here p ® b, x] = [a,x] ® b+ a ® [b, 2]). The maps
r4 . g* — g are given by the formulas:.(y) = (y ® id)(r), 7—(y) = —(id @y)(r).
Property (2) above means that o(r), whereos(a ® b) = b ® a is a non-degenerate
g-invariant symmetric bilinear form og.
Setg. = Im(ry). Property (1) above implies thgt. C g is a Lie subalgebra. The
following statement is essentially contained in [5] (cf. also [28]).

Lemma 3. Let(g, g*) be a factorizable Lie bialgebra. Then

(1) The subspace; = r+(Kerr;)is a Lie ideal ing...

(2) The map : g+/n+ — g_/n_ which sends the residue classo{X), X € g*,
modulon. to that ofr_ (X)) modulon_ is awell-defined isomorphism of Lie algebras.

(3) Letd = g @ g be the direct sum of two copies@fThe map

irgt—0, X — (r+(X),r—(X))
is a Lie algebra embedding; its imagé C 0 is
g = {(X+, X_) € g+ D g CO[X_=0(X+)},
whereY ;. =Y modn..

Remark 6.The connection between our notation and that of [29] is as follows: the oper-
atorr € Endg of [29] coincides with the composition ef +»_ up to the isomorphism
t=r,—r_:g* — g;the bilinear form used in [29] is induced by

4.3. Poisson-Lie groups and gauge transformatiohst (G, n) (resp., G*,n*)) be a
Poisson-Lie group with factorizable tangent Lie bialgelya) (resp., §*,*)). Let
G+ and N be the Lie subgroups aF corresponding to the Lie subalgebras and
ny. We denote by the same symisathe isomorphisnt?, /N, — G_/N_ induced by
0 : g+/ns — g_/n_. Then the groug=* is isomorphic to

{(9+,9-) € G+ x G_|0(g,) =g_},

and we have a map: G* — G given byi((g+,9-)) = g+(g_)~*.
Explicitly, the Poisson bracket 0id:( ) can be written as follows:

{p, 0} = (Vo AVY = Vo AV'Y), (4.2)
where forx € G, Vp(x), V'p(x) € g* are defined by the formulas:
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(Vola). &) = 0 (¢a) o, @3)
(V'6(0),€) = 50 (a6) o @.4)

for all ¢ € g. An analogous formula can be written for the Poisson brackeGomf*).
In formula (4.2) we use the standard notation b = (e ® b — b ® a)/2.

By definition, the action of7 on itself by left translations is a Poisson group action.
There is another Poisson structyreon G which is covariant with respect to the adjoint
action of G on itself and such that the map (G*, n*) — (G, n.) is Poisson. Itis given
by the formula

{o. 0} = (Ve AVY + Vo AV'Y) = (r,Vip @ Vi) — V' @ Vy).  (4.5)

Proposition 4. (1) The map : G* — G is a Poisson map between the Poisson mani-
folds (G*,7") and (G, n.);
(2) The Poisson structurg, on G is covariant with respect to the adjoint action, i.e.
the map
(G.n) x (G,n) = (G, m.) (9, h) — ghg™*

is a Poisson map.

These results are proved in [29],3 (see also [30]; 2), using the notion of the
Heisenberg double aff. Formula (4.5) can also be obtained directly from the explicit
formulas for the Poisson structuyé and for the embedding

More generally, letr be an automorphism @, such that the corresponding auto-
morphism ofg satisfies £ ® 7)(r) = r. Define a twisted Poisson structujg on G by
the formula

{09} = (r, Vo AVY + V' A V') (4.6)
—{((r @id)(r), Vg @ Vi — Vi ® V),

and the twisted adjoint action ¢ on itself by the formulay - h = 7(g)hg ™.

Theorem 1. The Poisson structurg] on G is covariant with respect to the twisted
adjoint action, i.e. the map

(G,m) x (G, nT) = (G, nD) (9, h) — T(g)hg
is a Poisson map.

