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Abstract: We propose aq-difference version of the Drinfeld-Sokolov reduction scheme,
which gives usq-deformations of the classicalW-algebras by reduction from Poisson-
Lie loop groups. We consider in detail the case ofSL2. The nontrivial consistency
conditions fix the choice of the classicalr-matrix defining the Poisson-Lie structure on
the loop groupLSL2, and this leads to a new elliptic classicalr-matrix. The reduced
Poisson algebra coincides with the deformation of the classical Virasoro algebra previ-
ously defined in [19]. We also consider a discrete analogue of this Poisson algebra. In the
second part [31] the construction is generalized to the case of an arbitrary semisimple
Lie algebra.

1. Introduction

It is well-known that the space of ordinary differential operators of the form∂n+u1∂
n−2+

. . .+un−1 has a remarkable Poisson structure, often called the (second) Adler-Gelfand-
Dickey bracket [1, 12]. Drinfeld–Sokolov reduction [11] gives a natural realization of
this Poisson structure via the hamiltonian reduction of the dual space to the affine Kac-
Moody algebraŝln. Drinfeld and Sokolov [11] have applied an analogous reduction
procedure to the dual space of the affinizationĝ of an arbitrary semisimple Lie algebra
g. The Poisson algebraW(g) of functionals on the corresponding reduced space is called
the classicalW-algebra. Thus, one can associate a classicalW-algebra to an arbitrary
semisimple Lie algebrag. In particular, the classicalW-algebra associated tosl2 is
nothing but the classical Virasoro algebra, i.e., the Poisson algebra of functionals on the
dual space to the Virasoro algebra (see, e.g., [19]).

It is interesting thatW(g) admits another description as the center of the universal
enveloping algebra of an affine algebra. More precisely, letZ(ĝ)−h∨ be the center of a
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completion of the universal enveloping algebraU (ĝ)−h∨ at the critical levelk = −h∨
(minus the dual Coxeter number). This center has a canonical Poisson structure. It was
conjectured by V. Drinfeld and proved by B. Feigin and E. Frenkel [14, 18] that as the
Poisson algebraZ(ĝ)−h∨ is isomorphic to the classicalW-algebraW(Lg) associated
with the Langlands dual Lie algebraLg of g.

In [19] two of the authors used this second realization ofW-algebras to obtain
their q-deformations. For instance, theq-deformationWq(sln) of W(sln) was defined
as the centerZq(ŝln) of a completion of the quantized universal enveloping algebra
Uq(ŝln)−h∨ . The Poisson structure onZq(ŝln) was explicitly described in [19] using
results of [26]. It was shown that the underlying Poisson manifold ofZq(ŝln) = Wq(sln)
is the space ofq-difference operators of the formDn

q + t1Dn−1
q + . . . + tn−1Dq + 1.

Furthermore, in [19] aq-deformation of the Miura transformation, i.e., a homomorphism
from Wq(sln) to a Heisenberg-Poisson algebra, was defined. The construction [19] of
Wq(sln) was followed by further developments: it was quantized [32, 15, 4] and the
quantum algebra was used in the study of lattice models [25, 3]; the Yangian analogue
of Wq(sl2) was considered in [8];q-deformations of the generalized KdV hierarchies
were introduced [17].

In this paper we first formulate the results of [19] in terms of first orderq-difference
operators andq-gauge action. This naturally leads us to a generalization of the Drinfeld-
Sokolov scheme to the setting ofq-difference operators. The initial Poisson manifold is
the loop groupLSLn of SLn, or more generally, the loop group of a simply-connected
simple Lie groupG. Much of the needed Poisson formalism has already been developed
by one of the authors in [29, 30]. Results of these works allow us to define a Poisson
structure on the loop group, with respect to which theq-gauge action is Poisson. We
then have to perform a reduction of this Poisson manifold with respect to theq-gauge
action of the loop groupLN of the unipotent subgroupN of G.

At this point we encounter a new kind of anomaly in the Poisson bracket relations,
unfamiliar from the linear, (i.e., undeformed), situation. To describe it in physical terms,
recall that the reduction procedure consists of two steps: (1) imposing the constraints
and (2) passing to the quotient by the gauge group. An important point in the ordinary
Drinfeld–Sokolov reduction is that these constraints are of first class, according to Dirac,
i.e., their Poisson bracket vanishes on the constraint surface. In theq-difference case we
have to choose carefully the classicalr-matrix defining the initial Poisson structure on
the loop group so as to make all constraints first class. If we use the standardr-matrix,
some of the constraints are of second class, and so we have to modify ther-matrix.

In this paper we do that in the case ofSL2. We show that there is essentially a unique
classicalr-matrix compatible with theq-difference Drinfeld–Sokolov scheme. To the
best of our knowledge, this classicalr-matrix is new; it yields an elliptic deformation of
the Lie bialgebra structure on the loop algebra ofsl2 associated with the Drinfeld “new”
realization of quantized affine algebras [10, 22]. The result of the correspindingDrinfeld–
Sokolov reduction is theq-deformation of the classical Virasoro algebra defined in [19].

We also construct a finite difference version of the Drinfeld–Sokolov reduction in
the case ofSL2. This construction gives us a discrete version of the (classical) Virasoro
algebra. We explain in detail the connection between our discrete Virasoro algebra and
the lattice Virasoro algebra of Faddeev–Takhtajan–Volkov [34–36, 13]. We hope that
our results will help to clarify further the meaning of the discrete Virasoro algebra and
its relation to various integrable models.
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The construction presented here can be generalized to the case of an arbitrary simply-
connected simple Lie group. This is done in the second part of the paper [31] written by
A. Sevostyanov and one of us.

The paper is arranged as follows. In Sect. 2 we recall the relevant facts of [11]
and [19]. In Sect. 3 we interpret the results of [19] from the point of view ofq-gauge
transformations. Section 4 reviews some background material on Poisson structures
on Lie groups following [29, 30]. In Sect. 5 we apply the results of Sect. 4 to the
q-deformation of the Drinfeld–Sokolov reduction in the case ofSL2. In Sect. 6 we
discuss the finite difference analogue of this reduction and compare its results with the
Faddeev–Takhtajan–Volkov algebra.

2. Preliminaries

2.1. The differential Drinfeld–Sokolov reduction in the case ofsln. Let Mn be the
manifold of differential operators of the form

L = ∂n + u1(s)∂n−2 + . . . + un−2(s)∂ + un−1(s), (2.1)

whereui(s) ∈ C((s)).
Adler [1] and Gelfand-Dickey [12] have defined a remarkable two-parameter family

of Poisson structures onMn, with respect to which the corresponding KdV hierarchy
is hamiltonian. In this paper we will only consider one of them, the so-called second
bracket. There is a simple realization of this structure in terms of the Drinfeld–Sokolov
reduction [11], Sect. 6.5. Let us briefly recall this realization.

Consider the affine Kac-Moody algebrâsln associated tosln; this is the central
extension

0 → CK → ŝln → Lsln → 0,

see [20]. LetMn be the hyperplane in the dual space toŝln, which consists of linear
functionals taking value 1 onK. Using the differentialdt and the bilinear form trAB
on sln, we identifyMn with the manifold of first order differential operators

∂s +A(s), A(s) ∈ Lsln.

The coadjoint action of the Lie group̂SLn on ŝl
∗
n factors through the loop groupLSLn

and preserves the hyperplaneMn. The corresponding action ofg(s) ∈ LSLn onMn is
given by

g(s) · (∂s +A(s)) = g(s)(∂s +A(s))g(s)−1, (2.2)

or
A(s) 7→ g(s)A(s)g(s)−1 − ∂sg(s) · g(s)−1.

