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Abstract

We �rst review the basics of conformal �eld theories, and get a few results on
2D conformal �eld theories. After de�ning the simplest exemple of a conformal
�eld theory, the free boson, we de�ne correlation functions, see how conformal
invariance puts constraints on these functions, and compute the correlation
functions for the free boson. We then see the radial quantization, which is the
�rst step towards orbifolds. Doing so, we study the free boson on the cylinder.
Next, we mathematically construct orbifolds, and see how they are used to
construct new conformal �eld theories from old ones with global symmetries.
We see the importance of the modular transformations in the process, and study
conformal �eld theories on the torus. We �nally study the free boson on the
torus, and compute two di�erent orbifolds for the free boson.
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Chapter 1

Conformal �eld theories

This section serves as a short introduction to conformal �eld theories. It is
mostly based on [FMS97]. In 1.1, we will �rst recall what is a quantum �eld
theory, and de�ne what is a conformal �eld theory from it. In 1.2, we will see
how the group of conformal transformations impose strong constraints on the
theory. Finally, in 1.3 we will see the simplest exemple, that of the free boson.

1.1 Introduction

1.1.1 Beyond quantum mechanics

Quantum �eld theory (QFT) was invented to go beyond quantum mechanics.
Strictly speaking, quantum mechanics and quantum �eld theory are equivalent:
one can recover the same equations of motion from both theories. However,
quantum �eld theory tries to overcome many complications of quantum me-
chanics, to make computations as intuitive as possible. It is the product of
many re�nements of quantum mechanics. Therefore, let's see the limitations
that led to these re�nements.

A �rst limitation of quantum mechanics, as they were �rst formulated, is
that it can be bothersome to create or annihilate particles, because one state
describes one particle. To overcome this issue, physicists developped the second
quantization. In this formalism, instead of describing only one particle, states
describe the whole system. If H is the Hilbert space spanning all possible states
for a particle, the newly considered Hilbert space should look something like
⊕n∈NH⊕n

∗ , where H⊕n
∗ is the Hilbert space describing a system of n particles.

We will not go in details here on the construction of this space, called the Fock
space. A detailed construction of the Bosonic Fock space can be found here
[Cha18]. Replacing H by the Fock space, we are able to use 2 new operators,
the creation operator a† and the annihilation operator a. As indicated by their
names, the creation operator creates a particle, whilst the annihilation operator
annihilates a particle. Of course, there should be as many such operators as
number of possible states for the particle.

Another limitation of quantum mechanics is that its axioms do not inher-
ently respect special relativity, meaning the theory is not explicitely Poincaré
covariant. In its classical formulation, the states clearly depend of time. To
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overcome this, we need to go from the Schrödinger picture to the Heisenberg
picture. Classically,

ψt = e−itHψ (1.1)

This perspective is called the Schrödinger picture. But instead of having time-
independent operators along with states describing the particle at a given time,
we can suppose that a state describes the particle across the whole spacetime,
whilst operators are time-dependant and return, for exemple the momentum,
at a given time. We then have

At = eitHAe−itH (1.2)

This perspective is called the Heisenberg picture.
These two pictures are strictly equivalents. When evaluating a state against

an operator, we have

(ψt, Aψt) = (e−itHψ,Ae−itHψ) = (ψ, eitHAe−itHψ) = (ψ,Atψ) (1.3)

Putting the second quantization together with the Heisenberg picture, we can
have states describing the system across the whole spacetime, and give operators
a dependance in space and time. Doing so, we get �eld of operators, where for
exemple given a the creation operator �eld, a(x, t) is an operator creating a
particle at x at time t. With this, we can make the theory Poincaré covariant,
and in general covariant with any symmetry group. Let G be a symmetry
group acting on the spacetime, and U its action on the Fock space. We do have
a natural action of G on the Fock space, as any state in the Fock space describes
particles across spacetime, and thus naturally transform under any member of
G acting on the spacetime. The theory has this symmetry if and only if for any
g ∈ G, for any �eld of operator φ, we have

U(g)φ(x, t)U(g)−1 = φ(g(x, t))

We will add one last re�nement to the quantum mechanics framework before
formally de�ning quantum �eld theory. Right now, we are considering �elds of
operator. Let |ϕ⟩ the state of a system. Suppose we want to �nd the momentum
of a particle at x at time t. Actually, due to the principle of quantum mechanics,
the probability of �nding this particle exactly at x at time t is null. With P
the momentum operator �eld, we should have ⟨ϕ|P (x, t)|ϕ⟩ = 0. We see that
considering �elds of operator is not a good approach. The right approach would
be to consider operator-valued distributions on the spacetime instead, and to
compute ⟨ϕ|P (f)|ϕ⟩ = 0 where f is a test function approaching δ(x,t).

1.1.2 Quantum �eld theory

With all of these re�nements, we can de�ne a quantum �eld theory, according to
Wightman's axioms, which are widely used axioms. LetM be the d dimensional
Minkowski space. An Hilbert space H and a collection (ϕa) of operator-valued
distributions on M make a quantum �eld theory if

1. We have a unitary representation U : (q,Λ) → U(q,Λ) of the Poincaré
group such that for all q ∈ M,Λ ∈ L the Poincaré group, for all a, f , we
have

U(q,Λ)ϕa(f)U(q,Λ)−1 = ϕa((q,Λ)f) (1.4)
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2. We have a vacuum vector |0⟩ �xed by U , and in the domain of any poly-
nomial having as indeterminates the (ϕa)

3. Writing for q ∈M U(q, 1) = ei
∑d−1

k=0 qkPk , the joint spectrum of the Pk lies
in the forward cone

4. The linear subspace of the polynomials having as indeterminates the (ϕa)
applied to |0⟩ is dense in H: {P |0⟩/P ∈ P((ϕa))} is dense in H

5. For any test functions f, g whose supports are spacelike separated (any
two point is spacelike separated), for any a, b, we have ϕa(f)ϕb(g) =
ϕb(g)ϕa(f)

The �rst axiom makes sure our theory is Poincaré covariant. The second
axiom gives a stable vacuum vector. The third makes sure that we have every
�eld we need and that our space is complete. The last one is a locality condition,
and makes sure two particles have no interaction if they are spacelike separated.

1.1.3 Conformal �eld theory

A major di�erence between quantum mechanics and quantum �eld theory is
that quantum �eld theory is explicitely Poincaré covariant. More speci�cally,
the �rst axiom (1.4) makes sure that the Hilbert space contains a representation
of the Poincaré group, and that the �elds are covariant with its action. But one
can extend the symmetry group of the theory, and make it invariant through
other kinds of transformations.

Let's �rst add a few de�nitions.

De�nition 1.1.1. A coordinate transformation is called conformal if it pre-
serves angle, or equivalently if it is a local rescaling of the metric. Mathemati-
cally speaking, g is a conformal transformation if under a coordinate transfor-
mation xµ → wµ(x) the spacetime metric transforms as

g′µν(w) = Λ(x)gµν(x) (1.5)

De�nition 1.1.2. A conformal transformation is said to be global if it is in-
vertible.

We call a conformal �eld theory (or a CFT) any quantum �eld theory invari-
ant through global conformal transformations. In term of axioms, it is equiva-
lent to extending the unitary representation of the Poincaré group to the global
conformal group, and to ensure the �elds are covariant under global conformal
transformations.

1.2 2D Conformal �eld theories

1.2.1 2-dimensional conformal transformations

2-dimensional conformal transformations

Conformal transformations become especially interesting when we are working
with a dimension of 2. The idea behind CFTs is simply to add symmetries.
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Each symmetry adds a constraint on our theory; so adding more symmetries
allow us to do more precise models, with less possibilities. It often allows us
for more detailed calculations. And in 2 dimensions, the group of conformal
transformations is in�nite dimensional!

Let's try to actually �nd these transformations. We take a 2 dimensional
space with the Euclidian metric. With Einstein's notations, for a coordinate
transformation xµ → wµ(x), the metric tensors transforms as

g′µν =

(
∂wµ

∂xα

)(
∂wν

∂xβ

)
gαβ (1.6)

For it to be a conformal transformation, for all µ, ν ∈ {0, 1}, we must have

g′µν = Λgµν (1.7)

With Λ depending on the position. g is the Euclidian metric, so we have g01 =
g10 = 0 and g11 = g00 = 1. The condition for the transformation to be conformal
thus becomes

g′00 = g′11 = 0 (1.8)

g′01 = g′10 (1.9)

Adding (1.6) to the above equations, we get the following two conditions:

∂w0

∂x0
∂w1

∂x0
+
∂w0

∂x1
∂w1

∂x1
= 0 (1.10)

(
∂w0

∂x0

)2

+

(
∂w0

∂x1

)2

=

(
∂w1

∂x0

)2

+

(
∂w1

∂x1

)2

(1.11)

Writing ∂0 ≡ ∂
∂x0 and ∂1 ≡ ∂

∂x1 , the above conditions can be resumed to

∂0w1 = ±∂1w0 ∂0w0 = ∓∂1w1 (1.12)

These exactly corresponds to the holomorphic and anti-holomorphic Cauchy-
Riemann equations. From this, we use the Wick rotation on the plane, to easily
separate the holomorphic and anti-holomorphic part of each function. We de�ne

z ≡ x0 + ix1 ∂ ≡ 1

2
(∂0 − i∂1)

z̄ ≡ x0 − ix1 ∂̄ ≡ 1

2
(∂0 + i∂1)

(1.13)

Note that the metric tensor thus changes to

gµν =

(
0 1

2
1
2 0

)
(1.14)

With these coordinates, the holomorphic Cauchy-Riemman equations be-
come

∂̄w(z, z̄) = 0 (1.15)

Which solution is any holomorphic function z → w(z) We get the same thing
for the antiholomorphic Cauchy-Riemman equations, in the variable z̄. But we
know that the solution to these equations are functions holomorphic in some
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open set. The conformal group for d = 2 is thus the set of analytical functions,
on some open subset. It has an in�nite number of dimensions, corresponding to
the coe�cients of a Laurent serie.

z and z̄ are interchangeable everywhere, and independent from each other
in the equations as we have seen so far. As such, they are uncorrelated and a
2D CFT is composed of the sum of two algebras, one in the z dimension and
the other in the z̄ dimension. The data of only one of the two algebras is called
a 2D chiral conformal �eld theory. As the two chiral algebras are uncorrelated,
we will now do most calculation according to z only.

Global conformal transformations

To form a real group, every element must be invertible. Let f be a global confor-
mal transformation on a two-dimensional space, that is an invertible conformal
transformation. We have seen previously f is analytical. It must be invertible
so injective: f can't have essential singularities nor branch points. Thus, there
exist P,Q ∈ C[X] such that

f(z) =
P (z)

Q(z)
(1.16)

If P has multiple roots, f is not injective. The same goes if Q has multiple
roots. As such, there exist a, b, c, d ∈ C such that

f(z) =
az + b

cz + d
(1.17)

For f to be invertible, the determinant ad − bc must be di�erent than 0. As
the choice of a, b, c, d is not unique in (1.17), we can normalize and choose
ad−bc = 1. Reciprocally, we can easily verify that for any a, b, c, d, e, f, g, h ∈ C
such that ad − bc = 1, eh − fg = 1, the transformation z, z̄ → az+b

cz+d ,
ez̄+f
gz̄+h is a

global conformal transformation.