This result was proved in [29§,3 (see also [30F 2), using the notion of the twisted
Heisenberg double af. We will use Theorem 1 in two cases. In the filGtjs the loop
group of a finite-dimensional simple Lie grodp andr is the automorphism(s) —

9(sq),q € C*. In the second¢s = @Z/NZ, andr is the automorphismr(g)); — gi+1.
In the first case twisted conjugations coincide wjtbauge transformations, and in the

second case they coincide with lattice gauge transformations.

4.4. Admissibility and constraintd.et M be a Poisson manifold;y a Poisson Lie group
andG x M — M be a Poisson action. A subgroiip C G is called admissible if the
spaceC > (M) of H-invariant functions onV/ is a Poisson subalgebra in the space
C*>°(M) of all functions onM.
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Proposition 5 ([29], Theorem 6).Let (g, g*) be the tangent Lie bialgebra 6f. A con-
nected Lie subgroupl C G with Lie algebrah C g is admissible iy~ c g* is a Lie
subalgebra.

In particular,G itself is admissible. Note thd C G is a Poisson subgroup if and
only if b C g* is an ideal; in that case the tangent Lie bialgebralds (b, g*/b™).

Let H C G be an admissible subgroup, ahte a Poisson ideal i (M), i.e.T
is an ideal in the ring>>° (M), and{f, g} € C>(M)" forall f € I,g € C>(M)*.
ThenC>(M)H /T is a Poisson algebra.

More geometrically, the Poisson structure@?®(M)* /I can be described as fol-
lows. Assume that the quotiedt /H exists as a smooth manifold. Then there exists
a Poisson structure ol /H such that the canonical projectian: M — M/H is a
Poisson map. Hamiltonian vector fiells, ¢ € 7*C>°(M/H), generate an integrable
distribution$),. in TM. The following result is straightforward.

Lemma4. LetV C M be a submanifold preserved #. ThenV/H is a Poisson
submanifold of\// H if and only ifV is an integral manifold of) ;.

The integrality condition means precisely that the ideaflall H-invariant functions
on M vanishing onV is a Poisson ideal i">°(M)H, and thatC>(V/H) = C>=(V)#
= O°°(M)H /1. If this property holds, we will say that the Poisson structure\hi
can be restricted to/H.

Vv c M

V/H ~ M/H

The Poisson structure di/H can be described as follows. L&, C T*M |y
be the conormal bundle d&f. Clearly,7*V ~ T*M |, /Ny. Letp,v € C(V)H and
do,dip € T*M |y be any representatives @, diyy € T*V. Let Py, € A°T M be the
Poisson tensor of/ .

Lemma 5. We have
in particular, the right hand side does not depend on the choiegoofly).

Remark 7.In the case of Hamiltonian action (i.e. when the Poisson structut® @
trivial), one can construct submanifoltfssatisfying the condition of Lemma 4 using the
moment map. Although a similar notion of the nonabelian moment map in the context
of Poisson group theory is also available [24], it is less convenient. The reason is that the
nonabelian moment map is “less functorial” than the ordinary moment map. Namely, if
G x M — M is a Hamiltonian action with moment mag; : M — g*, its restriction

to a subgroug C G is also Hamiltonian with momenty = po ug (herep : g* — b*

is the canonical projection). If7 is a Poisson-Lie groug7* its dual,G x M — M a
Poisson group action with moment, : M — G*,andH C G a Poisson subgroup,

the action ofH still admits a moment map. But f# C G is only admissible, then the
restricted action does not usually have a moment map. This is precisely the case which
is encountered in the study of thedeformed Drinfeld—Sokolov reduction.
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5. The g-Deformed Drinfeld—Sokolov Reduction in the Case o5 L,

In this section we apply the general results of the previous section to formutate a
analogue of the Drinfeld—Sokolov reduction wh@r= S L.

5.1. Choice ofr-matrix. Let g = Lsl,. We would like to define a factorizable Lie
bialgebra structure op in such a way that the resulting Poisson-Lie structyren
LSL, and the Poisson structung on M, , satisfy the conditions (ii)—(iii) of Sect. 4.