Consider now the submanifoldMJ
n of Mn which consists of operators∂s + A(s),

whereA(s) is a traceless matrix of the form
∗ ∗ ∗ . . . ∗ ∗

−1 ∗ ∗ . . . ∗ ∗
0 −1 ∗ . . . ∗ ∗
. . . . . . . . . . . . . . . . .
0 0 0 . . . ∗ ∗
0 0 0 . . . −1 ∗

 . (2.3)
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To each elementL of MJ
n one can naturally attach annth order scalar differential

operator as follows. Consider the equationL · 9 = 0, where

9 =

 9n

9n−1
. . .
91

 .

Due to the special form (2.3) ofL, this equation is equivalent to annth order differential
equationL ·91 = 0, whereL is of the form (2.1). Thus, we obtain a mapπ : MJ

n → Mn

sendingL toL.
LetN be the subgroup ofSLn consisting of the upper triangular matrices, andLN

be its loop group. Ifg ∈ LN and9 is a solution ofL ·9 = 0, then9′ = g9 is a solution
of L′ · 9′ = 0, whereL′ = gLg−1. But 91 does not change under the action ofLN .
Thereforeπ(L′) = π(L), and we see thatπ factors through the quotient ofMJ

n by the
action ofLN . The following proposition describes this quotient.

Proposition 1 ([11],Proposition 3.1).The action ofLN onMJ
n is free, and each orbit

contains a unique operator of the form

∂s +


0 u1 u2 . . . un−2 un−1

−1 0 0 . . . 0 0
0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . −1 0

 . (2.4)

But for L of the form (2.4),π(L) is equal to the operatorL given by formula (2.1).
Thus, we have identified the mapπ with the quotient ofMJ

n byLN and identifiedMn

with MJ
n /LN .

The quotientMJ
n /LN can actually be interpreted as the result of hamiltonian re-

duction. Denote byn+ (resp.,n−) the upper (resp., lower) nilpotent subalgebra ofsln;
thus,n+ is the Lie algebra ofN .

The manifoldMn has a canonical Poisson structure, which is the restriction of the
Lie-Poisson structure on̂sl

∗
n (such a structure exists on the dual space to any Lie algebra).

The coadjoint action ofLN onMn is hamiltonian with respect to this structure. The
corresponding moment mapµ : Mn → Ln− ' Ln∗

+ sends∂s + A(s) to the lower-
triangular part ofA(s). Consider the one-point orbit ofLN ,

J =


0 0 0 . . . 0 0

−1 0 0 . . . 0 0
0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . −1 0

 .

ThenMJ
n = µ−1(J). HenceMn is the result of hamiltonian reduction ofMn by LN

with respect to the one-point orbitJ .
The Lie-Poisson structure onMn gives rise to a canonical Poisson structure onMn,

which coincides with the second Adler-Gelfand-Dickey bracket, see [11], Sect. 6.5. The
Poisson algebra of local functionals onMn is called the classicalW-algebra associated
to sln, and is denoted byW(sln).



Drinfeld–Sokolov Reduction for Difference Operators I. 609

Remark 1.For α ∈ C, let Mα,n be the hyperplane in the dual space toŝln, which
consists of linear functionals on̂sln taking the valueα onK. In the same way as above
(for α = 1) we identifyMα,n with the space of first order differential operators

α∂s +A(s), A(s) ∈ Lsln.

The coadjoint action is given by the formula

A(s) 7→ g(s)A(s)g(s)−1 − α∂sg(s) · g(s)−1.

The straightforward generalization of Proposition 1 is true for anyα ∈ C. In particular,
for α = 0 we obtain a description of the orbits inMJ

n under the adjoint action ofLN .
This result is due to B. Kostant [23].

Drinfeld and Sokolov [11] gave a generalization of Proposition 1 whensln is replaced
by an arbitrary semisimple Lie algebrag. The special case of their result, corresponding
to α = 0, is also due to Kostant [23]. �

The Drinfeld–Sokolov reduction can be summarized by the following diagram:

? ?

-

-

��

��

MJ
n

Mn = MJ
n /LN

Mn

Mn/LN

There are three essential properties of the Lie-Poisson structure onMn that make
the reduction work:

(i) The coadjoint action ofLSLn onMn is hamiltonian with respect to this structure.
(ii) The subgroupLN of LSLn is admissible in the sense that the spaceS of LN -

invariant functionals onMn is a Poisson subalgebra of the space of all functionals
onMn.

(iii) Denote byµij the function onMn, whose value at∂ + A ∈ Mn equals the (i, j)
entry ofA. The ideal inS generated byµij + δi−1,j , i > j, is a Poisson ideal.

We will generalize this picture to theq-difference case.

2.2. The Miura transformation.Let Fn be the manifold of differential operators of the
form

∂s +


v1 0 0 . . . 0 0
−1 v2 0 . . . 0 0
0 −1 v3 . . . 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . vn−1 0
0 0 0 . . . −1 vn

 , (2.5)
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where
∑n

i=1 vi = 0.
We have a mapm : Fn → Mn, which is the composition of the embedding

Fn → MJ
n and the projectionπ : MJ

n → Mn.
Using the definition ofπ above,m can be described explicitly as follows: the image

of the operator (2.5) underm is thenth order differential operator

∂n
s + u1(s)∂n−2

s + . . . + un−1(s) = (∂s + v1(s)) . . . (∂s + vn(s)).

The mapm is called the Miura transformation.
We want to describe the Poisson structure onFn with respect to which the Miura

transformation is Poisson. To this end, let us consider the restriction of the gauge action
(2.2) to the opposite triangular subgroupLN−; let µ : Mn → Ln+ ' Ln∗

− be the
corresponding moment map. The manifoldFn is the intersection of two level surfaces,
Fn = µ−1(J) ∩ µ−1(0). It is easy to see that it gives a local cross-section for both
actions (in other words, the orbits ofLN andLN− are transversal toFn). HenceFn

simultaneously provides a local model for the reduced spacesMn = µ−1(J)/LN and
µ−1(0)/LN−. The Poisson bracket onFn that we need to define is the so-called Dirac
bracket (see, e.g., [16]), where we may regard the matrix coefficients ofµ as subsidiary
conditions, which fix the local gauge. The computation of the Dirac bracket for the
diagonal matrix coefficientsvi is very simple, since their Poisson brackets with the
matrix coefficients ofµ all vanish onFn. The only correction arises due to the constraint∑n

i=1 vi = 0.
Denote byvi,m the linear functional onFn, whose value on the operator (2.5) is the

mth Fourier coefficient ofvi(s). We obtain the following formula for the Dirac bracket
onFn:

{vi,m, vi,k} =
n− 1
n

mδm,−k,

{vi,m, vj,k} = − 1
n
mδm,−k, i < j.

SinceFn andMn both are models of the same reduced space, we immediately
obtain:

Proposition 2 ([11],Proposition 3.26).With respect to this Poisson structure the map
m : Fn → Mn is Poisson.

2.3. Theq-deformations ofW(sln) and Miura transformation.In this section we sum-
marize relevant results of [19].

Let q be a non-zero complex number, such that|q| < 1. Consider the spaceMn,q

of q-difference operators of the form

L = Dn + t1(s)Dn−1 + . . . + tn−1(s)D + 1, (2.6)

whereti(s) ∈ C((s)) for eachi = 1, . . . , n, and [D · f ](s) = f (sq).
Denote byti,m the functional onMn,q, whose value atL is themth Fourier coefficient

of ti(s). Let Rn,q be the completion of the ring of polynomials inti,m, i = 1, . . . , N −
1;m ∈ Z, which consists of finite linear combinations of expressions of the form∑

m1+...+mk=M

c(m1, . . . ,mk) · ti1,m1 . . . tik,mk
, (2.7)
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wherec(m1, . . . ,mk) ∈ C. Given an operator of the form (2.6), we can substitute the
coefficientsti,m into an expression like (2.7) and get a number. Therefore elements of
Rn,q define functionals on the spaceMn,q.

In order to define the Poisson structure onMn,q, it suffices to specify the Poisson
brackets between the generatorsti,m. LetTi(z) be the generating series of the functionals
ti,m:

Ti(z) =
∑
m∈Z

ti,mz
−m.