We conclude that the group of global conformal transformation of dimension
2 is isomorphic to SL(2,C)2.

1.2.2 The Virasoro algebra

This section is mainly inspired by [Jer21]. We now consider an in�nitesimal
transformation ϵ(z). We have proved that an in�nitesimal conformal transfor-
mation in two dimensions must obey the holomorphic Cauchy-Riemman equa-
tions, and thus be holomorphic on some open subset. However, our in�nitesimal
transformation can have singularities outside of the open subset. We will there-
fore assume that ϵ is meromorphic, and write its Laurent serie

z′ = z + ϵ(z) = z −
∑
n∈Z

ϵnz
n+1 (1.18)

Remark. Remember that we are only looking at the holomorphic part. The
same thing is valid for the anti-holomorphic dimension.

Let's try to �nd the generator of the transformation made by the nth term.
Applying the transformation on a spinless, dimensionless �eld ϕ(z) gives ϕ′(z) =
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ϕ(z)+δϕ(z) = ϕ(z)+ϵ(z)∂ϕ(z). Thus, the generator associated to the nth term
of the serie is

ln = −zn+1∂ (1.19)

We thus have in�nitely many independent in�nitesimal conformal transforma-
tions for d = 2. If we try to �nd the conformal algebra, we have

[lm, ln] = −zm+1∂(−zn + 1)∂ + zn+1∂(−zm + 1)∂

= (n−m)zm+1+n∂

= (m− n)lm+n

(1.20)

These bracket relations de�ne what is called a Witt algebra. We also have as
expected

[l̄m, l̄n] = (m− n)l̄m+n (1.21)

[lm, l̄n] = 0 (1.22)

However, mathematicians didn't stop their studies here, satis�ed by this algebra.
Thanks to Lie algebra theory, we know that this algebra is extensible, with
what is known as a central extension. Moreover, the extended algebra would
be equivalent to the original one, and is preferable to study. Adding a central
extension to the Witt algebra modi�es (1.20) as following, for c ∈ C and some
function g

[lm, ln] = (m− n)lm+n + cg(m,n) (1.23)

(1.22) is modi�ed similarly.
The next step is to �nd what is g. First, it is antisymmetric. We can add

cg(−1,1)
2 to l0 such that we now have g(−1, 1) = 0. Similarly, we can add a

constant times g(n, 0) to ln such that for all n ̸= 0, g(n, 0) = 0. We only add
constants, so the algebra itself isn't modi�ed.

We are working with the extension of a Lie algebra. The (ln) still verify the
Jacobi identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. Using ln, lm and l0, we
then prove that for anym,n such thatm ̸= −n, we have g(n,m) = 0. Moreover,
thanks to an induction, we prove with the help of ln, l0 and ln−1 that for any n

we have g(n,−n) = (n+1)!
3!(n−2)!p(2,−2). Choosing by convention p(2,−2) = 1

2 for

nice scaling dimension values, we have g(n,−n) = 1
12 (n

3 − n). More details of
this proof can be found here [Jer21, p. 7]. The Lie algebra we then get is called
the Virasoro algebra.

De�nition 1.2.1. We call a Virasoro algebra a Lie algebra composed of (ln∈Z)
de�ned by the following relation for all n,m ∈ Z

[lm, ln] = (m− n)lm+n +
c

12
(m3 −m)δm=−n (1.24)

We then call c its central charge.

Every 2D CFT contains 2 representations of the Virasoro algebra: one in the
holomorphic dimension and the other one in the anti-holomorphic dimension.
The Virasoro algebra is the algebra corresponding to conformal transformations.
The �rst axiom of Wightman's axioms (1.4) adapted to conformal �eld theories
is therefore equivalent to saying that every �eld must be covariant under the
action of the 2 Virasoro algebras.
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1.2.3 Primary and quasi-primary �elds

We take the coordinates from the previous subsection. Let ϕ(z, z̄) be a �eld of
a 2D CFT.

De�nition 1.2.2. We say ϕ is holomorphic (or chiral) if it only depends on z,
and we say it is anti-holomorphic (or anti-chiral) if it only depends on z̄

A CFT is invariant through the conformal group, so through rescaling too.
In particular, under the rescaling z → λz, a �eld changes as

ϕ(z, z̄) → λhλ̄h̄ϕ(λz, λ̄z̄) (1.25)

We say h is its holomorphic scaling dimension, and h̄ its anti-holomorphic scaling
dimension.

De�nition 1.2.3. A �eld ϕ is said to be quasi-primary if for any global con-
formal transformation z → f(z), the �eld transforms as

ϕ(z, z̄) →
(
∂f

∂z

)h(
∂f

∂z̄

)h̄

ϕ(f(z, z̄)) (1.26)

De�nition 1.2.4. A �eld ϕ is said to be primary if for any conformal transfor-
mation z → f(z), the �eld transforms as described by equation (1.26).

1.2.4 The Hilbert space

We want to see what the Hilbert space of a conformal theory looks like. We will
simply give an overview without going into much details. More can be found
here [FMS97, p. 200] We consider a 2D conformal �eld theory. We write (Ln)n
its Virasoro algebra in the holomorphic dimension, and (L̄n)n its Virasoro al-
gebra in the antiholomorphic dimension. L−1, L0, L1 and their antiholomorphic
counterparts generates global conformal symmetries. We thus want to de�ne
the vacuum state |0⟩ such that

L−1|0⟩ = 0 L0|0⟩ = 0 L1|0⟩ = 0

L̄−1|0⟩ = 0 L̄0|0⟩ = 0 L̄1|0⟩ = 0
(1.27)

More generally, we want for any n ≥ −1

Ln|0⟩ = 0

L̄n|0⟩ = 0
(1.28)

From this, we proceed as for the usual construction of a representation of
su(2). As the two Virasoro algebras are decoupled, the space generated by the
two Virasoro algebras will simply be the tensor product of the two spaces each
generated by a Virasoro algebra. For this reason, we will for now only consider
the holomorphic dimension.

We want to �nd the space of state spanned from a highest-weight state
by the holomorphic Virasoro algebra. We can de�ne a highest-weight state
|h⟩, eigenstate of L0 with eigenvalue h. Such a state is created by applying
asympotically a primary �eld ϕh of holomorphic dimension h to the vacuum

|h⟩ = ϕh(0)|0⟩ (1.29)
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Remark. We can choose to take the �eld at 0 due to conformal invariance, where
we can map any non-dense set of points to a neighboorhood of 0. Currently,
choosing to take the �elds in 0 doesn't make much sense. This will make more
sense in 3.1.

Since [L0, Lm] = −mLm, the (Lm)m>0 act as lowering operators on |h⟩,
whilst the (L−m)m>0 act as raising operators. We have for m > 0

L−m|h⟩ = 0 (1.30)

All other states are generated by applying any combination of lowering op-
erators on |h⟩. A general state takes the form

L−k1
. . . L−kn

|h⟩ (1.31)

where by convention we have k1 ≤ · · · ≤ kn. Note that we thus have an
equivalence between states and operators: to any state, we can associate a
unique operator �eld (made of the primary �eld to which we applied Virasoro
operators) which, when applied to the vacuum, gives the state.

We call this space of states a Verma module, and write it V (c, h) where c is
the central charge of the Virasoro algebra. Then, in general, the Hilbert space
of the theory takes the form

H =
∑
h,h̄

V (c, h)⊗ V̄ (c, h̄) (1.32)

Remark. Note that in general, a Verma module is not an irreductible represen-
tation of the Virasoro algebra. In particular, one may �nd sub Verma modules
inside a Verma module.

1.3 The free boson

Let's now try to put our knowledge to use. One of the simplest system one can
consider is the free scalar �eld φ, a scalar �eld with action

S[φ] =

∫
dxdtL(φ, φ̇,∇φ) φ̇ ≡ ∂φ

∂t

L =
1

2

(
1

c2
φ̇2 − (∇φ)2 −m2φ2

) (1.33)

For the rest of this section, we set c = 1. We consider this system in 2
dimensions, one temporal and one spatial dimension. We can start to study
the system by replacing the spatial dimension with a discrete set of points. We
consider N points, with a lattice spacing of a. Moreover, we set a periodic
boundary condition φN = φ0. The Lagrangian (1.33) then becomes

L =

N−1∑
k=0

a

2

(
φ̇2
k − 1

a2
(φk+1 − φk)

2 −m2φ2
k

)
(1.34)

We de�ne the canonical momentum conjugate to the variable φn:

πn = aφ̇n (1.35)
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Rewriting the Lagrangian (1.34) in terms of the position and momentum, we
get the Hamiltonian

H =
1

2

N−1∑
k=0

(
1

a
π2
k − 1

a
(φk+1 − φk)

2 − am2φ2
k

)
(1.36)

We switch to the canonical quantization, by replacing the (φk) and (πk) by
operators, and by imposing at equal times the following commutation relations:

[φn, πm] = iδn,m

[πn, πm] = [φn, φm] = 0
(1.37)

We have set Planck's constant to 1, for simplicity.

The Hamiltonian is translation invariant. This motivates the use of Fourier
transforms.

φ̃k =
1√
N

N−1∑
j=0

e−2πikj/Nφj

π̃k =
1√
N

N−1∑
j=0

e−2πikj/Nπj

(1.38)

φk and πk are real so φ̃†
k = φ̃−k and π̃†

k = π̃−k. We have [φ̃n, π̃
†
m] = iδn,m

With these, the Hamiltonian (1.36) becomes

H =
1

2

N−1∑
k=0

(
1

a
π̃kπ̃

†
k + aφ̃kφ̃

†
k

[
m2 +

2

a2

(
1− cos(

2πk

N
)

)])
(1.39)

This is exactly the Hamiltonian for a system of uncoupled harmonic oscillators,
with frequencies

ωk =

√
m2 +

2

a2

(
1− cos(

2πk

N
)

)
(1.40)

We can then de�ne the annihilation and creation operators

ak =
1√
2aωk

(aωkφ̃k + iπ̃k)

a†k =
1√
2aωk

(aωkφ̃
†
k − iπ̃†

k)

(1.41)

We do have
[an, a

†
m] = δn,m (1.42)

The Hamiltonian rewrites nicely as

H =

N−1∑
k=0

(a†kak +
1

2
)ωk (1.43)

We see there that ak and a†k indeed act as annihilation and creation op-

erators, with a†kak the density operator. We de�ne the ground state |0⟩ such
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that for all k, ak|0⟩ = 0. From this, any state can be computed by repeatedly
applying creation operators on the ground state.