Let{E, H, F'} be the standard basissfy and{ E,,, H,, F,,} be the corresponding
(topological) basis of.sl, = sl, ® C((s)) (here for eactt € sl, we setd,, = AR s™ €
Lsly). Let T be the automorphism dfsl, defined by the formula(A(s)) = A(sq) (we
assume thag is 2qeneric). We have: - A,, = ¢ A,,. To be able to use Theorem 1, the
matrixr € Lsly? defining the Lie bialgebra structure @sl, has to satisfy the condition
(7 ® 7)(r) = r. Hence the invariant bilinear form abs(, defined by the symmetric part
of r should also be-invariant.

The Lie algebralsl; has a unique (up to a non-zero constant multiple) invariant
non-degenerate bilinear form, which is invariant unddlt is defined by the formulas

(En7 Fm) = 5n,—ma (Hn7 Hm) = 2571,—m7

with all other pairings between the basis elements are 0. This fixes the symmetric part of
the element. Another condition om is that the subgroup NV is admissible. According
to Proposition 5, this means thah;- should be a Lie subalgebra b(;.

A natural example of satisfying these two conditions is given by the formula:

1 1

TO=ZEn®F,n+ZHO®HO+EZHn®H,n. (5.1)
nez n>0

It is easy to verify that this element defines a factorizable Lie bialgebra structyre on

We remark that this Lie bialgebra structure gives rise to Drinfeld’'s “new” realization

of the quantized enveloping algebra associatefstg [10, 22, 21]. As we will see in

the next subsectiomg can not be used for thedeformed Drinfeld—Sokolov reduction.

However, the following crucial fact will enable us to perform the reduction.lligbe

the loop algebra of the Cartan subalgeb@ sl,.

Lemma 6. For anyp € A2Lb, 7o + p defines a factorizable Lie bialgebra structure on
Lsl,, such thatLn;- is a Lie subalgebra oLsl;.

The fact thatrg + p still satisfies the classical Yang-Baxter equation is a general
property of factorizable-matrices discovered in [5]. Lemma 6 allows us to consider the
class of elements given by the formula

r= Z En & F—n + % Z (bn,m : Hn & Hmv (52)

neZ m,n€”Z

where ¢,y + ¢m.n = 0n,—m. The condition £ ® 7)(r) = r imposes the restriction
Gn.m = Pndn,—m, SO that (5.2) takes the form

1
T:ZEn@F—n'FEZan'Hn@H—na (53)
nez neEZ

whereg, +¢_, =1
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5.2. The reductionRecall thatM; , = LS L, = SLy((s)) consists of the % 2 matrices

M(s) = (agsg ZESD . ad—be=1 (5.4)

We want to impose the constrairfs) = —1, i.e. consider the submamfoM" and
take its quotient by the (free) action of the group

NG

Letn be the Poisson-Lie structure @rb L, induced byr given by formula (5.3).

Let n? be the Poisson structure d> , defined by formula (4.6), corresponding
to the automorphismr : g(s) — ¢(sq). The following is an immediate corollary of
Theorem 1, Proposition 5 and Lemma 6.

Proposition 6. (1) Theg-gauge action of L.SL,n) on (M- 4, n?) given by formula
g(s) - M(s) = g(sq)M(s)g(s)~* is Poisson;
(2) The subgroud N C LSL;is admissible.

Thus, we have satisfied properties (i) and (ii) of Sect. 4. Now we have to choose the
remaining free parametegs, so as to satisfy property (iii).

The Fourier coefficients of the matrix elements of the mattis) given by (5.4)
define functions o/, ,. We will use the notation,,, for them™ Fourier coefficient of
a(s). Let Ry , be the completion of the ring of polynomialsdn,, b, ¢m, dm,m € Z,
defined in the same way asthe riRg , of Sect. 2.3. Leb, , C R» , be the subalgebra of
L N-invariant functions. Denote biybe the ideal 06> , generated byc,, +6,, 0,n € Z}

(the defining ideal of\73 ).

Property (iii) means thal is a Poisson ideal of> ,, which is equivalent to the
condition that{c,,c,,} € I, i.e. that if{c,,c,,} vanishes oan This condition
means that the Poisson bracket of the constraint functions vanishes on the constraint
surface, i.e. the constraints are of first class according to Dirac.