We define the Poisson brackets betweenti,m’s by the formulas [19]

{Ti(z), Tj(w)} =
∑
m∈Z

(w
z

)m (1 − qim)(1 − qm(N−j))
1 − qmN

Ti(z)Tj(w)

+
min(i,N−j)∑

r=1

δ

(
wqr

z

)
Ti−r(w)Tj+r(z) (2.8)

−
min(i,N−j)∑

r=1

δ

(
w

zqj−i+r

)
Ti−r(z)Tj+r(w), i ≤ j.

In these formulasδ(x) =
∑

m∈Z x
m, and we use the convention thatt0(z) ≡ 1.

Remark 2.Note the difference betweenti(s) andTi(z). The former is a Laurent power
series, whose coefficients arenumbers. The latter is a power series infinite in both
directions, whose coefficients arefunctionalsonMn,q. Thus,Ti(z) is just the generating
function for the functionalsti,m. We use these generating functions merely to simplify
our formulas for the Poisson brackets (so that we do not have to write a Poisson bracket
between each individual pairti,m andtj,k).

Remark 3.The parameterq in formula (2.8) corresponds toq−2 in the notation of [19].
�

Now consider the spaceFn,q of n-tuples ofq-difference operators

(D + λ1(s), . . . , D + λn(s)). (2.9)

Denote byλi,m the functional onMn,q, whose value is themth Fourier coefficient of
λi(s). We will denote by3i(z) the generating series of the functionalsλi,m:

3i(z) =
∑
m∈Z

λi,mz
−m.

We define a Poisson structure onFn,q by the formulas [19]:

{3i(z),3i(w)} =
∑
m∈Z

(w
z

)m (1 − qm)(1 − qm(N−1))
1 − qmN

3i(z)3i(w),
(2.10)

{3i(z),3j(w)} = −
∑
m∈Z

(
wqN−1

z

)m
(1 − qm)2

1 − qmN
3i(z)3j(w), i < j.

(2.11)

Now we define theq-deformation of the Miura transformation as the mapmq :
Fn,q → Mn,q, which sends then-tuple (2.9) to
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L = (D + λ1(s))(D + λ2(sq−1)) . . . (D + λn(sq−n+1)), (2.12)

i.e.

ti(s) =
∑

j1<...<ji

λj1(s)λj2(sq
−1) . . . λji (sq

−i+1). (2.13)

Proposition 3 ([19]). The mapmq is Poisson.

2.4. q-deformation of the Virasoro algebra.Here we specialize the formulas of the
previous subsection to the case ofsl2 (we will omit the index 1 in these formulas). We
have the following Poisson bracket onT (z):

{T (z), T (w)} =
∑
m∈Z

(w
z

)m 1 − qm

1 + qm
T (z)T (w) + δ

(wq
z

)
− δ

(
w

zq

)
. (2.14)

Theq-deformed Miura transformation reads:

3(z) 7→ T (z) = 3(z) + 3(zq)−1. (2.15)

The Poisson bracket on3(z):

{3(z),3(w)} =
∑
m∈Z

(w
z

)m 1 − qm

1 + qm
3(z)3(w). (2.16)

3. Connection withq-Gauge Transformations

In this section we present the results of [19] in the form ofq-difference Drinfeld–Sokolov
reduction.

3.1. Presentation via first orderq-difference operators.By analogy with the differential
case, it is natural to consider the manifoldMn,q of first order difference operators
D +A(s), whereA(s) is an element of the loop groupLSLn of SLn. The groupLSLn

acts on this manifold by theq-gauge transformations

g(s) · (D +A(s)) = g(sq)(D +A(s))g(s)−1, (3.1)

i.e.g(s) ·A(s) = g(sq)A(s)g(s)−1.
Now we consider the submanifoldMJ

n,q ⊂ Mn,q which consists of operatorsD +
A(s), whereA(s) is of the form (2.3). It is preserved under theq-gauge action of the
groupLN .

In the same way as in the differential case, we define a mapπq : MJ
n,q → Mn,q,

which sends each element ofMJ
n,q to annth orderq-difference operatorL of the form

(2.6). It is clear that the mapπq factors through the quotient ofMJ
n,q by LN . Now we

state theq-difference analogue of Proposition 1.
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Lemma 1. The action ofLN onMJ
n,q is free and each orbit contains a unique operator

of the form

D +


t1 t2 t3 . . . tn−1 1
−1 0 0 . . . 0 0
0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . −1 0

 . (3.2)

Proof. The proof is an exercise in elementary matrix algebra. Forα = 1, . . . , n, denote
by Mα

n,q the subset of matrices fromMJ
n,q satisfying the property that all entries in

their rowsi = α + 1, . . . , n are zero except for the (i, i − 1) entry that is equal to
−1. We will prove that givenA(s) ∈ Mα

n,q, α > 1, there existsg(s) ∈ LN , such that
g(sq)A(s)g(s)−1 ∈ Mα−1

n,q . Since the condition is vacuous forα = n, i.e.Mn
n,q = MJ

n,q,
this will imply that eachLN -orbit inMJ

n,q contains an element of the form (3.2).
To prove the statement for a givenα, we will recursively eliminate all entries of

theαth row of A(s) (except the (α, α − 1) entry), from right to left using elementary
unipotent matrices. Denote byEi,j(x) the upper unipotent matrix whose only non-zero
entry above the diagonal is the (i, j) entry equal tox. At the first step, we eliminate
the (α, n) entryAα,n of A(s) by applying theq-gauge transformation (3.1) withg(s) =
Eα−1,n(−Aα,n(s)). Then we obtain a new matrixA′(s), which still belongs toMα

n,q,
but whose (α, n) entry is equal to 0. Next, we apply theq-gauge transformation by
Eα−1,n−1(−A′

α,n−1(s)) to eliminate the (α, n− 1) entry ofA′(s), etc. It is clear that at
each step we do not spoil the entries that have already been set to 0. The product of the
elementary unipotent matrices constructed at each step gives us an elementg(s) ∈ LN
with the desired property thatg(sq)A(s)g(s)−1 ∈ Mα−1

n,q .
To complete the proof, it suffices to remark that ifA(s) andA′(s) are of the form (3.2),

andg(sq)A(s)g(s)−1 = A′(s) for someg(s) ∈ LN , thenA(s) = A′(s) andg(s) = 1.
�

ForL of the form (2.4),πq(L) equals the operatorL given by formula (2.6). Thus, we
have identified the mapπq with the quotient ofMJ

n,q byLN andMn,q withMJ
n,q/LN .

Remark 4.In the same way as above we can prove the following more general statement.
Let R be a ring with an automorphismτ . It rives rise to an automorphism ofSLn(R)
denoted by the same character. DefineMJ

τ,n as the set of elements ofSLn(R) of the
form (2.3). Let the groupN (R) act onMJ

τ,n(R) by the formulag · A = (τ · g)Ag−1.
Then this action ofN (R) is free, and the quotient is isomorphic to the setMJ

τ,n(R) of
elements ofSLn(R) of the form (3.2) (i.e. each orbit contains a unique element of the
form (3.2)). Note that the proof is not sensible to whetherτ = Id or not.