From this, we can let a→ 0 and N → ∞ simultaneously, such that Na stays
constant. This way, we get back to the continuous system in 2 dimensions. φk

becomes φ(x), 1
aπn becomes π(x) = φ̇(x). a

∑N−1
k=0 becomes

∫
dx, and δn,m

becomes aδ(x− x′).
Similarly, the Fourier indices k are replaced by the momentum p = 2πk

V .∑N−1
k=0 becomes V

2π

∫
dp, and ak is replaced by 1

V a(p), with energy ω(p) =√
m2 + p2.

The simplest states are of the form a†(p)|0⟩, with energy ω(p) =
√
m2 + p2.

This is typical of relativistic particles. We can thus interpret these states as
elementary particles. Moreover, general states aren't a�ected by switching two
particles (a†(p)a†(p′)|0⟩ = a†(p′)a†(p)|0⟩). We are thus considering bosons.
There is no interactions between the bosons, so we call this system the free
boson system. As of now, the system is not particularly conformal invariant.
In particular, a unit of mass is introduced in the system due to the mass of the
boson taken into accoun in the Lagrangian. To make this theory conformally
invariant, we need to consider the free massless boson. This is what we will do
in the next section on the boson.
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Chapter 2

Correlation functions

Now that we have de�ned conformal �eld theories, we would like to study their
dynamics, and how conformal invariance actually constrains the theory. In
2.1, we de�ne correlation functions and see how they are constrained by con-
formal invariance. In 2.2, we use the symmetries of our system to derive a
family of equations constraining the theory. In particular, we de�ne the energy-
momentum tensor. Finally, in 2.3, we compute the correlation functions in the
theory of the free boson.

2.1 Correlation functions

2.1.1 Motivation

The main objective of quantum �eld theory, and thus conformal �eld theory, is
to compute correlation functions. Let's �rst try to understand how it works in
classical mechanics.

Suppose we are in presence of a potential V , vanishing at in�nity. Let (x, v)
be the position and velocity of a particle at time 0. Without potential, this
particle would be in (x − tv, v) at time −t. We write Ω−

t (x, v) = (x − tv, v).
Reciprocally, knowing the position and velocity of a particle (x, v) at time 0,
we can compute Ω+

t (x, v) the position and velocity of the same particle under
the potential V at time t. We then have limt→∞ Ω+

t Ω
−
t (x, v) the position and

velocity of the particle coming from the "direction (x, v)", under the action
of the potential V . Finally, we can compute limt→∞ Ω−

t Ω
+
t Ω

+
t Ω

−
t (x, v), the

direction in which the particle ends when it came from the direction (x, v).
We call S = limt→∞ Ω−

t Ω
+
t Ω

+
t Ω

−
t the scattering operator. Understanding this

operator allows one to compute the asymptotic states of the system, which is
often what we desire.

By analogy, we can also use similar methods in quantum mechanics. With
H the Hamiltonian of a system and H0 the free Hamiltonian (the Hamiltonian
of the system without external forces), we can de�ne the evolution and free
evolution operators. We have Ω−

t = e−itH0 and Ω+
t = eitH . We can then de�ne

the scattering operator (under some conditions) and compute the probability of

12



a particle coming from a direction ending in another direction

P((x, v) → (x′, v′)) = ⟨x′, v′|S|x, v⟩ (2.1)

Using the quantum �eld theory formalism, we can go even further. Using
the creation a and annihilation a† operator �elds, we can write

P((x, v) → (x′, v′)) = ⟨0|a†(x′, v′)Sa(x, v)|0⟩ (2.2)

In a more general way, we want to compute expressions of the form

⟨0|φ1(x1)φ2(x2) . . . φn(xn)|0⟩ (2.3)

where (φk)k is a sequence of �elds. As we want this to express the probability of
a state becoming another one through time, we want the operators inside of the
expression to be ordered according to time, meaning x1 is later than x2, which
is later than x3, etc. . . This leads to the de�nition of a correlation function.

De�nition 2.1.1. Given a sequence of �elds, the n-point correlation function,
or simply correlation function, of a sequence of �eld (φk)k, is the function in n
variables

⟨0|T (φ1(x1)φ2(x2) . . . φn(xn))|0⟩ (2.4)

where T is the time-ordering operator, which reorders the �elds according to
the time they are taken at.

Remark. Note that the correlation function is not a real correlation function,
in the sense of statistics or probability. In fact, the correlation function of two
�elds can be negative. However, it is the most correct generalisation of what we
could imagine as a correlation function between �elds.

2.1.2 Path integral formalism

We would like to use the conformal symmetry of conformal �eld theories to add
constraints to correlation functions, to compute them more easily. To do so,
we need to know how a correlation function transforms along with a coordinate
transformation. The best way to see how correlation functions is to switch to
the path integral formalism.

We will simply see here the main idea of the path integral formalism. A
more detailed discussion can be found here [Fra].

The main idea is to consider the action of the system. We usually consider
the Hamiltonian, due to one of the axioms of quantum mechanics which directly
gives an Hamiltonian. However, one could also consider the Lagrangian L and
the action S =

∫
L. Well de�ning the action, for 2 �elds φ1, φ2 taken in a point

x and in two times t1, t2, we have

⟨φ1(x, t1)|φ2(x, t2)⟩ =
∫

[dφ(x, t)]eiS[φ] (2.5)

where φ is an interpolation between the �elds φ1 and φ2, where [dφ(x, t)] is a
measure on spacetime depending on φ, and where S is the action of the system.

13



As a matter of fact, the action of the system is often de�ned for (2.5) to be
true. Let's now try to reformulate correlation functions using the action of the
system.

Let ψ an arbitrary �eld. Writing |n⟩ the energy eigenstates of the Hamilto-
nian with eigenvalue En, we have

eitH(1−iϵ)|ψ⟩ =
∑
n

eitH(1−iϵ)|n⟩⟨n|ψ⟩

=
∑
n

eitEn(1−iϵ)|n⟩⟨n|

→ϵ→0,t→∞ eitE0(1−iϵ)|0⟩⟨0|ψ⟩

(2.6)

Then for ψ1, ψ2 two arbitrary �elds, for any two operators O1,O2, we have

⟨0|O1|0⟩
⟨0|O2|0⟩

= lim
t1,t2→∞,ϵ→0

⟨ψ1|e−it1H(1−iϵ)O1e
−it2H(1−iϵ)|ψ2⟩

⟨ψ1|e−it1H(1−iϵ)O2e−it2H(1−iϵ)|ψ2⟩
(2.7)

Thus, for a sequence of �elds (xk)k and a sequence of times (tk)k, recalling that
xk(tk) = eitkHxke

−itkH with xk = xk(0) (1.2), assuming that the (xk)k and
(tk)k are already time-ordered, we have

⟨x1(t1) . . . xn(tn)⟩ =
⟨0|x1eiH(t2−t1)x2e

iH(t3−t2) . . . eiH(tn−tn−1)xn|0⟩
⟨0|eiH(tn−t1)|0⟩

=
⟨ψ1|e−iT1H(1−iϵ)x1e

iH(t2−t1) . . . xne
−iT2H(1−iϵ)|ψ2⟩

⟨ψ1|e−i(T1+T2+t1−tn)H(1−iϵ)|ψ2⟩

(2.8)

for T1, T2 → ∞, ϵ → 0. By inserting sums of |n⟩⟨n| between each operator and
by replacing everything in the path formalism, we obtain for the nominator

lim
T1,T2→∞,ϵ→0

∫ T2

T1

[dx(t)]ψ∗
1(T1)ψ2(T2)x1(t1) . . . xn(tn)e

iSϵ[x(t)] (2.9)

Remembering that the �elds ψ1, psi2 where chosen arbitrarily, we can choose
them such that ψ1(T1) = ψ2(T2) = 1. We have

⟨x1(t1) . . . xn(tn)⟩ = lim
ϵ→0

∫
[dx(t)]x1(t1) . . . xn(tn)e

iSϵ[x(t)]∫
[dx(t)]eiSϵ[x(t)]

(2.10)

With the change of coordinates t→ −iτ , rede�ning xk(−iτ) as xk(τ), we �nally
have

⟨x1(τ1) . . . xn(τn)⟩ =
∫
[dx]x1(τ1) . . . xn(τn)e

−SE [x(τ)]∫
[dx]e−SE [x(τ)]

(2.11)

with SE(x(τ)) = −iS(x(t)).
Remark. This transformation leads to what is called the Euclidian formalism.
To do the transformation, we have assumed that the correlation functions could
be analytically continued from real time to imaginary time.
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2.1.3 Conformal invariance

Now that we have an expression of correlation functions in the path integral
formalism, we can easily see how they transform. Let S be the action of the
system in the Euclidian formalism. Let (φk)k a sequence of �elds, and (xk)k
a sequence of coordinates. We write Z =

∫
[dφ]e−S[φ] the vacuum functional.

By analogy with statistical mechanics, we sometimes also call Z the partition
function. Let xk → x′k a coordinate transformation under which the action is
invariant. We write

φ′(x′) = F(φ(x)) (2.12)

We have

⟨φ1(x
′
1) . . . φn(x

′
n)⟩ =

1

Z

∫
d[φ]φ1(x

′
1) . . . φn(x

′
n)e

−S[φ]

=
1

Z

∫
d[φ′]φ′

1(x
′
1) . . . φ

′
n(x

′
n)e

−S[φ′]

=
1

Z

∫
d[φ]F(φ1(x1)) . . .F(φn(xn))e

−S[φ]

= ⟨F(φ1(x1)) . . .F(φn(xn))⟩

(2.13)

In particular, a conformal �eld theory is a quantum �eld theory where the
axiom is invariant under conformal transformations. Recalling (1.25), for any
sequence of �eld (ϕk)k in a conformal �eld theory with scaling dimensions (∆k)k,
for any sequence of points (xk)k, for λ ∈ R we have

⟨ϕ1(λx1) . . . ϕn(λxn)⟩ = λ−∆1···−∆n⟨ϕ1(x1) . . . ϕn(xn)⟩ (2.14)

Now consider a 2 dimensional conformal �eld theory. Let (ϕk)k be a sequence
of primary �elds, with conformal dimensions (hk)k and (h̄k)k. According to
(1.26), for a conformal transformation of the form z → w, z̄ → w̄,(2.13) becomes

⟨ϕ1(w1, w̄1) . . .ϕn(wn, w̄n)⟩

=

n∏
k=1

(
dw

dz

)−hk

w=wk

(
dw̄

dz̄

)−h̄k

w̄=w̄k

⟨ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)⟩
(2.15)

Let's now look at the 2-points correlation function of primary �elds in a 2D
CFT. Due to rotation and translation invariance, we have in any dimension that

⟨ϕ1(x1)ϕ2(x2)⟩ = f(|x1 − x2|) (2.16)

In 2 dimensions, we are using the coordinates de�ned in (1.13). |x1, x2| becomes

((z1 − z2)(z̄1 − z̄2))
1
2 .