Let us compute the Poisson bracket betweghs. First, we list the left and right
gradients for the functions,, b,,, ¢, d,, (for this computation we only need the gradients
of ¢,,’s, but we will soon need other gradients as well). It will be convenient for us to
identify Lsl, with its dual using the bilinear form introduced in the previous section.
Note that with respect to this bilinear form the dual basis element,td{,,, andF,,
areF_,,H_,/2,andE_,, respectively.

Explicit computation gives (for shorthand, we writdor a(s), etc.):

1 1
Va, =s™ <2a q ) , Vb, =s ™ <2b Ci ) ,
C —éa —ib
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Now we can compute the Poisson bracket betwgéusing formula (4.6):

1
{Crm Ck} = E Z (¢n — ¢t ¢nqn - (b—nq_n) C—n+mCn+k- (55)

nez
Restricting toMé{q, i.e. settinge,, = —6,, 0, We obtain:

1
{C’m,v Ck}lefq = é Z (¢m —O_m+ ¢mqm - ¢—mq7m) dm,—k-

nez

This gives us the following equation @, ’s:
¢m - d)fm + ¢mqm - (bfmq_m =0.
Together with the previous conditia,, + ¢_,,, = 1, this determines,,,’s uniquely:

Theorem 2. The Poisson structure! satisfies property (iii) of the-deformed Drin-
feld-Sokolov reduction if and only if

Consider the-matrix (5.2) withe,, = (1+¢™)~L. For thisr-matrix, the Lie algebras
defined in section Sect. 4 are as follows: = Lb,ny = Lny, wheren, = CE,n_ =
CF,by =h@®ny. We haveg, /ny ~ Lh. The transformatiod on Lh induced by this
r-matrix is equal to-r.

Explicitly, on the tensor product of the two 2-dimensional representatiosig(¢f)),
ther-matrix looks as follows:

gb(é) 0 0 0
0 —¢(L) 6(¢) o
AR A
0 o 0 s

where

1 1

neZ

Note that Z-¢(x¢%?) coincides with the power series expansion of the Jacobi elliptic
functiondn (delta of amplitude).

Now we have satisfied all the necessary properties on the Poisson structures and

hence can perform theDrinfeld—Sokolov reduction of Sect. 3 at the level of Poisson

algebras. In the next subsection we check that it indeed gives us the Poisson bracket

(2.14) on the reduced spagdy , = M3 /LN.

Remark 8.1t is straightforward to identify theg — 1 limit of the reduced Poisson
algebra with the classical Virasoro algebra.
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5.3. Explicit computation of the Poisson brackelistroduce the generating series

A=Y an,

neEZ

and the same for other matrix elementsid{s) given by formula (5.4). We fix the
elementr by settinge,, = (1 +¢™)~t in formula (5.3) in accordance with Theorem 2.
Denote

D)= 0= o) = Y T (5.7)

nez neZ

Using the formulas for the gradients of the matrix elements given in the previous section
and formula (4.6) for the Poisson bracket, we obtain the following explicit formulas for
the Poisson brackets:

{A@E). AW} =2 (2) AR AW)

{AG), Bw)} = =5 (£) AR Bw).

{A@),Cw)} =6 (Z) ARCW).

{A@), Dw)} = —¢ (7 ) AGDw),

{B(), Bw)} =0,

{B(),C)} =6 (Z) ARD@) -3 (=) AEAw),
{B(), D)} = =5 (1) A=) Bw),

{C@), Cw)y =0,

{C(2), D)} =5 (“’q) A)Cw),
(D(2), D(w)} = ¢ (“’) D(2)D(w) — 6 (%) C()B(w) +6 (ZI) B(2)C(w).

z
Remark 9.The relations above can be presented in matrix form as follows. Let

- (A(2) B(2)
L= = (C(z) D(z)> :

and consider the operatofs = L ® id, L, = id ® L acting onC? ® C?. Ther-matrix
(5.6) also acts oft? ® C2. Formula (4.6) can be written as follows:

{La(2), Lo(w)} = %7'7 (%) Li(z) Lo(w) + %Ll(Z)Lz(w)r* (%)
— La(a)r (22 La(w) + Lo(w)or(r) (22 La(2),

where
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3¢ (%) 10 0 ;
=@ -0G)=| 5 FE A 8
0 0 0 %@(%)