Whenτ = Id, this result is well-known. It gives the classical normal form of a linear
operator. Moreover, in that case R. Steinberg has proved that the subsetMJ

Id,n(K) of
SLn(K), whereK is an algebraically closed field, is a cross-section of the collection of
regular conjugacy classes inSLn(K) [33], Theorem 1.4. Steinberg defined an analogous
cross-section for any simply-connected semisimple algebraic group [33]. His results can
be viewed as group analogues of Kostant’s results on semisimple Lie algebras [23] (cf.
Remark 1). Steinberg’s cross-section is used in the definition of the discrete Drinfeld–
Sokolov reduction in the general semisimple case (see [31]).1

1 We are indebted to B. Kostant for drawing our attention to [33]
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3.2. Deformed Miura transformation viaq-gauge action.Let us attach to each element
of Fn,q theq-difference operator

3 = D +


λ1(s) 0 . . . 0 0
−1 λ2(sq−1) . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . λn−1(sq−n+2) 0
0 0 . . . −1 λn(sq−n+1)

 , (3.3)

where
∏n

i=1λi(sq−i+1) = 1.
Let m̃q : Fn,q → Mn,q be the composition of the embeddingFn,q → MJ

n,q and
πq : MJ

n,q → MJ
n,q/LN ' Mn,q. Using the definition ofπq above, one easily finds

that for3 given by (3.3),m̃q(3) is the operator (3.2), whereti(s) is given by formula
(2.13).

Therefore we obtain

Lemma 2. The mapm̃q coincides with theq-deformed Miura transformationmq.

Remark 5.Let G be a simply-connected semisimple algebraic group overC. Let Vi

be theith fundamental representation ofG (in the caseG = SLn, Vi = 3iCn), and
χi : G → Cbe the corresponding character,χi(g) = Tr(g, Vi). Define a mapp : G → Cn

by the formulap(g) = (χ1(g), . . . , χn(g)). By construction,p is constant on conjugacy
classes. In the caseG = SLn the mapp has a cross-sectionr : Cn → SLn(C):

(a1, . . . , an) 7→


a1 a2 a3 . . . an−1 1
−1 0 0 . . . 0 0
0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . −1 0

 .

The compositionr ◦ p, restricted toMJ
n,1 coincides with the mapπ1. Moreover,m̃1 can

be interpreted as the restriction ofp to the subset ofSLn consisting of matrices of the
form (3.3). Hencẽm1 sends (λ1, . . . , λn) to the elementary symmetric polynomials

ti =
∑

j1<...<ji

λj1λj2 . . . λji ,

which are the characters of the fundamental representations ofSLn. As we mentioned
above, Steinberg has defined an analogue of the cross-sectionr for an arbitrary simply-
connected semisimple algebraic group [33].

Formula (2.13) expressingti(z) in terms of theλj(z)’s can be thought of as aq-
deformation of the character formula of theith fundamental representations ofSLn. It
is interesting that the same interpretation is also suggested by the definition ofWq(sln)
as the center of a completion of the quantized universal enveloping algebraUq(ŝln)−h∨

[19]. Namely,ti(z) is then defined as the (q-deformed) trace of the so-calledL-operator
acting on3iCn considered as a representation ofUq(ŝln), see [26, 19] (note also that
ti(z) is closely connected with a transfer-matrix of the corresponding integrable spin
model). �
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Thus, we have now representedMn,q as the quotient of the submanifoldMJ
n,q of

the manifoldMn,q of first orderq-difference operators by the action of the groupLN
(acting byq-gauge transformations). We have also interpreted theq-deformed Miura
transformation in these terms. In the next sections we discuss the Poisson structure on
Mn,q, which gives rise to the Poisson structure onMn,q given by explicit formula (2.8).

4. Poisson Structures

4.1. Overview.In view of the previous section, the following diagram is theq-difference
analogue of the diagram presented at the end of Sect. 2.

? ?

-

-

��

��

MJ
n,q

Mn,q = MJ
n,q/LN

Mn,q = (LG, ηq
∗)

Mn,q/LN

As in the differential case, in order to define aq-deformation of the Drinfeld–Sokolov
reduction we need to find a Poisson structureηq

∗ onMn,q and a Poisson-Lie structureη
onLSLn satisfying the following properties:

(i) The actionLSLn ×Mn,q → Mn,q by q-gauge transformations is Poisson.
(ii) The subgroupLN of LSLn is admissible in the sense that the algebraSq of

LN -invariant functionals onMn,q is a Poisson subalgebra of the algebra of all
functionals onMn,q.

(iii) Denote byµij the function onMn,q, whose value atD+A ∈ Mn,q equals the (i, j)
entry ofA. The ideal inSq generated byµij + δi−1,j , i > j, is a Poisson ideal.

Geometrically, the last condition means thatMn,q is a Poisson submanifold of the
quotientMn,q/LN .

For the sake of completeness, we recall the notions mentioned above. LetM be a
Poisson manifold, andH be a Lie group, which is itself a Poisson manifold. An action
of H onM is called Poisson ifH ×M → M is a Poisson map (here we equipH ×M
with the product Poisson structure). In particular, if the multiplication mapH×H → H
is Poisson, thenH is called a Poisson-Lie group.

In this section we describe the general formalism concerning problems (i)–(iii) above.
Then in the next section we specialize toM2,q and give an explicit solution of these
problems.

4.2. Lie bialgebras.Let g be a Lie algebra. Recall [9] thatg is called a Lie bialgebra, if
g∗ also has a Lie algebra structure, such that the dual mapδ : g → 32g is a one-cocycle.
We will considerfactorizableLie bialgebras (g, δ) satisfying the following conditions:
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(1) There exists a linear mapr+ : g∗ → g, such that bothr+ andr− = −r∗
+ are Lie

algebra homomorphisms.
(2) The endomorphismt = r+ − r− is g-equivariant and induces a linear isomorphism

g∗ → g.

Instead of the linear operatorr+ ∈ Hom(g∗, g) one often considers the corresponding
elementr of g⊗2 (or a completion ofg⊗2 if g is infinite-dimensional). The elementr
(or its image in the tensor square of a particular representation ofg) is called a classical
r-matrix. It satisfies the classical Yang-Baxter equation:

[r12, r13] + [r12, r23] + [r13, r23] = 0. (4.1)

In terms orr, δ(x) = [r, x], ∀x ∈ g (here [a⊗ b, x] = [a, x] ⊗ b + a⊗ [b, x]). The maps
r± : g∗ → g are given by the formulas:r+(y) = (y ⊗ id)(r), r−(y) = −(id ⊗y)(r).

Property (2) above means thatr + σ(r), whereσ(a⊗ b) = b⊗ a is a non-degenerate
g-invariant symmetric bilinear form ong∗.

Setg± = Im(r±). Property (1) above implies thatg± ⊂ g is a Lie subalgebra. The
following statement is essentially contained in [5] (cf. also [28]).

Lemma 3. Let (g, g∗) be a factorizable Lie bialgebra. Then

(1) The subspacen± = r±(Ker r∓) is a Lie ideal ing±.
(2) The mapθ : g+/n+ → g−/n− which sends the residue class ofr+(X), X ∈ g∗,

modulon+ to that ofr−(X) modulon− is a well-defined isomorphism of Lie algebras.
(3) Letd = g ⊕ g be the direct sum of two copies ofg. The map

i : g∗ → d, X 7→ (r+(X), r−(X))

is a Lie algebra embedding; its imageg∗ ⊂ d is

g∗ = {(X+, X−) ∈ g+ ⊕ g− ⊂ d|X− = θ(X+)},

whereY ± = Y modn±.

Remark 6.The connection between our notation and that of [29] is as follows: the oper-
atorr ∈ Endg of [29] coincides with the composition ofr+ + r− up to the isomorphism
t = r+ − r− : g∗ → g; the bilinear form used in [29] is induced byt.