The above equation becomes:

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)⟩ = f((z1 − z2)(z̄1 − z̄2)) (2.17)

But with (2.14), this is constrained to

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)⟩ =
C

(z1 − z2)h1+h2(z̄1 − z̄2)h̄1+h̄2
(2.18)

15



with C a constant depending on the 2 �elds. Finally, using the covariance of the
correlation function with special conformal transformations, we get an equation
implying that the conformal dimensions of the two �elds must be equal [FMS97,
p. 105]. If the conformal dimensions of the two �elds are di�erent, the correlation
function necessarily vanishes. Else, we have

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)⟩ =
C

(z1 − z2)2h(z̄1 − z̄2)2h̄
(2.19)

with h = h1 = h2, h̄ = h̄1 = h̄2.

2.1.4 Wick's theorem

We will �nish this section with a theorem coming from combinatorics, which
will prove very useful later. The demonstration of this theorem is not too hard
but really tedious. We will not go through it, but it can be found here [Eva18].

Let's �rst de�ne the normal ordering.

De�nition 2.1.2. The normal ordering of a sequence of operators ϕ1 . . . ϕn,
written : ϕ1 . . . ϕn :, is the product of these operators where any annihilation
operator has been put to the right, and any creation operator has been put to
the left.

For exemple, given a theory with a creation operator a† and a annihila-
tion operator a, : aa† := a†a. This ordering prevents one from computing the
vacuum's energy expectation, which often diverges.

De�nition 2.1.3. Given a normal-ordered product of operators : ϕ1 . . . ϕn :,
we de�ne the contraction of the 2 operators ϕi and ϕj as the normal-ordered
product : ϕ1 . . . ϕn : where we removed ϕi and ϕj , multiplied by their correlation
function ⟨ϕiϕj⟩. We write it

: ϕ1 . . . ϕi . . . ϕj . . . ϕn :

For exemple,

: ϕ1ϕ2ϕ3ϕ4 : =: ϕ1ϕ3 : ⟨ϕ2ϕ4⟩

: ϕ1ϕ2ϕ3ϕ4 : = ⟨ϕ1ϕ3⟩⟨ϕ2ϕ4⟩
(2.20)

Theorem 2.1.1 (Wick's theorem). The time-ordered product is equal to the

normal ordered product, plus all possible ways of contracting pairs within it.

For exemple,

T (ϕ1ϕ2ϕ3ϕ4) = : ϕ1ϕ2ϕ3ϕ4 : +

: ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : +

: ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : +

: ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 :

(2.21)
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2.2 Ward identities

Ward identities are a very important family of identities, derived from the sym-
metries of a theory. They re�ect the constraints put on a theory due to its
symmetries.

2.2.1 Transformation generators

Let's �rst consider an in�nitesimal transformation xµ → x′µ. We take again the
notations of 2.12. We can in general parametrize such a transformation by a set
of in�nitesimal parameters (ωa)a such that we have at �rst order

x′µ = xµ + ωa
δxµ

δωa

ϕ′(x′) = ϕ(x) + ωa
δF
δωa

(x)

(2.22)

De�nition 2.2.1. We de�ne the generator Ga of a transformation by the fol-
lowing expression

ϕ′(x)− ϕ(x) ≡ −iωaGaϕ(x) (2.23)

With (2.22), we can write

ϕ′(x′) = ϕ(x′)− ωa
δxµ

δωa
∂µϕ(x

′) + ωa
δF
δωa

(x′) (2.24)

But according to (2.23),

iGaϕ(x
′) =

1

ωa
(ϕ(x′)− ϕ′(x′)) (2.25)

And so

iGaϕ =
δxµ

δωa
∂µϕ− δF

δωa
(2.26)

To end this subsection, let's try to compute the generators for some symme-
tries in our system.

Let xµ → xµ + wµ = x′µ be an in�nitesimal translation. Here, the index a
becomes a spacetime index. We have

δxµ

δων
= δµν

δF
δων

= 0 (2.27)

So the generator of translations is equal to

Pν = −i∂ν (2.28)

Now, let xµ → ων
µx

µ = ωρµη
ρνxµ = x′µ be an in�nitesimal Lorentz transforma-

tion. ω must be antisymmetric, so we can write

δxµ

δωρν
=

1

2
(ηρµxµ − ηνµxρ) (2.29)
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It's e�ect on the �eld can be writen F(ψ) = Lωψ. At �rst order, we can write

Lω ≃ 1− 1

2
iωρνS

ρν (2.30)

with Sρν an hermitian matrix. Using (2.26), we �nally have that the generator
of Lorentz transformations is equal to

Lρν = i(xρ∂ν − xν∂ρ) + Sρν (2.31)

Finally, let xµ → (1 + ω)xµ be a dilatation. According to 1.25, F(ϕ) =
(1 + ω)−∆ϕ ≃ (1 − ω∆)ϕ with ∆ the scaling dimension of the �eld. We thus
have

δxµ

δων
= xµδµν

δF
δων

= −∆ (2.32)

So the generator of dilatations is equal to

D = −ixν∂ν − i∆ (2.33)

2.2.2 General Ward identities

We want to see how an in�nitesimal transformation modi�es the action of the
system, in the path integral formalism. As before, let xµ → x′µ = xµ + ωa

δxµ

δωa

be an in�nitesimal transformation, transforming a �eld as ϕ(x) → ϕ′(x′) =
ϕ(x) + ωa

δF
δωa

(x) = F(ϕ(x)). We have

S′ =

∫
ddxL(ϕ′(x), ∂µϕ′(x))

=

∫
ddx′L(ϕ′(x′), ∂′µϕ′(x′))

=

∫
ddx′L(F(ϕ(x)), ∂′µF(ϕ(x)))

=

∫
ddx|∂x

′

∂x
|L(F(ϕ(x)),

∂xµ

∂x′ν
∂µF(ϕ(x)))

(2.34)

But at �rst order, we have

∂x′ν

∂xµ
≃ δνµ + ∂µ

(
ωa
δxν

δωa

)
∂xν

∂x′µ
≃ δνµ − ∂µ

(
ωa
δxν

δωa

)
(2.35)

Moreover,
det(1 + E) ≃ 1 + Tr(E) (2.36)

So

|∂x
′

∂x
| ≃ 1 + ∂µ

(
ωa
δxµ

δωa

)
(2.37)

Injecting these in (2.34), we get:

S′ =

∫
ddx

(
1 + ∂µ

(
ωa
δxµ

δωa

))
×

L
(
ϕ(x) + ωa

δF
δωa

(x),

[
δνµ − ∂µ

(
ωa
δxν

δωa

)](
∂νϕ(x) + ∂ν

[
ωa

δF
δωa

(x)

]))
(2.38)
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We are interested in computing δS = S′ − S. Expanding the Lagrangian
to the �rst order, and de�ning the current associated with the in�nitesimal
transformation as follows

jµa =

[
∂L

∂(∂µϕ)
∂νϕ− δµνL

]
δxν

δωa
− ∂L
∂(∂µϕ)

δF
δωa

(2.39)

we have

δS = −
∫
ddxjµa ∂µωa (2.40)

but, after integrating by parts,

δS =

∫
ddx∂µj

µ
aωa (2.41)

The main interest of these computations is that according to the laws of motion,
δS should vanish for any choice of ωa(x). In particular, we can get the following
conservation law

∂µj
µ
a = 0 (2.42)

This implies that for any continous symmetry in our theory, we can associated
a conserved current.

We can write the conserved charge associated to the current jµa , which is

Qa =

∫
dxj0a (2.43)

Now that we have seen the e�ect of an in�nitesimal transformation on the action,

let's see how it a�ects a correlation function. Let X = ϕ1(x1) . . . ϕn(xn) the
product of multiple �elds. We write δω its variation under the transformation
parameterized by ω. Supposing that the transformation is a symmetry of the
theory, the correlation function of X is invariant under the transformation. We
can thus rewrite the correlation function formula in the path integral formalism
(2.11) after the transformation, and get

⟨X⟩ = 1

Z

∫
[dϕ′](X + δX)e−S[ϕ]−

∫
dx∂µj

µ
aωa(x) (2.44)

We suppose as in (2.13) that the measure is invariant under the transformation.
Expanding the exponential at the �rst order, we can compute the variation of
the correlation function

⟨δX⟩ =
∫
dx∂µ⟨jµa (x)X⟩ωa(x) (2.45)

On the other hand, we can compute the variation of X explicitly using the
de�nition of the transformation generators:

δX = −i
n∑

k=1

(ϕ1(x1) . . . Gaϕk(xk) . . . ϕn(xn))ωa(xk)

= −i
∫
dxωa(x)

n∑
k=1

(ϕ1(x1) . . . Gaϕk(xk) . . . ϕn(xn)) δ(x− xk)

(2.46)
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But (2.45) and (2.46) are true for any in�nitesimal transformation ωa. We can
thus go under the integral, and putting together the two ways to compute ⟨X⟩
we get

∂µ⟨jµa (x)ϕ1(x1) . . . ϕn(xn)⟩ = −i
n∑

k=1

δ(x− xk)⟨ϕ1(x1) . . . Gaϕk(xk) . . . ϕn(xn)⟩

(2.47)
This relation is called the Ward identity associated with the current jµa .

2.2.3 The energy-momentum tensor

Let's look at the simplest exemples of in�nitesimal transformations constituting
a symmetry of our system: translations. Recalling what we have previously
computed on translations ((2.27)), we can easily compute the current assiociated
with translations using the formula (2.39). Changing the index a to ν and
moving it up using the metric tensor, we have

jµν = −ηµνL+
∂L

∂(∂µϕ)
∂νϕ (2.48)

We name this tensor the canonical energy-momentum tensor, and write it Tµν
c =

jµν . The name of this tensor comes from the fact that the associated conserved
charge obtained with (2.43) is the four-momentum, or energy-momentum

P ν =

∫
dxT 0ν

c (2.49)

We notice in particular that P 0 corresponds to the usual de�nition of the Hamil-
tonian.