5.4. Reduced Poisson structuré/e know thatM, , = Mz'{q/LN is isomorphic to

{99))

(see Sect. 3). Therirg,,, of functionals onM; , is generated by the Fourier coefficients

of t(s). In order to compute the reduced Poisson bracket between them, we have to extend

them toL N-invariant functions on the whol&/, ,. Set
1(s) = a(s)c(sq) + d(sq)c(s). (5.8)

It is easy to check that the Fourier coefficients of ¢(s) are L N-invariant, and their
restrictions toMéfq coincide with the corresponding Fourier coefficients(e].

Let us compute the Poisson bracket betwegs. Set

f(z) = Z tmz ™.

meZ

Using the explicit formulas above, we find

1. Tw)} = (Z) TET(w)
+9 (%) A)e(w)e(wg?) — 6 (Z]) A(w)e(2)e(z¢?), 59)

whereA(z) = A(z)D(z)— B(z)C(z) = 1. Hence, restricting tMé{q (i.e.setting=(z) = 1
in formula (5.9)), we obtain:

(TG), T(w)} = ¢ (“’) T()T(w) + 6 (%) — (“’) .

z 2q
This indeed coincides with formula (2.14).

Remark 10.Consider the subrin@z,q of the ring R, 4, generated B, b, m € Z.

The ringS,,, consists ofL. N-invariant functionals oi/ ,, and hence it can serve as a
substitute for the ring of functions al, ,/LN. Let us compute the Poisson brackets

in S’z,q. The Poisson brackets 6f,’s are given by formula (5.9), and by construction

{em,cr} = 0. ltis also easy to find thdt,,,, fk} = 0. HenceS, 4 is a Poisson subalgebra
of Ry 4. Thus, they-deformed Drinfeld—Sokolov reduction can be interpreted as follows.

The initial Poisson algebra g, ,. We consider its Poisson subalgelta, generated by
¢m's andt,,’s. The ideall of S»,4 generated byc,, + 6,0, m € Z} is a Poisson ideal.
The quotientS; , /I is isomorphic to the-Virasoro algebra, , defined in Sect. 3.
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5.5.¢-deformation of Miura transformationAs was explained in Sect. 3.2, theMiura
transformation of [19] is the map between two (local) cross-sections of the projection
mq M, ,— M, ,/LN.Inthe case of.S L, the first cross-section

(9.5}

is defined by the subsidiary constrabft) = 0, and the second

1(99))

is defined by the subsidiary constraiift) = 0. The map between them is given by the
formula

Mg : A(s) = t(s) = A(s) + Msq) 7L

Now we want to recover formula (2.16) for the Poisson brackets between the Fourier
coefficients),, of A(s), which makes the mam, Poisson.

We have already computed the Poisson bracket on the second (canonical) cross-
section from the point of view of Poisson reduction. Now we need to compute the
Poisson bracket between the functianss on the first cross-section, with respect to
which the mapn, is Poisson. This computation is essentially similar to the one outlined
in Sect. 3.2. The Poisson structure on the local cross-section is given by the Dirac
bracket, which is determined by the choice of the subsidiary conditions, which fix the
cross-section.

The Dirac bracket has the following property (see [16]). Suppose we are given
constraintst,,, n € I, and subsidiary conditiong,,n € I, on a Poisson manifold/,
such that{¢x, &} = {mx,m} = O,Vk,l € I. Let f, g be two functions on/, such that
{f,&} and{g, &} vanish on the common level surface of &ll .. Then the Dirac
bracket off andg coincides with their ordinary Poisson bracket.

In our case, the constraint functions atg + d,,0,m € Z, and the subsidiary
conditions are,,,, m € Z, which fix the local model of the reduced space. We have:
{bm, b} = 0,{cm,cr} =0, and{a,, b;} = 0, if we seth,,, = 0,Vm € Z. Therefore we
are in the situation described above, and the Dirac bracket betweanda; coincides
with their ordinary bracket. In terms of the generating functit@) = 5 Az~ ™
it is given by the formula

meZ

w
[AG), A} = ¢ (<) ARAw),
which coincides with formula (2.16). Thus, we have proved the Poisson property of
the g-deformation of the Miura transformation from the point of view of the deformed
Drinfeld—Sokolov reduction.