4.3. Poisson-Lie groups and gauge transformations.Let (G, η) (resp., (G∗, η∗)) be a
Poisson-Lie group with factorizable tangent Lie bialgebra (g, δ) (resp., (g∗, δ∗)). Let
G± andN± be the Lie subgroups ofG corresponding to the Lie subalgebrasg± and
n±. We denote by the same symbolθ the isomorphismG+/N+ → G−/N− induced by
θ : g+/n+ → g−/n−. Then the groupG∗ is isomorphic to

{(g+, g−) ∈ G+ ×G−|θ(g+) = g−},

and we have a mapi : G∗ → G given byi((g+, g−)) = g+(g−)−1.
Explicitly, the Poisson bracket on (G, η) can be written as follows:

{ϕ,ψ} = 〈r,∇ϕ ∧ ∇ψ − ∇′ϕ ∧ ∇′ψ〉, (4.2)

where forx ∈ G, ∇ϕ(x),∇′ϕ(x) ∈ g∗ are defined by the formulas:
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〈∇ϕ(x), ξ〉 =
d

dt
ϕ

(
etξx

) |t=0, (4.3)

〈∇′ϕ(x), ξ〉 =
d

dt
ϕ

(
xetξ

) |t=0, (4.4)

for all ξ ∈ g. An analogous formula can be written for the Poisson bracket on (G∗, η∗).
In formula (4.2) we use the standard notationa ∧ b = (a⊗ b− b⊗ a)/2.

By definition, the action ofG on itself by left translations is a Poisson group action.
There is another Poisson structureη∗ onGwhich is covariant with respect to the adjoint
action ofG on itself and such that the mapi : (G∗, η∗) → (G, η∗) is Poisson. It is given
by the formula

{ϕ,ψ} = 〈r,∇ϕ ∧ ∇ψ + ∇′ϕ ∧ ∇′ψ〉 − 〈r,∇′ϕ⊗ ∇ψ − ∇′ψ ⊗ ∇ϕ〉. (4.5)

Proposition 4. (1) The mapi : G∗ → G is a Poisson map between the Poisson mani-
folds (G∗, η∗) and (G, η∗);

(2) The Poisson structureη∗ onG is covariant with respect to the adjoint action, i.e.
the map

(G, η) × (G, η∗) → (G, η∗) : (g, h) 7→ ghg−1

is a Poisson map.

These results are proved in [29],§ 3 (see also [30],§ 2), using the notion of the
Heisenberg double ofG. Formula (4.5) can also be obtained directly from the explicit
formulas for the Poisson structureη∗ and for the embeddingi.

More generally, letτ be an automorphism ofG, such that the corresponding auto-
morphism ofg satisfies (τ ⊗ τ )(r) = r. Define a twisted Poisson structureητ

∗ onG by
the formula

{ϕ,ψ} = 〈r,∇ϕ ∧ ∇ψ + ∇′ϕ ∧ ∇′ψ〉 (4.6)

− 〈(τ ⊗ id)(r),∇′ϕ⊗ ∇ψ − ∇′ψ ⊗ ∇ϕ〉,
and the twisted adjoint action ofG on itself by the formulag · h = τ (g)hg−1.

Theorem 1. The Poisson structureητ
∗ on G is covariant with respect to the twisted

adjoint action, i.e. the map

(G, η) × (G, ητ
∗ ) → (G, ητ

∗ ) : (g, h) 7→ τ (g)hg−1

is a Poisson map.

This result was proved in [29],§ 3 (see also [30],§ 2), using the notion of the twisted
Heisenberg double ofG. We will use Theorem 1 in two cases. In the first,G is the loop
group of a finite-dimensional simple Lie groupG, andτ is the automorphismg(s) →
g(sq), q ∈ C×. In the second,G = G

Z/NZ
, andτ is the automorphism (τ (g))i → gi+1.

In the first case twisted conjugations coincide withq-gauge transformations, and in the
second case they coincide with lattice gauge transformations.

4.4. Admissibility and constraints.LetM be a Poisson manifold,G a Poisson Lie group
andG ×M → M be a Poisson action. A subgroupH ⊂ G is called admissible if the
spaceC∞(M )H of H-invariant functions onM is a Poisson subalgebra in the space
C∞(M ) of all functions onM .
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Proposition 5 ([29],Theorem 6).Let (g, g∗) be the tangent Lie bialgebra ofG. A con-
nected Lie subgroupH ⊂ G with Lie algebrah ⊂ g is admissible ifh⊥ ⊂ g∗ is a Lie
subalgebra.

In particular,G itself is admissible. Note thatH ⊂ G is a Poisson subgroup if and
only if h⊥ ⊂ g∗ is an ideal; in that case the tangent Lie bialgebra ofH is

(
h, g∗/h⊥)

.
LetH ⊂ G be an admissible subgroup, andI be a Poisson ideal inC∞(M )H , i.e.I

is an ideal in the ringC∞(M )H , and{f, g} ∈ C∞(M )H for all f ∈ I, g ∈ C∞(M )H .
ThenC∞(M )H/I is a Poisson algebra.

More geometrically, the Poisson structure onC∞(M )H/I can be described as fol-
lows. Assume that the quotientM/H exists as a smooth manifold. Then there exists
a Poisson structure onM/H such that the canonical projectionπ : M → M/H is a
Poisson map. Hamiltonian vector fieldsξϕ, ϕ ∈ π∗C∞(M/H), generate an integrable
distributionHπ in TM . The following result is straightforward.

Lemma 4. Let V ⊂ M be a submanifold preserved byH. ThenV/H is a Poisson
submanifold ofM/H if and only ifV is an integral manifold ofHπ.

The integrality condition means precisely that the idealI of allH-invariant functions
onM vanishing onV is a Poisson ideal inC∞(M )H , and thatC∞(V/H) = C∞(V )H

= C∞(M )H/I. If this property holds, we will say that the Poisson structure onM/H
can be restricted toV/H.

? ?

-

-

��
��

V

V/H

M

M/H

The Poisson structure onV/H can be described as follows. LetNV ⊂ T ∗M |V
be the conormal bundle ofV . Clearly,T ∗V ' T ∗M |V /NV . Let ϕ,ψ ∈ C(V )H and
dϕ, dψ ∈ T ∗M |V be any representatives ofdϕ, dψ ∈ T ∗V. LetPM ∈ ∧2

T M be the
Poisson tensor onM .

Lemma 5. We have

{ϕ,ψ} =
〈
PM , dϕ⊗ dψ

〉
; (4.7)

in particular, the right hand side does not depend on the choice ofdϕ, dψ.

Remark 7.In the case of Hamiltonian action (i.e. when the Poisson structure onH is
trivial), one can construct submanifoldsV satisfying the condition of Lemma 4 using the
moment map. Although a similar notion of the nonabelian moment map in the context
of Poisson group theory is also available [24], it is less convenient. The reason is that the
nonabelian moment map is “less functorial” than the ordinary moment map. Namely, if
G×M → M is a Hamiltonian action with moment mapµG : M → g∗, its restriction
to a subgroupH ⊂ G is also Hamiltonian with momentµH = p ◦µG (herep : g∗ → h∗
is the canonical projection). IfG is a Poisson-Lie group,G∗ its dual,G ×M → M a
Poisson group action with momentµG : M → G∗, andH ⊂ G a Poisson subgroup,
the action ofH still admits a moment map. But ifH ⊂ G is only admissible, then the
restricted action does not usually have a moment map. This is precisely the case which
is encountered in the study of theq-deformed Drinfeld–Sokolov reduction.
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5. Theq-Deformed Drinfeld–Sokolov Reduction in the Case ofSL2

In this section we apply the general results of the previous section to formulate aq-
analogue of the Drinfeld–Sokolov reduction whenG = SL2.

5.1. Choice ofr-matrix. Let g = Lsl2. We would like to define a factorizable Lie
bialgebra structure ong in such a way that the resulting Poisson-Lie structureη on
LSL2 and the Poisson structureηq

∗ onM2,q satisfy the conditions (ii)–(iii) of Sect. 4.
Let {E,H,F} be the standard basis insl2 and{En, Hn, Fn} be the corresponding

(topological) basis ofLsl2 = sl2 ⊗ C((s)) (here for eachA ∈ sl2 we setAn = A⊗ sn ∈
Lsl2). Let τ be the automorphism ofLsl2 defined by the formulaτ (A(s)) = A(sq) (we
assume thatq is generic). We have:τ ·An = qnAn. To be able to use Theorem 1, ther-
matrixr ∈ Lsl⊗2

2 defining the Lie bialgebra structure onLsl2 has to satisfy the condition
(τ ⊗ τ )(r) = r. Hence the invariant bilinear form onLsl2 defined by the symmetric part
of r should also beτ -invariant.