Adding the divergence of a tensor Bµνρ antisymmetric in the �rst two indices
does not a�ect the conservation of the current. We can thus rede�ne our current
at will by adding the divergence of such a tensor and still verify the associated
Ward identity. In particular, thanks to our theory having the Lorentz transfor-
mations as symmetry, we can �nd such a tensor such that the energy-momentum
becomes symmetric. We won't go into the details of the computation, which
are mostly technical. A demonstration can be found here [FMS97, p. 46]. We
usually call the newly de�ned current the Belinfante energy-momentum tensor.
Furthermore, in a conformal �eld theory, we can also add another term to the
tensor to make it traceless. The details are once again technical, and can be
found here [FMS97, p. 107] for the speci�c case of dimension 2. We simply call
the newly obtained tensor the energy-momentum tensor, and write it Tµν

We �nish this subsection by computing the current associated to dilatations.
Injecting what we computed on dilatations (2.32) into the formula for the current
(2.39), we have

jµ = −Lxµ +
∂L

∂(∂µϕ)
xν∂νϕ+

∂L
∂(∂µϕ)

∆ϕ

= Tµ
c νx

ν +
∂L

∂(∂µϕ)
∆ϕ

(2.50)
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However, we just saw that we can make the energy-momentum tensor traceless.
Moreover, by de�nition of the current, ∂µj

µ = 0. We have

∂µT
µ
ν x

ν + ∂µ
∂L

∂(∂µϕ)
∆ϕ = 0 (2.51)

So

∂µ
∂L

∂(∂µϕ)
∆ϕ = 0 (2.52)

We can rede�ne once again the energy-momentum tensor, and write generally

jµ = Tµ
ν x

ν (2.53)

2.2.4 Ward identities in CFTs

Now that we have de�ned the energy-momentum tensor, and that we have a
convenient way of writing the currents associated with translations and dilata-
tions, let's try to derive the Ward identities associated with the symmetries of
our theory.

Let once again X = ϕ1(x1) . . . ϕn(xn). Injecting the energy-momentum ten-
sor and the translation generator (2.28) in the general Ward identity (2.47), we
immediatly get

∂µ⟨Tµ
ν X⟩ =

n∑
k=1

δ(x− xk)
∂

∂xνk
⟨X⟩ (2.54)

This is the Ward identity associated to translations.

Let us now look at Lorentz transformations. Putting (2.29) and (2.30) into
the formula for the current (2.39), we get the current associated with Lorentz
transformations

jµνρ = Tµν
c xρ − Tµρ

c xν + i
∂L

∂(∂µϕ)
Sνρϕ (2.55)

But by rendering the energy-momentum tensor symmetric, we annihilated the
last term, such that

jµνρ = Tµνxρ − Tµρxν (2.56)

Putting this expression along with the generator for Lorentz transformations
de�ned here (2.31) in the general Ward identity, we get

∂µ⟨(Tµνxρ − Tµρxν)X⟩ =
n∑

k=1

δ(x− xk) [(x
ν
k∂

ρ
k − xρk∂

ν
k )⟨X⟩ − iSνρ

k ⟨X⟩] (2.57)

We can develop the divergence on the left hand side using Leibnitz rule. The
derivative either acts on the energy-momentum tensor, and can be removed
using (2.54), or acts on xµ and diseappears in a δνµ. We can thus reduce the
expression above, to obtain

⟨(T ρν − T νρ)X⟩ = −i
n∑

k=1

δ(x− xk)S
νρ
k ⟨X⟩ (2.58)
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This is the Ward identity associated with Lorentz transformations.

Finally, let's look at dilatations. The generator for dilatations is given here
(2.33), whilst the current is given here (2.53). Put in the Ward identity, we get

∂µ⟨Tµ
ν x

νX⟩ = −
n∑

k=i

δ(x− xk)

[
xνk

∂

∂xνk
⟨X⟩+∆k⟨X⟩

]
(2.59)

Once again, we can simplify using Leibnitz rule

⟨Tµ
µX⟩ = −

n∑
k=i

δ(x− xk)∆k⟨X⟩ (2.60)

This is the Ward identity associated with dilatations.

We would now like to study the 2 dimensional case. We thus start by rewrit-
ing the Ward identities according to the complex coordinates de�ned here (1.13).
We recall that in these coordinates, the metric is given by (1.14). Moreover, in
these coordinates, the antisymmetric tensor takes the form

ϵµν =

(
0 1

2 i
− 1

2 i 0

)
(2.61)

We will use the identity

δ(x) =
1

π
∂z̄

1

z
=

1

π
∂z

1

z̄
(2.62)

We will not prove this indentity, which can be derived from contour integrals.
A detailed justi�cation is given here [FMS97, p. 119]. Using these, we rewrite
the Ward identity derived above

2π∂z⟨Tz̄zX⟩+ 2π∂z̄⟨TzzX⟩ = −
n∑

k=1

∂z̄
1

z − wk
∂wk

⟨X⟩

2π∂z⟨Tz̄z̄X⟩+ 2π∂z̄⟨Tzz̄X⟩ = −
n∑

k=1

∂z
1

z̄ − w̄k
∂w̄k

⟨X⟩

2⟨Tzz̄X⟩+ 2⟨Tz̄zX⟩ = −
n∑

k=1

δ(x− xk)∆k⟨X⟩

− 2⟨Tzz̄X⟩+ 2⟨Tz̄zX⟩ = −
n∑

k=1

δ(x− xk)sk⟨X⟩

(2.63)

Adding and substracting the 2 last equations of (2.63) and using (2.62), we have

2π⟨Tz̄zX⟩ = −
n∑

k=1

∂z̄
1

z − wk
hk⟨X⟩

2π⟨Tzz̄X⟩ = −
n∑

k=1

∂z
1

z̄ − w̄k
h̄k⟨X⟩

(2.64)
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where hk = ∆k+sk and h̄k = ∆k−sk. Notice how in 2 dimensions, we naturally
got back the possibility of 2 di�erent scaling dimensions, due to the spin, as we
saw in (1.25).

We renormalize the energy-momentum tensor as follows

T = −2πTzz T̄ = −2πTz̄z̄ (2.65)

Introducing the equation aboves in the �rst 2 equations of (2.63), we have

⟨T (z)X⟩ =
n∑

i=1

(
1

z − wk
∂wk

⟨X⟩+ hi
(z − wk)2

⟨X⟩
)
+ reg.

⟨T̄ (z)X⟩ =
n∑

i=1

(
1

z̄ − w̄k
∂w̄k

⟨X⟩+ h̄i
(z̄ − w̄k)2

⟨X⟩
)
+ reg.

(2.66)

where reg. stands for an holomorphic function of z or z̄, regular when z → wk

or z̄ → w̄k.

Finally, we would like to bring the Ward identities associated to translations,
Lorentz transformations and dilatations into a single Ward identity. We will not
go into the details of the computation, but only go through the main idea of
the proof. More details of this proof can be found here [FMS97, p. 121]. Let
xν → xν + ϵν(x) be an arbitrary conformal coordinate variation. We can write

∂µ(ϵνT
µν) = ϵν∂µT

µν +
1

2
(∂νϵµ + ∂µϵν)T

µν +
1

2
(∂µϵν − ∂νϵµ)T

µν

= ϵν∂µT
µν +

1

2
(∂ρϵ

ρ)ηµνT
µν +

1

2
εαβ∂αϵβεµνT

µν
(2.67)

with εµν the antisymmetric tensor. Using the 3 Ward identities on both sides,
we have

δϵ⟨X⟩ =
∫

dn wd2 x∂µ⟨Tµν(x)ϵν(x)X⟩ (2.68)

where the integral goes through all possible positions for the �elds in the se-
quence X. Applying Gauss's theorem and using the notations introduced by
(2.65), we �nally get what is known as the conformal Ward identity :

δϵ,ϵ̄⟨X⟩ = − 1

2πi

∮
C

dz ϵ(z)⟨T (z)X⟩+ 1

2πi

∮
C

dz̄ ϵ̄(z̄)⟨T̄ (z̄)X⟩ (2.69)

2.2.5 Operator product expansion

We notice in the Ward identities (2.66) that the correlation function diverges
when z → wk or z̄ → w̄k. In general, it is typical for correlation functions
to diverge when the position of two �elds coincide. This re�ects the in�nite
quantum �uctuations of a �eld taken at a precise position.

Due to the invariance of the theory through translations and Lorentz trans-
formations, we have ⟨ϕ1(z)ϕ2(w)⟩ = f(|z−w|). f can be expanded in its Laurent
serie, which in general will contain only a �nite number of terms diverging when
x → w. We can represent each of these terms by an operators, well de�ned
when z → w, multiplied by a function diverging when z → w. We call this
representation the operator product expansion, or OPE. We usually write it by
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removing the brackets ⟨. . . ⟩, without forgetting that it only makes sens inside
of correlation functions.

For exemple, the Ward identities (2.66) can be rewritten for a primary �eld
of conformal dimensions h, h̄

T (z)ϕ(w, w̄) ∼ h

(z − w)2
ϕ(w, w̄) +

1

z − w
∂wϕ(w, w̄)

T̄ (z̄)ϕ(w, w̄) ∼ h

(z̄ − w̄)2
ϕ(w, w̄) +

1

z̄ − w̄
∂w̄ϕ(w, w̄)

(2.70)

2.3 Correlations in the free boson

Let's go back to the free boson theory, introduced in 1.3. As mentionned at the
end of 1.3, we will now be considering the massless case. Using our new-found
knowledge, we would like to compute the propagator of the free boson �eld, that
is its 2-points correlation function.

K(x, y) = ⟨φ(x)φ(y)⟩ (2.71)

We can rewrite (1.33) as

S =
1

2

∫
d2xd2yφ(x)A(x, y)φ(y) A(x, y) = −∂2δ(x, y) (2.72)

But (2.11) gives an expression of the correlation function according to the action.
In fact, this expression can be reduced to K(x, y) = A−1(x, y), or equivalently

−∂2xK(x, y) = δ(x, y) (2.73)

This is a consequence of the properties of Gaussian integrals, which we will not
go through but are discussed in [FMS97, p. 51].

Because of translation and rotation invariance, K(x, y) should only depend
on |x−y|. We thus writeK(x, y) = K(r). Integrating (2.73) over a disk centered
around y then results in

1 = −2πrK ′(r) (2.74)

whose solution is

K(r) = − 1

2π
ln(r) + C (2.75)

with C a constant. This, in the usual coordinates, is equivalent to

⟨φ(x)φ(y)⟩ = − 1

4π
ln(x− y)2 + C (2.76)

In the complex coordinates described in (1.13), this is

⟨φ(z, z̄)φ(w, w̄)⟩ = 1

4π
(ln(z − w) + ln(z̄ − w̄)) + C (2.77)

Taking the derivatives ∂zφ and ∂z̄φ, we can separate the holomorphic and an-
tiholomorphic coordinates

⟨∂zφ(z, z̄)∂wφ(w, w̄)⟩ =
1

4π

1

(z − w)2

⟨∂z̄φ(z, z̄)∂w̄φ(w, w̄)⟩ =
1

4π

1

(z̄ − w̄)2

(2.78)
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For the remaining of this subsection, we will concentrate on the holomorphic
dimension. Every equation we will derive in the holomorphic dimension will have
a counterpart in the antiholomorphic dimension. We will write ∂φ ≡ ∂zφ. We
have seen just above that the OPE of ∂φ with itself is

∂φ(z)∂φ(w) ∼ − 1

4π(z − w)2
(2.79)

The fact that the two variables z and w are interchangeable show the bosonic
nature of the �eld.