6. Lattice Virasoro Algebra

In this section we consider the lattice counterpart of the Drinfeld—Sokolov reduction.
Our group is thu$ = (SL,)%/NZ, whereN is an integer, and is the automorphism of

G, which maps ¢;) to (g;+1). Poisson structures da which are covariant with respect

to lattice gauge transformations — g,+17,,9;, 1 have been studied already in [29] (cf.
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also [2]). In order to make the reduction over the nilpotent subghup G feasible,
we have to be careful in our choice of thenatrix.

6.1. Discrete Drinfeld—Sokolov reductiorBy analogy with the continuous case, we

choose the elementdefining the Lie bialgebra structure grr 5[§9Z/NZ as follows:

1
r= Z En & Fn + Z Z (bn,mHn & Hrm
n€Z/NZ m,n€L/NZ

whereg,, pm, + ¢mn = 20, . ItiS easy to see thatdefines a factorizable Lie bialgebra
structure org. For Theorem 1 to be applicablehas to satisfy the condition®@7)(r) = r,
which implies that,, ., = ¢p—m.

An element ofG is an N-tuple (g;) of elements of5 L:

_ {ar by
gk — (Ck dk) .

We consideny, by, ¢, di, k € Z/NZ, as the generators of the ring of functions®@n
The discrete analogue of the Drinfeld—Sokolov reduction consists of taking the quo-
tientM = G’ /N, whereG”’ = (G7)%/NZ,

{49}

andN = N%/NZ acting onG” by the formula
(h) - (9:) = (hisagihy ). (6.1)

t; 1
M ~ < ! > .
{ -10 ieZ/NZ}

The element with ¢, 1, = ¢p—m, Pr+P_ = 201 0, defines a Lie bialgebra structure
on g and Poisson structuresnl on G. According to Theorem 1, the action d&(n)
on (G, n) given by formula (6.1) is Poisson.

As in the continuous case, for the Poisson structjréo be compatible with the
discrete Drinfeld—Sokolov reduction, we must have:

{¢n,cm}|lgs = 0. (6.2)

Explicit calculation analogous to the one made in the previous subsection shows that
(6.2) holds if and only if

Gr—1F 205 + Pp11 = 20,0 + 20p410.
The initial conditiongg = 1 and periodicity condition give us a unique solution: for

2k .
odd N, ¢ = (—1)*; for evenN, ¢, = (—1)* (1 — ~ ) In what follows we restrict

It is easy to see that

ourselvesto the case of odd(note that in this case the linear operatoridginvertible).
Continuing as in the previous subsection, we define

tn = apCp+1 + dps1Cp, n € Z/NZ.
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These areN-invariant functions orG. We find in the same way as in the continuous
case:

{tna tﬂL} = @n—mtntm + 6n,m+lcmcm+2 - 5n+l,mcncn+27 (63)

{{nv Cm} = 07 {Cna Cm} = 07

where
1 _ 0, k=0,
Pr = §(¢k — i) = {(_1)k’ k # 0.

The discrete Virasoro algebfd{t;];c7,/nz is by definition the quotient of the Poisson

algebraC[t;, ciliez/nz Dy its Poissonideal generateddy 1, i € Z/N7Z. From formula
(6.3) we obtain the following Poisson bracket between the generators

{tna tm} = Qpnfmtntm + 6n7m+1 - 6n+17m- (64)

The discrete Miura transformation is the map from the local cross-section
Ao O
-1t

An =t = Ay + AL (6.5)

toM,

It defines a Poisson de{Af]ieZ/NZ — C[t;];ez/nz, Where the Poisson structure on
the latter is given by the formula

A, At = PremAnAm. (6.6)

Remark 11.The Poisson algebf@d[t;];cz,nz can be considered as aregularized version
of theg-deformed Virasoro algebra wherr ¢, wheree is a primitive N root of unity.
Indeed, we can then considgr’),i € Z/NZ, as generators and truncate in all power
series appearing in the relations, summations Bwersummations ovet /N'Z divided

by N. This means that we replagde™) given by formula (5.7) by

(e = i 1—¢
eIT N T+e ¢
i€Z/NT

ni

)

andé(e™) by 4,, 0. The formula for the Poisson bracket then becomes:

{He™), t€™)} = PE™ T IEHE™) + S mer — Ot m.