The Lie algebraLsl2 has a unique (up to a non-zero constant multiple) invariant
non-degenerate bilinear form, which is invariant underτ . It is defined by the formulas

(En, Fm) = δn,−m, (Hn, Hm) = 2δn,−m,

with all other pairings between the basis elements are 0. This fixes the symmetric part of
the elementr. Another condition onr is that the subgroupLN is admissible. According
to Proposition 5, this means thatLn⊥

+ should be a Lie subalgebra ofLsl∗2.
A natural example ofr satisfying these two conditions is given by the formula:

r0 =
∑
n∈Z

En ⊗ F−n +
1
4
H0 ⊗H0 +

1
2

∑
n>0

Hn ⊗H−n. (5.1)

It is easy to verify that this element defines a factorizable Lie bialgebra structure ong.
We remark that this Lie bialgebra structure gives rise to Drinfeld’s “new” realization
of the quantized enveloping algebra associated toLsl2 [10, 22, 21]. As we will see in
the next subsection,r0 can not be used for theq-deformed Drinfeld–Sokolov reduction.
However, the following crucial fact will enable us to perform the reduction. LetLh be
the loop algebra of the Cartan subalgebrah of sl2.

Lemma 6. For anyρ ∈ ∧2Lh, r0 + ρ defines a factorizable Lie bialgebra structure on
Lsl2, such thatLn⊥

+ is a Lie subalgebra ofLsl∗2.

The fact thatr0 + ρ still satisfies the classical Yang-Baxter equation is a general
property of factorizabler-matrices discovered in [5]. Lemma 6 allows us to consider the
class of elementsr given by the formula

r =
∑
n∈Z

En ⊗ F−n +
1
2

∑
m,n∈Z

φn,m ·Hn ⊗Hm, (5.2)

whereφn,m + φm,n = δn,−m. The condition (τ ⊗ τ )(r) = r imposes the restriction
φn,m = φnδn,−m, so that (5.2) takes the form

r =
∑
n∈Z

En ⊗ F−n +
1
2

∑
n∈Z

φn ·Hn ⊗H−n, (5.3)

whereφn + φ−n = 1.
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5.2. The reduction.Recall thatM2,q = LSL2 = SL2((s)) consists of the 2× 2 matrices

M (s) =

(
a(s) b(s)
c(s) d(s)

)
, ad− bc = 1. (5.4)

We want to impose the constraintc(s) = −1, i.e. consider the submanifoldMJ
2,q and

take its quotient by the (free) action of the group

LN =

{(
1 x(s)
0 1

)}
.

Let η be the Poisson-Lie structure onLSL2 induced byr given by formula (5.3).
Let ηq

∗ be the Poisson structure onM2,q defined by formula (4.6), corresponding
to the automorphismτ : g(s) → g(sq). The following is an immediate corollary of
Theorem 1, Proposition 5 and Lemma 6.

Proposition 6. (1) Theq-gauge action of (LSL2, η) on (M2,q, η
q
∗) given by formula

g(s) ·M (s) = g(sq)M (s)g(s)−1 is Poisson;
(2) The subgroupLN ⊂ LSL2 is admissible.

Thus, we have satisfied properties (i) and (ii) of Sect. 4. Now we have to choose the
remaining free parametersφn so as to satisfy property (iii).

The Fourier coefficients of the matrix elements of the matrixM (s) given by (5.4)
define functions onM2,q. We will use the notationam for themth Fourier coefficient of
a(s). LetR2,q be the completion of the ring of polynomials inam, bm, cm, dm,m ∈ Z,
defined in the same way as the ringRn,q of Sect. 2.3. LetS2,q ⊂ R2,q be the subalgebra of
LN -invariant functions. Denote byI be the ideal ofS2,q generated by{cn +δn,0, n ∈ Z}
(the defining ideal ofMJ

2,q).
Property (iii) means thatI is a Poisson ideal ofS2,q, which is equivalent to the

condition that{cn, cm} ∈ I, i.e. that if {cn, cm} vanishes onMJ
2,q. This condition

means that the Poisson bracket of the constraint functions vanishes on the constraint
surface, i.e. the constraints are of first class according to Dirac.

Let us compute the Poisson bracket betweencn’s. First, we list the left and right
gradients for the functionsan, bn, cn, dn (for this computation we only need the gradients
of cn’s, but we will soon need other gradients as well). It will be convenient for us to
identify Lsl2 with its dual using the bilinear form introduced in the previous section.
Note that with respect to this bilinear form the dual basis elements toEn, Hn, andFn

areF−n, H−n/2, andE−n, respectively.
Explicit computation gives (for shorthand, we writea for a(s), etc.):

∇am = s−m

(
1
2a 0
c − 1

2a

)
, ∇bm = s−m

(
1
2b 0
d − 1

2b

)
,

∇cm = s−m

(− 1
2c a
0 1

2c

)
, ∇dm = s−m

(− 1
2d b
0 1

2d

)
,

∇′am = s−m

(
1
2a b
0 − 1

2a

)
, ∇′bm = s−m

(− 1
2b 0
a 1

2b

)
,

∇′cm = s−m

(
1
2c d
0 − 1

2c

)
, ∇′dm = s−m

(− 1
2d 0
c 1

2d

)
.
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Now we can compute the Poisson bracket betweencn’s using formula (4.6):

{cm, ck} =
1
2

∑
n∈Z

(
φn − φ−n + φnq

n − φ−nq
−n

)
c−n+mcn+k. (5.5)

Restricting toMJ
2,q, i.e. settingcn = −δn,0, we obtain:

{cm, ck}|MJ
2,q

=
1
2

∑
n∈Z

(
φm − φ−m + φmq

m − φ−mq
−m

)
δm,−k.

This gives us the following equation onφm’s:

φm − φ−m + φmq
m − φ−mq

−m = 0.

Together with the previous conditionφm + φ−m = 1, this determinesφm’s uniquely:

Theorem 2. The Poisson structureηq
∗ satisfies property (iii) of theq-deformed Drin-

feld-Sokolov reduction if and only if

φn =
1

1 + qn
.

Consider ther-matrix (5.2) withφn = (1+qn)−1. For thisr-matrix, the Lie algebras
defined in section Sect. 4 are as follows:g± = Lb∓, n± = Ln∓, wheren+ = CE, n− =
CF, b± = h ⊕ n±. We have:g±/n± ' Lh. The transformationθ onLh induced by this
r-matrix is equal to−τ .

Explicitly, on the tensor product of the two 2-dimensional representations ofsl2((t)),
ther-matrix looks as follows:

φ
(

t
s

)
0 0 0

0 −φ (
t
s

)
δ
(

t
s

)
0

0 0 −φ (
t
s

)
0

0 0 0 φ
(

t
s

)
 , (5.6)

where

φ(x) =
1
2

∑
n∈Z

1
1 + qn

xn.

Note that 2πφ(xq1/2) coincides with the power series expansion of the Jacobi elliptic
functiondn (delta of amplitude).

Now we have satisfied all the necessary properties on the Poisson structures and
hence can perform theq-Drinfeld–Sokolov reduction of Sect. 3 at the level of Poisson
algebras. In the next subsection we check that it indeed gives us the Poisson bracket
(2.14) on the reduced spaceM2,q = MJ

2,q/LN .