The energy-momentum tensor associated to the system is

Tµν = ∂µφ∂νφ− 1

2
ηµν∂ρφ∂

ρφ (2.80)

In complex coordinates, this is

T (z) = −2π : ∂φ(z)∂φ(z) : (2.81)

The normal-ordering here is necessary, to ensure the vanishing of the vacuum
expectation value.

We can calculate the OPE of T (z) with ∂φ using Wick's theorem, knowing
the OPE of ∂φ with itself:

T (z)∂φ(w) = −2π : ∂φ(z)∂φ(z) : ∂φ(w)

∼ −2π : ∂φ(z)∂φ(z) : ∂φ(w)− 2π : ∂φ(z)∂φ(z) : ∂φ(w) : ∂φ(w)

∼ ∂φ(z)

(z − w)2

∼ ∂φ(w)

(z − w)2
+
∂2wφ(w)

z − w
(2.82)

Recalling (2.70), this shows that ∂φ is a primary �eld of conformal dimension
h = 1.

Following the same methods, we can also compute the OPE of the energy-
momentum tensor with itself:

T (z)T (w) ∼ 1

2(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(2.83)

This OPE does not respect (2.70), showing that the energy-momentum tensor
is not a primary �eld.

Remark. In general, for any theory considered, we have

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(2.84)

We call c the central charge, which is equal to 1 for the free boson.
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Chapter 3

Radial quantization

The radial quantization is a very useful quantization in conformal �eld theories.
Moreover, it serves as a basis for computing later on orbifolds. In 3.1, we de�ne
what the radial quantization is. We then use it to give a more general form for
�elds in 3.2, which links back to 1.2.2. Finally, in 3.3, we quantize radially the
free boson and show that this quantization allows for new primary �elds.

3.1 Radial quantization

We stay in the context of 2-dimensional conformal �eld theories. Let's consider
the space of our theory. It is a 2 dimensional Euclidian space, where one di-
mension corresponds to time whilst the other corresponds to space. We have
canonical coordinates on this space, along two orthogonal axis, usually denoted
by (x, y). One of the coordinates usually corresponds to the time dimension,
whilst the other usually corresponds to the space dimension. Using these, we
have de�ned our complex coordinates with (1.13), which have proven useful to
distinguish the 2 chiral parts of our theory. In these coordinates, we can express
time as 1

2 (z + z̄), and space as i
2 (z̄ − z). However, the space and time are arbi-

trarily chosen. One could in fact choose any basis of the 2 dimensional space,
and attribute time to one axis and space to the other axis. The only condition
is that the basis must be orthogonal.

Moreover, as we are considering a conformal �eld theory, one can map 0 to
∞ and ∞ to 0 at will using symmetries. It would therefore be coherent to con-
sider a compacti�ed space, where we have a point for the two in�nities in each
dimension. Compactifying the space dimension, one could consider a cylinder
S1 ×R of circumference L where S1 corresponds to the space dimension, and R
corresponds to the time dimension. In this space, we have the canonical coor-
dinates (x, t) where we identi�ed (x, t) and (x+L, t) for any x, t. Furthermore,
adding a point at −∞ in the time dimension, we can map this cylinder back to
the complex plane through the map

(x, t) → e
2π
L (t+ix) (3.1)

This way, we have de�ned a new basis for our Euclidian space, and new space
and time dimensions.
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We want to de�ne an Hermitian conjugation on this space, taking into ac-
count the newly de�ned time and space dimensions. To do so, let's consider
an interacting �eld ϕ. Just like we saw in 2.1.1, we would like to compute the
interactions happening in ϕ by considering a state ϕin "entering" the space at
a time −∞, and by computing its probability P = ⟨ϕout|ϕin⟩ to become a state
ϕout "exiting" the system at a time +∞.

In the radial quantization, we can easily compute ϕin. We want

ϕin ∝ lim
t→−∞

ϕ(x, t) (3.2)

But in the complex plane, 0 corresponds to t = −∞. We have

|ϕin⟩ = lim
z,z̄→0

ϕ(z, z̄)|0⟩ (3.3)

And

⟨ϕout| = |ϕin⟩† (3.4)

In the Euclidian formalism we have been using up until now, we considered
a complex time τ = it, such that under Hermitian conjugation time would
transform as τ → −τ , whilst space would be left unchanged. We would like
to keep this kind of transformation. With radial quantization, reversing time
while leaving space unchanged corresponds to the map z → 1

z∗ . One could be
tempted to de�ne Hermitian conjugation as follows

ϕ(z, z̄)† = ϕ(
1

z̄
,
1

z
) (3.5)

But if we did so, we would have

⟨ϕout|ϕin⟩ = lim
z,z̄,w,w̄→0

⟨0|ϕ(z, z̄)†ϕ(w, w̄)|0⟩

= lim
z,z̄,w,w̄→0

⟨0|ϕ(1
z̄
,
1

z
)ϕ(w, w̄)|0⟩

= lim
z,z̄→+∞

⟨0|ϕ(z̄, z)ϕ(0, 0)|0⟩

(3.6)

Supposing that ϕ is a primary �eld, recalling (2.19), we have

⟨0|ϕ(z̄, z)ϕ(0, 0)|0⟩ ∝ z−2h̄z̄−2h (3.7)

⟨ϕout|ϕin⟩ would thus always be equal to 0, which is not what we want. In order
to make sense of ⟨ϕout|ϕin⟩, we must de�ne the Hermitian conjugate of a �eld
as

ϕ(z, z̄)† = z̄−2hz−2h̄ϕ(
1

z̄
,
1

z
) (3.8)

3.2 Operator mode expansions

We want to expand a conformal �eld ϕ(z, z̄) with dimension (h, h̄) in terms of
a family of �elds independent of the position. As the �eld is holomorphic in z
and in z̄, it may be written

ϕ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz̄−n−h̄ϕm,n

with ϕm,n =
1

2πi

∮
dz zm+h−1 1

2πi

∮
dz̄ z̄n+h̄−1ϕ(z, z̄)

(3.9)
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Comparing the straightforward Hermitian conjugation of this expression with
the Hermitian conjugation de�ned by (3.8), we get

ϕ†m,n = ϕ−m,−n (3.10)

This is why we added the powers of h and h̄ in (3.9) to de�ne ϕm,n.

Once again, we will now drop the antiholomorphic coordinate to simplify
the notations. We must though not forget that it is always here, and can easily
be restored. We have

ϕ(z) =
∑
m∈Z

z−m−hϕm

ϕm =
1

2πi

∮
dz zm+h−1ϕ(z)

(3.11)

Let's now relate contour integrals to commutators in operator product ex-
pansions. Let a(z) and b(z) be two holomorphic �elds. We consider the integral∮

w

dz a(z)b(w) (3.12)

where the integral goes around w without getting around 0. This expression as
a meaning inside of correlation functions, as long as it is time ordered. We can
write ∮

w

dz a(z)b(w) =

∮
C1

dz a(z)b(w)−
∮
C2

dz b(w)a(z) (3.13)

where the two integrals on the right hand side are integrals at �xed time, mean-
ing C1 and C2 are 2 circles centered around 0, and where C1 wraps around w
and C2 doesn't.

Remark. Inside a correlation function, there are usually more �elds than these
two. This relation is true if the only �eld having a singularity inside of C1 and
not C2 is b(w). We should thus choose C1 and C2 as close as possible.

De�ning the operator

A ≡
∮
a(z)dz (3.14)

we then have ∮
w

dz a(z)b(w) = [A, b(w)] (3.15)

De�ning the operator B similarly to A, we can then integrate to obtain

[A,B] =

∮
0

dw

∮
w

dz a(z)b(w) (3.16)

Let's see how this relation can improve our understanding of the energy-
momentum tensor.

As was done to get the conformal Ward identity (2.69), we let ϵ(z) be the
holomorphic component of an in�nitesimal conformal transformation. De�ning
the conformal charge

Qϵ ≡
1

2πi

∮
dzϵ(z)T (z) (3.17)
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we can rewrite the conformal Ward identity using (3.15) as follows

δϵϕ(w) = −[Qϵ, ϕ(w)] (3.18)

We see here that the conformal charge is a generator for conformal trans-
formations, in a similar way as the transformation generators were de�ned by
(2.23).

Using the mode expansion de�ned by (3.11), we can write

T (z) =
∑
n∈Z

z−n−2Ln (3.19)

Also writing

ϵ(z) =
∑
n∈Z

z−n−2ϵn (3.20)

we can rewrite (3.17) as

Qϵ =
∑
n∈Z

ϵnLn (3.21)

Remark. We have the exact same equations in the antiholomorphic dimension,
de�ning the operators (L̄n)n.

We can therefore see that the mode operators (Ln)n and (L̄n)n generates
the conformal transformations on the Hilbert space. In particular, we see that
L0 and L̄0 generates the dilatations. But in radial quantization, dilatations
correspond to time translations. As such, we get that the Hamiltonian H of our
system veri�es

H ∝ L0 + L̄0 (3.22)

Using the relation between commutators in OPEs and contour integrals
(3.16), the de�nition of the families (Ln)n and (L̄n)n (3.19), and the OPE
of the energy-momentum tensor with itself (2.84), we obtain the commutation
relation of the (Ln)n and (L̄n)n:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm=−n

[L̄m, Ln] = 0

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
(m3 −m)δm=−n

(3.23)

which exactly corresponds to 2 representations of the Virasoro algebra de�ned by
(1.24). We have seen in the subsection 1.2.2 that any 2-dimensional conformal
�eld theory contains 2 copies of the Virasoro algebra, one in each conformal
dimension. We know see that these two algebras are indeed represented in any
conformal �eld theory, and live in the energy-momentum tensor.

3.3 Quantization of the free boson

3.3.1 The free boson on a cylinder

Let's consider once again the theory of the free boson. We want to de�ne the
free boson �eld on a cylinder of circumference L, to eventually switch to the
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radial quantization. The theory stays the same, except the fact that we add a
periodicity condition on the �eld

φ(x+ L, t) = φ(x, t) (3.24)

As the �eld is periodic, we can expand it using the Fourier transform

φ(x, t) =
∑
n

e2πinx/Lφn(t)

with φn(t) =
1

L

∫
dx e−2πinx/Lφ(x, t)

(3.25)

Introducing the Fourier modes into the Lagrangian (1.33), we get

L =
1

2
L
∑
n

(
φ̇nφ̇−n −

(
2πn

L

)2

φnφ−n

)
(3.26)

Now, the momentum associated to ϕn is

πn = Lφ̇−n (3.27)

We do still have [φn, πm] = iδn,m. We can write the Hamiltonian

H =
1

2L

∑
n

(πnπ−n + (2πn)2φnφ−n) (3.28)

From this, we note that

φ†
n = φ−n π†

n = π−n (3.29)

The Hamiltonian corresponds once again to a sum of decoupled harmonic os-

cillators, of frequencies ωn = 2π|n|
L . We see that the term n = 0 vanishes. This

is due to the absence of mass of the system, and is the cause of its conformal
invariance. With a mass, the system wouldn't be invariant through conformal
transformations.