If we sett(e?) = t;, we recover the Poisson bracket (6.4), since it is easy to check that
P(E™™™) = Pn—m-

One can apply the same procedure toghieformedV-algebras associated 46,
and obtain lattice Poisson algebras. It would be interesting to see whether they are related
to the latticeVV-algebras studied in the literature, e.g., in [6, 7]. In the case,othis
connection is described in the next subsection.
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6.2. Connection with Faddeev—Takhtajan—Volkov algeliitae Poisson structures (6.4)

and (6.6) are nonlocal, i.e. the Poisson brackets between distant neighbors on the lattice
are nonzero. However, one can define closely connected Poisson algebras possessing
local Poisson brackets; these Poisson algebras can actually be identified with those
studied by L. Faddeev, L. Takhtajan, and A. Volkov.

Let us first recall some results of [19] concerning the continuous case. As was ex-
plained in [19], one can associate a generating series of elements gMin@soro
algebra to an arbitrary finite-dimensional representatiosi,ofThe seried’(z) consid-
ered in this paper corresponds to the two-dimensional representatidhi®l(e} be the
series corresponding to the three-dimensional irreducible representasignWwé have
the following identity [19]:

T()T(2q) = T®(2) + 1,
which can be taken as the definition B®(z). From formula (2.15) we obtain:

TA(2) = A(2)A(2q) + A A ™+ Alzq) LA (gD 2
= A(2) + A(2) A(zq) 1 + A(zq) 7,

where
A(2) = A(2)A(zq) (6.7)

(note that the seried(z) was introduced in Sect. 7 of [19]). From formula (2.16) we

find:
{A(2), A(w)} = (5 (;‘;) — (T)) A(2) A(w).

It is also easy to find

@ @) = W _s5(%4 @(NT@ () —
(T@(2), T®(w)} (5 <2q> 5 ( - )) (TO)TO(w) — 1)
2
+5 <wq> T(w)T(wg®) — & <“’2) TE)T ().
z zq
We can use the same idea in the lattice casev), et \, \,+1; this is the analogue
of A(z). We have:
{Vna Vm} = (5n+l,m - 5n,m+1)Vana (68)

and henc@[uii] is a Poisson subalgebra@f ;"] with local Poisson brackets. We can
also defing® =t,t,.1 — 1. The Poisson bracket df’’s is local:

{tP 9% = (6pa1m — Opmer) (K212 — 1) (6.9)
+ 6n,m+2tmtm+3 - 5n+27mtntn+3-

Unfortunately, it does not close aff’’s, so that(C[th)] is not a Poisson subalgebra of
C[t;]. But let us define formally

ozt =yyto L (6.10)

, = 1+t§3) T 'n n+l T (1+Vn)(1+l/;+11 '
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Then from formulas (6.10) and (6.8) we find:

{Sn; Sm} zsnsm((dn*-l,m - 6n,m+1)(l — Sn — Sm) - (611)

- Sn+15n+2,rn + 3m+l§n,m+2) .

Thus, the Poisson bracket closes amoenég and defines a Poisson structure on
(C[Si]iGZ/NZ-

The Poisson algebr@[s;];cz,/nz with Poisson bracket (6.11) was first introduced
by Faddeev and Takhtajan in [34] (see formula (54)). We see that it is connected with
our version of the discrete Virasoro algehdt;], by a change of variables (6.10). The
Poisson algebr&[v"] and the Poisson map[v"] — C[s,,] given by formula (6.10)
were introduced by Volkov in [35] (see formulas (2) and (23)) following [34]; see also
related papers [36, 13]. This map is connected with our version (6.5) of the discrete
Miura transformation by a change of variables.
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