Remark 8.It is straightforward to identify theq → 1 limit of the reduced Poisson
algebra with the classical Virasoro algebra.
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5.3. Explicit computation of the Poisson brackets.Introduce the generating series

A(z) =
∑
n∈Z

anz
−n,

and the same for other matrix elements ofM (s) given by formula (5.4). We fix the
elementr by settingφn = (1 + qn)−1 in formula (5.3) in accordance with Theorem 2.
Denote

ϕ(z) =
∑
n∈Z

(φn − φ−n)zn =
∑
n∈Z

1 − qn

1 + qn
zn. (5.7)

Using the formulas for the gradients of the matrix elements given in the previous section
and formula (4.6) for the Poisson bracket, we obtain the following explicit formulas for
the Poisson brackets:

{A(z), A(w)} = ϕ
(w
z

)
A(z)A(w),

{A(z), B(w)} = −δ
(w
z

)
A(z)B(w),

{A(z), C(w)} = δ
(w
z

)
A(z)C(w),

{A(z), D(w)} = −ϕ
(w
z

)
A(z)D(w),

{B(z), B(w)} = 0,

{B(z), C(w)} = δ
(w
z

)
A(z)D(w) − δ

(wq
z

)
A(z)A(w),

{B(z), D(w)} = −δ
(wq
z

)
A(z)B(w),

{C(z), C(w)} = 0,

{C(z), D(w)} = δ

(
w

zq

)
A(z)C(w),

{D(z), D(w)} = ϕ
(w
z

)
D(z)D(w) − δ

(wq
z

)
C(z)B(w) + δ

(
w

zq

)
B(z)C(w).

Remark 9.The relations above can be presented in matrix form as follows. Let

L(z) =

(
A(z) B(z)
C(z) D(z)

)
,

and consider the operatorsL1 = L ⊗ id, L2 = id ⊗L acting onC2 ⊗ C2. Ther-matrix
(5.6) also acts onC2 ⊗ C2. Formula (4.6) can be written as follows:

{L1(z), L2(w)} =
1
2
r−

(w
z

)
L1(z)L2(w) +

1
2
L1(z)L2(w)r−

(w
z

)
− L1(z)r

(wq
z

)
L2(w) +L2(w)σ(r)

(zq
w

)
L1(z),

where
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r−
(w
z

)
= r

(w
z

)
− σ(r)

( z
w

)
=


1
2ϕ

(
w
z

)
0 0 0

0 − 1
2ϕ

(
w
z

)
δ
(

w
z

)
0

0 −δ (
w
z

) − 1
2ϕ

(
w
z

)
0

0 0 0 1
2ϕ

(
w
z

)
 .

5.4. Reduced Poisson structure.We know thatM2,q = MJ
2,q/LN is isomorphic to{(

t(s) 1
−1 0

)}
(see Sect. 3). The ringR2,q of functionals onM2,q is generated by the Fourier coefficients
of t(s). In order to compute the reduced Poisson bracket between them, we have to extend
them toLN -invariant functions on the wholeM2,q. Set

t̃(s) = a(s)c(sq) + d(sq)c(s). (5.8)

It is easy to check that the Fourier coefficientst̃m of t̃(s) areLN -invariant, and their
restrictions toMJ

2,q coincide with the corresponding Fourier coefficients oft(s).

Let us compute the Poisson bracket betweent̃m’s. Set

T̃ (z) =
∑
m∈Z

t̃mz
−m.

Using the explicit formulas above, we find

{T̃ (z), T̃ (w)} = ϕ
(w
z

)
T̃ (z)T̃ (w)

+ δ
(wq
z

)
1(z)c(w)c(wq2) − δ

(
w

zq

)
1(w)c(z)c(zq2),

(5.9)

where1(z) = A(z)D(z)−B(z)C(z) = 1. Hence, restricting toMJ
2,q (i.e. settingc(z) = 1

in formula (5.9)), we obtain:

{T (z), T (w)} = ϕ
(w
z

)
T (z)T (w) + δ

(wq
z

)
− δ

(
w

zq

)
.

This indeed coincides with formula (2.14).

Remark 10.Consider the subring̃S2,q of the ringR2,q, generated bycm, t̃m,m ∈ Z.
The ringS̃2,q consists ofLN -invariant functionals onM2,q, and hence it can serve as a
substitute for the ring of functions onM2,q/LN . Let us compute the Poisson brackets
in S̃2,q. The Poisson brackets oft̃m’s are given by formula (5.9), and by construction
{cm, ck} = 0. It is also easy to find that{cm, t̃k} = 0. HencẽS2,q is a Poisson subalgebra
ofR2,q. Thus, theq-deformed Drinfeld–Sokolov reduction can be interpreted as follows.
The initial Poisson algebra isR2,q. We consider its Poisson subalgebraS̃2,q generated by
cm’s andt̃m’s. The idealI of S̃2,q generated by{cm + δm,0,m ∈ Z} is a Poisson ideal.
The quotient̃S2,q/I is isomorphic to theq-Virasoro algebraR2,q defined in Sect. 3.
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5.5.q-deformation of Miura transformation.As was explained in Sect. 3.2, theq-Miura
transformation of [19] is the map between two (local) cross-sections of the projection
πq : MJ

n,q → MJ
n,q/LN . In the case ofLSL2, the first cross-section{(

λ(s) 0
−1 λ(s)−1

)}
is defined by the subsidiary constraintb(s) = 0, and the second{(

t(s) 1
−1 0

)}
is defined by the subsidiary constraintd(s) = 0. The map between them is given by the
formula

mq : λ(s) 7→ t(s) = λ(s) + λ(sq)−1.

Now we want to recover formula (2.16) for the Poisson brackets between the Fourier
coefficientsλn of λ(s), which makes the mapmq Poisson.

We have already computed the Poisson bracket on the second (canonical) cross-
section from the point of view of Poisson reduction. Now we need to compute the
Poisson bracket between the functionsan’s on the first cross-section, with respect to
which the mapmq is Poisson. This computation is essentially similar to the one outlined
in Sect. 3.2. The Poisson structure on the local cross-section is given by the Dirac
bracket, which is determined by the choice of the subsidiary conditions, which fix the
cross-section.

The Dirac bracket has the following property (see [16]). Suppose we are given
constraintsξn, n ∈ I, and subsidiary conditionsηn, n ∈ I, on a Poisson manifoldM ,
such that{ξk, ξl} = {ηk, ηl} = 0, ∀k, l ∈ I. Let f, g be two functions onM , such that
{f, ξk} and{g, ξk} vanish on the common level surface of allξk, ηk. Then the Dirac
bracket off andg coincides with their ordinary Poisson bracket.

In our case, the constraint functions arecm + δm,0,m ∈ Z, and the subsidiary
conditions arebm,m ∈ Z, which fix the local model of the reduced space. We have:
{bm, bk} = 0,{cm, ck} = 0, and{am, bk} = 0, if we setbm = 0, ∀m ∈ Z. Therefore we
are in the situation described above, and the Dirac bracket betweenam andak coincides
with their ordinary bracket. In terms of the generating functionA(z) =

∑
m∈Z amz

−m

it is given by the formula

{A(z), A(w)} = ϕ
(w
z

)
A(z)A(w),

which coincides with formula (2.16). Thus, we have proved the Poisson property of
theq-deformation of the Miura transformation from the point of view of the deformed
Drinfeld–Sokolov reduction.

6. Lattice Virasoro Algebra

In this section we consider the lattice counterpart of the Drinfeld–Sokolov reduction.
Our group is thusG = (SL2)Z/NZ, whereN is an integer, andτ is the automorphism of
G, which maps (gi) to (gi+1). Poisson structures onG which are covariant with respect
to lattice gauge transformationsxn 7→ gn+1xng

−1
n have been studied already in [29] (cf.
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also [2]). In order to make the reduction over the nilpotent subgroupN ⊂ G feasible,
we have to be careful in our choice of ther-matrix.

6.1. Discrete Drinfeld–Sokolov reduction.By analogy with the continuous case, we
choose the elementr defining the Lie bialgebra structure ong = sl

⊕Z/NZ
2 as follows:

r =
∑

n∈Z/NZ
En ⊗ Fn +

1
4

∑
m,n∈Z/NZ

φn,mHn ⊗Hm,

whereφn,m + φm,n = 2δm,n. It is easy to see thatr defines a factorizable Lie bialgebra
structure ong. For Theorem 1 to be applicable,r has to satisfy the condition (τ⊗τ )(r) = r,
which implies thatφn,m = φn−m.