Let's now de�ne the creation ã†n and annihilation ãn operators. Usually, one
would de�ne them as follows

ãn =
1√
4π|n|

(2π|n|φn + iπ−n) (3.30)

so that we can have the usual [ãn, ãm] = 0, [ãnã
†
m] = δn,m. However, this

de�nition does not work with the zero mode.
Instead, we will treat the zero mode separately, and de�ne the following

operators
for n > 0, an = −i

√
nãn and ān = −i

√
nã−n

for n < 0, an = −i
√
nã†−n and ān = −i

√
nã†n

(3.31)

These operators have the following commutation relations

[an, am] = nδn,m [an, ām] = 0 [ān, ām] = nδn,m (3.32)

30



Writing the Hamiltonian in term of these operators, we have

H =
1

2L
π2
0 +

2π

L

∑
n≥0

(a−nan + ā−nān) (3.33)

(3.32) leads to

[H, a−n] =
2π

L
na−n (3.34)

which means that for |E⟩ an eigenstate of H of energy E, a−n|E⟩ is still an
eigenstate of H with energy E + 2nπ

L
Expressing the Fourier modes according to these operators, we have

φn =
i

n
√
4π

(an − ā−n) (3.35)

We can thus write at t = 0

φ(x) = φ0 +
i√
4π

∑
n̸=0

1

n
(an − ā−n)e

2πinx/L (3.36)

Thanks to the explicit expression of the Hamiltonian (3.33), we have

φ(x, t) = φ0 +
1

L
π0t+

i√
4π

∑
n ̸=0

1

n

(
ane

2πin(x−t)/L − ā−ne
2πin(x+t)/L

)
(3.37)

Going to the Euclidian spacetime by replacing t with −iτ and using the complex
coordinates

z = e2π(τ−ix)/L z̄ = e2π(τ+ix)/L (3.38)

we �nally have

φ(z, z̄) = ϕ0 −
i

4π
π0 ln(zz̄) +

i√
4π

∑
n̸=0

1

n
(anz

−n + ānz̄
−n) (3.39)

Even though φ is not a primary �eld, we know from (2.82) that its derivatives
∂φ and ¯partial ¯varphi are. Let's concentrate on the holomorphic derivative.

Derivating the expansion of φ found just above, we have

i∂φ(z) =
π0
4πz

+
1√
4π

∑
n ̸=0

anz
−n−1 (3.40)

Introducing

a0 ≡ ā0 ≡ π0√
4π

(3.41)

we can include the zero term in our sum, and write

i∂φ(z) =
1√
4π

∑
n

anz
−n−1 (3.42)

Now that we have an explicit expression of ∂φ we can also explicitely express
T (z). Recalling (2.81), we have

T (z) =
1

2

∑
n,m∈Z

z−n−m−2 : anam : (3.43)
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which implies

Ln =
1

2

∑
m∈Z

an−mam for n ̸= 0

L0 =
∑
n≥0

a−nan +
1

2
a20

(3.44)

We can then rewrite (3.33) as

H =
2π

L
(L0 + L̄0) (3.45)

3.3.2 Vertex operators

Since ∂φ has a scaling dimension of 1, φ has a vanishing scaling dimension.
Making use of this, we can de�ne a family of �elds (Vα)α∈R without introducing
any notion of scale, which we call the vertex operators:

Vα(z, z̄) ≡: eiαϕ(z,z̄) :

= e
iαφ0+

α√
4π

∑
n≥0

1
n (a−nz

n+ā−nz̄
n)
e

α
4ππ0 ln(zz̄)− α√

4π

∑
n≥0

1
n (anz

−n+ānz̄
−n)

(3.46)
We want to see how these newly de�ned �elds act. Let's �rst calculate the

OPE of ∂φ with Vα, using the de�nition of the exponential and Wick's theorem,
as was done to compute (2.82):

∂φ(z)Vα(w, w̄) =

+∞∑
n=0

(iα)n

n!
∂φ(z) : φ(w, w̄)n :

∼ −1

4π(z − w)

+∞∑
n=1

(iα)n

(n− 1)!
: φ(w, w̄)n−1 :

∼ iα

4π

Vα(w, w̄)

z − w

(3.47)

Similarly, we compute its OPE with the energy-momentum tensor, using its
explicit expression given by (2.81).

T (z)Vα(w, w̄) = −2π

+∞∑
n=0

(iα)n

n!
: ∂φ(z)∂φ(z) :: φ(w, w̄)n :

∼ 1

8π(z − w)2

+∞∑
n=2

(iα)n

(n− 2)!
: φ(w, w̄)n−2 :

+
1

z − w

+∞∑
n=1

(iα)n

n!
n : ∂φ(z)φ(w, w̄)n−1 :

∼ α2

8π

Vα(w, w̄)

(z − w)2
+
∂wVα(w, w̄)

z − w

(3.48)

The 2 terms here comes from the single and double contractions, from Wick's
theorem. Due to this OPE, we see that the �elds Vα are primary �elds, of
holomorphic dimension

h(α) =
α2

8π
(3.49)
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Knowing that Vα has the same OPE with the antiholomorphic energy-momentum
tensor, we also get

h̄(α) = h(α) =
α2

8π
(3.50)
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Chapter 4

Orbifold generalities

This introduction aims at giving an overview of orbifolds. In 4.1, we mathemat-
ically de�ne orbifolds. In 4.2, we then see how orbifolds generates a method for
constructing new orbifolds from old ones using symmetries. Finally, in 4.3, we
study conformal �eld theories on the torus, which is important in the context
of orbifolds.

4.1 Mathematical construction

This sections aims at introducing the idea behind orbifolds to the reader. A
more detailed discussion of the mathematical properties of orbifolds can be
found here [au222].

4.1.1 Quotient space and manifolds

An orbifold is a construction coming from topology aiming at generalizing man-
ifolds through quotient spaces. To fully understand the idea behind orbifolds,
let's �rst recall some basics of topology.

De�nition 4.1.1. An Hausdor� space (X, T ) is a space X equipped with a
topology T where, for any x, y ∈ X, there exist U, V ∈ T such that x ∈ U ,
y ∈ V , and U ∩ V = ∅

De�nition 4.1.2. A paracompact space X is an Hausdor� space such that any
cover (Uk)k∈I of X made by open subsets can be re�ned down to a locally �nite
family (Uk)k∈I′⊂I still covering X, meaning that

⋃
k∈I′ Uk = X and that for

any point x ∈ X, there exist an open subset V such that x ∈ V and such that
{Uk / k ∈ I ′, Uk ∩ V ̸= ∅} is �nite.

In the following, we will only consider Hausdor� spaces. The de�nition of
paracompact spaces will serve later on. Now consider a topological space where
we want to glue points together. We want some points to become topologically
equivalent to others. We thus de�ne an equivalence relation between points,
and quotient the topological space by this equivalence relation, to keep only
equivalence classes. The product is what we call a quotient space.
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De�nition 4.1.3. Let X be a space with topology T , and let ∼ be an equiva-
lence relation on X. The quotient space X/∼ is the space of equivalence classes
of X, equipped with the topology {{[x] / x ∈ U} / U ∈ T }, where [x] is the
equivalence class of x.

For exemple, imagine we want to construct a torus. We start with a square
in 2 dimensions, for exemple [0, 1]2. We then de�ne the equivalence relation ∼
such that any point in the interior of the square has only itself in its equivalence
class, and such that any point on a side is equivalent to the point on the other
side of the square. Formally, this equivalence relation can be de�ned by

(x, 0) ∼ (x, 1) ∀x ∈ [0, 1]

(0, x) ∼ (1, x) ∀x ∈ [0, 1]
(4.1)

The quotient space [0, 1]2/ ∼ is then a torus.

Let us now suppose that we have a group G acting on our space X. We recall
that the orbit of x ∈ X is Gx ≡ {gx / g ∈ G}. Orbits give a partition of X. We
can de�ne an equivalence relation from this partition, and we write X/G the
resulting quotient space. In a general fashion, quotienting a space by a group
is more easy to write and visualize than quotienting a space by an equivalence
relation. Both methods are often equivalent, but quotienting by groups is often
preferred.

Let us take again the exemple of the torus. This time, we take X = R2. We
take G = Z2, and we de�ne its action on R2 as follows:

For(m,n) ∈ Z2, (x, y) ∈ R2, (m,n)(x, y) = (x+m, y + n) (4.2)

With this, X/G is once again the torus.

We would now like to study the "smoothness" of our topological space. The
smoothness reference should be a well known smooth space, such as Rn. In
this direction, we can naturally de�ne a manifold as a topological space locally
homeomorphic to Rn.

De�nition 4.1.4. An n-dimensional topological manifold M is a topological
Hausdor� space which can be covered by a countable number of open subsets
each homeomorphic to Rn. This means that we dispose of a sequence of open
subsets (Uα)α∈N and a sequence of homeomorphisms (φα)α∈N where each φα

maps Uα in Rn.

Remark. We call each map φα a chart, Uα its domain, and we call the set of all
charts an atlas.

LetM be a manifold, and (Uα)α∈N its domains. Let α, β such that Uα∩Uβ ̸=
∅. We can de�ne

φαβ = φβ ◦ φ−1
α |Uα∩Uβ

φβα = φα ◦ φ−1
β |Uα∩Uβ

(4.3)
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φαβ and φβα are called transition maps. The transition maps give important
information about the smoothness of the manifold. In particular, we call a
di�erentiable manifold a manifold equipped with an atlas where all transition
maps are di�erentiables. Within di�erentiable manifolds, we call a Ck-manifold

a manifold equipped with an atlas where all transition maps are of class Ck.
Finally, we call a smooth manifold a manifold equipped with an atlas where all
transition maps are in�nitely di�erentiable.

4.1.2 Orbifolds

We would now like to equip quotient spaces with a smoothness structure, as
done just above. The natural way of doing so would be to quotient a manifold.
However, in general, the quotient of a manifold by a group is not a manifold.
We call the product an orbifold. As for manifolds, we will de�ne orbifold charts
and orbifold atlases. Moreover, an other data, embeddings, will be de�ne to
ensure the compatibility of the action of the group between the charts.

De�nition 4.1.5. Let X a topological space and n ∈ N. We call an orbifold

chart (Ũ ,H, ϕ) of dimension n a connected open subset Ũ of Rn, a �nite groupe
H acting e�ectively on Ũ (meaning that the only element of H acting as the
identity on Ũ is the neutral element of H), and a map ϕ : Ũ → U ⊂ X such that
for all h ∈ H, x ∈ Ũ , ϕ(hx) = ϕ(x), and such that ϕ induces an homeomorphism
between Ũ/H and U .

An orbifold chart is the right way to generalize manifold charts, but between
Rn/H and U .

De�nition 4.1.6. An embedding λ : (Ũ1, H1, ϕ1) → (Ũ2, H2, ϕ2) is an in�nitely
di�erentiable injective map between Ũ1 and Ũ2, such that ϕ2 ◦ λ = ϕ1.