An element ofG is anN -tuple (gi) of elements ofSL2:

gk =

(
ak bk
ck dk

)
.

We considerak, bk, ck, dk, k ∈ Z/NZ, as the generators of the ring of functions onG.
The discrete analogue of the Drinfeld–Sokolov reduction consists of taking the quo-

tientM = GJ/N, whereGJ = (GJ )Z/NZ,

GJ =

{(
a b

−1 d

)}
,

andN = NZ/NZ, acting onGJ by the formula

(hi) · (gi) = (hi+1gih
−1
i ). (6.1)

It is easy to see that

M '
{(

ti 1
−1 0

)
i∈Z/NZ

}
.

The elementrwithφn,m = φn−m, φk+φ−k = 2δk,0, defines a Lie bialgebra structure
on g and Poisson structuresη, ητ

∗ on G. According to Theorem 1, the action of (G, η)
on (G, ητ

∗ ) given by formula (6.1) is Poisson.
As in the continuous case, for the Poisson structureητ

∗ to be compatible with the
discrete Drinfeld–Sokolov reduction, we must have:

{cn, cm}|GJ = 0. (6.2)

Explicit calculation analogous to the one made in the previous subsection shows that
(6.2) holds if and only if

φn−1 + 2φn + φn+1 = 2δn,0 + 2δn+1,0.

The initial conditionφ0 = 1 and periodicity condition give us a unique solution: for

oddN , φk = (−1)k; for evenN , φk = (−1)k
(

1 − 2k
N

)
. In what follows we restrict

ourselves to the case of oddN (note that in this case the linear operator id +τ is invertible).
Continuing as in the previous subsection, we define

t̃n = ancn+1 + dn+1cn, n ∈ Z/NZ.
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These areN-invariant functions onG. We find in the same way as in the continuous
case:

{t̃n, t̃m} = ϕn−mt̃nt̃m + δn,m+1cmcm+2 − δn+1,mcncn+2, (6.3)

{t̃n, cm} = 0, {cn, cm} = 0,

where

ϕk =
1
2

(φk − φ−k) =

{
0, k = 0,

(−1)k, k 6= 0.

The discrete Virasoro algebraC[ti]i∈Z/NZ is by definition the quotient of the Poisson
algebraC[ t̃i, ci]i∈Z/NZ by its Poisson ideal generated byci+1, i ∈ Z/NZ. From formula
(6.3) we obtain the following Poisson bracket between the generatorsti:

{tn, tm} = ϕn−mtntm + δn,m+1 − δn+1,m. (6.4)

The discrete Miura transformation is the map from the local cross-section{(
λn 0
−1 λ−1

n

)}
to M ,

λn 7→ tn = λn + λ−1
n+1. (6.5)

It defines a Poisson mapC[λ±
i ]i∈Z/NZ → C[ti]i∈Z/NZ, where the Poisson structure on

the latter is given by the formula

{λn, λm} = ϕn−mλnλm. (6.6)

Remark 11.The Poisson algebraC[ti]i∈Z/NZ can be considered as a regularized version
of theq-deformed Virasoro algebra whenq = ε, whereε is a primitiveN th root of unity.
Indeed, we can then considert(εi), i ∈ Z/NZ, as generators and truncate in all power
series appearing in the relations, summations overZ to summations overZ/NZ divided
byN . This means that we replaceϕ(εn) given by formula (5.7) by

ϕ̃(εn) =
1
N

∑
i∈Z/NZ

1 − εi

1 + εi
εni,

andδ(εn) by δn,0. The formula for the Poisson bracket then becomes:

{t(εn), t(εm)} = φ̃(εm−n)t(εn)t(εm) + δn,m+1 − δn+1,m.

If we sett(εi) = ti, we recover the Poisson bracket (6.4), since it is easy to check that
ϕ̃(εm−n) = ϕn−m.

One can apply the same procedure to theq-deformedW-algebras associated tosln
and obtain lattice Poisson algebras. It would be interesting to see whether they are related
to the latticeW-algebras studied in the literature, e.g., in [6, 7]. In the case ofsl2, this
connection is described in the next subsection.
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6.2. Connection with Faddeev–Takhtajan–Volkov algebra.The Poisson structures (6.4)
and (6.6) are nonlocal, i.e. the Poisson brackets between distant neighbors on the lattice
are nonzero. However, one can define closely connected Poisson algebras possessing
local Poisson brackets; these Poisson algebras can actually be identified with those
studied by L. Faddeev, L. Takhtajan, and A. Volkov.

Let us first recall some results of [19] concerning the continuous case. As was ex-
plained in [19], one can associate a generating series of elements of theq-Virasoro
algebra to an arbitrary finite-dimensional representation ofsl2. The seriesT (z) consid-
ered in this paper corresponds to the two-dimensional representation. LetT (2)(z) be the
series corresponding to the three-dimensional irreducible representation ofsl2. We have
the following identity [19]:

T (z)T (zq) = T (2)(z) + 1,

which can be taken as the definition ofT (2)(z). From formula (2.15) we obtain:

T (2)(z) = 3(z)3(zq) + 3(z)3(zq2)−1 + 3(zq)−13(zq2)−1

= A(z) +A(z)A(zq)−1 +A(zq)−1,

where

A(z) = 3(z)3(zq) (6.7)

(note that the seriesA(z) was introduced in Sect. 7 of [19]). From formula (2.16) we
find:

{A(z), A(w)} =

(
δ

(
w

zq

)
− δ

(wq
z

))
A(z)A(w).

It is also easy to find

{T (2)(z), T (2)(w)} =

(
δ

(
w

zq

)
− δ

(wq
z

)) (
T (2)(z)T (2)(w) − 1

)
+ δ

(
wq2

z

)
T (w)T (wq3) − δ

(
w

zq2

)
T (z)T (zq3).

We can use the same idea in the lattice case. Letνn = λnλn+1; this is the analogue
of A(z). We have:

{νn, νm} = (δn+1,m − δn,m+1)νnνm, (6.8)

and henceC[ν±
i ] is a Poisson subalgebra ofC[λ±

n ] with local Poisson brackets. We can
also definet(2)

n = tntn+1 − 1. The Poisson bracket oft(2)
n ’s is local:

{t(2)
n , t

(2)
m } =

(
δn+1,m − δn,m+1

) (
t(2)
n t

(2)
m − 1

)
(6.9)

+ δn,m+2tmtm+3 − δn+2,mtntn+3.

Unfortunately, it does not close ont(2)
n ’s, so thatC[t(2)

i ] is not a Poisson subalgebra of
C[ti]. But let us define formally

sn =
1

1 + t(2)
n

= t−1
n t−1

n+1 =
1

(1 +νn)(1 +ν−1
n+1)

. (6.10)
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Then from formulas (6.10) and (6.8) we find:

{sn, sm} =snsm

(
(δn+1,m − δn,m+1)(1 − sn − sm) − (6.11)

− sn+1δn+2,m + sm+1δn,m+2
)
.

Thus, the Poisson bracket closes amongsn’s and defines a Poisson structure on
C[si]i∈Z/NZ.

The Poisson algebraC[si]i∈Z/NZ with Poisson bracket (6.11) was first introduced
by Faddeev and Takhtajan in [34] (see formula (54)). We see that it is connected with
our version of the discrete Virasoro algebra,C[ti], by a change of variables (6.10). The
Poisson algebraC[ν±

i ] and the Poisson mapC[ν±
i ] → C[sn] given by formula (6.10)

were introduced by Volkov in [35] (see formulas (2) and (23)) following [34]; see also
related papers [36, 13]. This map is connected with our version (6.5) of the discrete
Miura transformation by a change of variables.
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