De�nition 4.1.7. An orbifold atlas for X of dimension n is the data of a family
(Ũk, Hk, ϕk)k∈I of orbifold charts of dimension n such that for any two charts
(Ũ1, H1, ϕ1) and (Ũ2, H2, ϕ2), for x ∈ U1∩U2, there exist an open neighbourhood
U3 ⊂ U1 ∩U2 of x such that there is an orbifold chart (Ũ3, H3, ϕ3) in the family
(Ũk, Hk, ϕk)k∈I , and such that (Ũ3, H3, ϕ3) can be embedded in (Ũ1, H1, ϕ1) and
(Ũ2, H2, ϕ2).

De�nition 4.1.8. A smooth orbifold O is a Hausdor� paracompact topological
space associated with an orbifold atlas.

We immediatly notice that any smooth manifold is an orbifold, where the
(Hk)k are all trivial.

Let's see an exemple of orbifold. Let the topological space be S1, the circle.
Now, let Z2 act on S1 such that for (x, y) ∈ S1, 1(x, y) = (x,−y). The orbifold
resulting of this action is simply a segment.

We notice that a segment is not a manifold, as it has borders. We will come
back to this exemple later.
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4.2 Orbifolds and global symmetries

4.2.1 Orbifolds in conformal �eld theories

Now, let's go back to our main topic, which is conformal �eld theories. Let
us consider a bosonic 2D conformal �eld theory C, with a single vacuum, such
that the theory admits a symmetry represented by the �nite group G acting
on the target space. This means that to the unitary representation of the
conformal transformations group in the Hilbert space H, we additionally have
a unitary representation ρ of G in H, such that for any g ∈ G, ρ(g) �xes
the vacuum, commutes with the Virasoro algebra, and preserves the operator
product expansion. To avoid any confusion, we precise here that the considered
symmetry (and the quotient) is on the the target space, the space on which the
�elds act, and not on the spacetime.

We recall the state/operator correspondence mentionned in 1.2.4. The Hilbert
space can be freely viewed as the space of all possible states of the system, or as
the space of all operators of the conformal �eld theory. We will therefore freely
speak of operator product expansion in the Hilbert space. We call the orbifold
construction the method of constructing a new conformal �eld theory C/G, the
orbifold of C by G, by quotienting the Hilbert space by its representation of G.
Let us �rst suppose that G is abelian. We can describe the method in two steps:

� The �rst step is the projection, and consists in projecting all states on
the subspace HG ⊂ H of states that are invariant under the action of
G. From our hypothesis, we know that this subspace is not empty, as
it contains at least the vacuum in its states, and the Virasoro algebra in
its operators. Moreove, also by hypothesis, HG is closed under operator
product expansion.

� The second step is the construction of the sector spaces. For any sequence
of �elds φ1, φ2, . . . φn in our theory, the correlation function ⟨φ1 . . . φn⟩
may have branch cuts. More speci�cally, let us consider the function
f(z) = ⟨φ1(0)φ2(z) . . . ⟩. If we continue analytically f(z) such that we can
turn around 0 with z, f(z) is not single valued as z → e2πiz. Indeed, we
may have g ∈ G such that φ2(e

2πiz) = ρ(g)φ2(z). For g ∈ G, we construct
the sector space HG

g as the set of all �elds φ1 acting this way. We note
that each twisted space sector contains a stable representation ρg of G
projected from ρ.

Then, writing HG
1 = HG, the space of all states of the new conformal �eld

theory can be written as
H̃ = ⊕g∈GHG

g (4.4)
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It is important to separate the sectors. Indeed, each one of them is closed under
OPE, and can be studied separately. However, in the whole theory, due to the
action of G on the states and operators, we will have operators allowing one to
go from a sector to another.

We can generalize this construction to the case where G is not abelian. If
G is not abelian, the projected action of ρ on the sector spaces is stable on
every conjugacy class. We thus want to construct for all conjugacy class [g] the
associated sector space

HG
[g] ≡ ⊕h∈[g]HG

h (4.5)

on which there is a stable representation of G. The orbifold Hilbert space is
then given by the sum

H̃ = ⊕[g]HG
[g] (4.6)

where [g] goes through all conjugacy classes. However, this construction does not

always yield a consistent CFT. Moreover, if a consistent orbifold construction
exists for a given group G, it might not be unique. For the interested reader, a
more detailed discussion on this matter can be found here [GV23, p. 9]

4.2.2 The space group

In the two following subsections, we will follow [Dix+87]. We place ourselves
in a conformal �eld theory with an n-dimensional target space, meaning the
�elds act on an n-dimensional space. Let's consider a group S constituted of
transformations (θ, a) acting as

x→ θx+ a (4.7)

where θ parameterize a rotation and a a translation. We will call S the space
group. We are interested in the study of Ω = Rn/S.

We can write the multiplication and the inverse in S:

(θ1, a1)(θ2, a2) = (θ1θ2, a1 + θ1a2)

(θ, a)−1 = (θ−1,−θ−1a)
(4.8)

The space group is the product of a group of pure rotations P and of a group
of pure translations T . We identify T to the set of points the origin can go to
through the action of T , in Rn. As we want Ω to be non-trivial, T should not be
dense in Rn. As it is a discrete subgroup of Rn, it should be equal to a lattice.
We thus have

Ω = Rn/T/P̄ = Tn/P̄ (4.9)

with Tn the torus in n dimensions, and P̄ the projection of P on the torus.
As S is a group, P̄ should be a subgroup of the isometry group of the torus.
Moreover, for the same reason as for T , P̄ should be discrete, and thus �nite.

S is not an abelian group. According to (4.6), we should thus have as many
sectors as conjugacy classes in S. In each sectors, �elds obey a di�erent bound-
ary condition. We separate the sectors in 2 categories. We de�ne the winding
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sectors as the sectors corresponding to the conjugacy class of translations. In-
deed, the conjugate of a translation always is a translation. For any �eld φ in
such a sector, we have a ∈ T so that

φ(e2πiz) = φ(z) + a (4.10)

We also de�ne the twisted sectors as the sectors corresponding to conjugacy
classe of rotations. We note that in the conjugacy class of a pure rotation, there
are more than pure rotations. In these sectors, for any �eld φ, we have g ∈ S
such that

φ(e2πiz) = gφ(z) (4.11)

But we also have for h ∈ S

hφ(e2πiz) = hgφ(z) = (hgh−1)hφ(z) (4.12)

hφ is still in the same sector, as it is the product of the action of S on a �eld
of the sector. Writing φ′ = hφ, we see that in a sector with �elds having for
boundary condition φ(e2πiz) = gφ(z), we also have �elds having for boundary
conditions

φ′(e2πiz) = (hgh−1)φ′(z) (4.13)

This proves, once again, that in the case of a non-abelian group G we have to
consider the sector associated to conjugacy classes. For each twisted sector, we
call the twist operator the operator leading a �eld from HS

1 to the twisted sector
space.

Remark. For each of these boundary conditions, we have supposed the space-
time to be in the radial quantization, such that going from φ(z) to φ(e2πiz)
corresponds to going around the space dimension, to the same point. In a
di�erent formalism, the boundary condition will be di�erent. For exemple, in
the cylinder formalism, for a cylinder of circumference L, we need to replace
φ(e2πiz) by φ(z + L)

To illustrate this, let's consider once again the exemple of the one dimen-
sional Z2 orbifold. Let's try to construct it by acting with a well-chosen space
group on R. We �rst want to construct the circle used as the base space in the
exemple of 4.1.2. We thus include translations by an integer to S:

{(1, n) / n ∈ Z} ⊂ S (4.14)

Moreover, we want to identify one side of the circle with the other. To do so, we
can cut our circle at the point associated to the origin of the real line. From this,
we associate one side of the circle to the other, or pulling back our action to the
real line, we associate one side of the real line to the other. This is equivalent
to having the rotation (−1, 0) as part of S. A general element of S therefore
looks like (±1, n) with n ∈ Z. We have T = Z and P = Z2. This is why we call
it the Z2 orbifold. conjugating an element of S by any other element of S, we
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compute the conjugacy classes of the space group:

(1,m)(1, n)(1,m)−1 = (1,m+ n)(1,−m)

= (1, n)

(−1,m)(1, n)(−1,m)−1 = (−1,m− n)(−1,m)

= (1,−n)
(1,m)(−1, n)(1,m)−1 = (−1,m+ n)(1,−m)

= (1, n+ 2m)

(−1,m)(−1, n)(−1,m)−1 = (1,m− n)(−1,m)

= (−1, 2m− n)

(4.15)

As such, the translation conjugacy classes of S are [(1, n)] = {(1, n), (1,−n)}.
To each of these class is associated a winding sector. Moreover, there are
only two conjugacy classes for rotations, the rotations with an even translation
{(−1, n) / n = 2k} and those with an odd translation {(−1, n) / n = 2k + 1}.
These two conjugacy classes lead to two twisted sectors, and therefore two twist
operators leading to these sectors.

We see better what happens when looking at the Z2 orbifold from the per-
spective of the circle, given in 4.1.2. We take S1 and identify the two sides of
the circle x = −x. The winding sectors are simply due to the nature of the cir-
cle. Moreover, this transformation leaves two �xed points, given in the complex
coordinates by x = i and x = −i. Each of these �xed points create a singularity,
leading to the two twisted sectors.

4.2.3 Global monodromy conditions

We now restrain ourselves to 2 dimensions. We can easily generalize the Z2

orbifold to the ZN orbifold, wher the group of rotations of S is ZN . We know
that ZN = e

2iπk
N is generated by a single rotation, θ = e

2iπ
N . A general element of

the space group thus takes the form (θj , a), with j ∈ NN . The conjugacy class of
a translation (1, a0) is

{
(1, θja0) / j ∈ NN

}
. The winding sectors are described

by these conjugacy classes. For j ∈ NN , there are also several conjugacy classes
of the form

{
(θj , a) / a ∈ Λ

}
, parametrized by a coset Λ of the lattice T . To

each of these conjugacy class is associated a twisted sector. Let's try to see
what forms can take these cosets. To do so, we conjugate (θj , a0), an arbitrary
element of a conjugacy class.

(θk, a)(θj , a0)(θ
k, a)−1 = (θk+j , a+ θka0)(θ

−k,−θ−ka)

= (θj , θka0 + (1− θj)a)
(4.16)

Therefore, the coset Λa0
of the conjugacy class of (θj , a0) is equal to{
θka0 + (1− θj)a / k ∈ Z, a ∈ T

}
(4.17)

We will now focus on the singly-twisted and singly-antitwisted sectors, j±1.
We want to study the �xed points of these sectors. Considering (θ, a0), let p1,
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p2 two elements �xed by the conjugacy class of (θ, a0). For any k1, k2, a1, a2,we
have

p1 = θp1 + θk1a0 + (1− θ)a1

p2 = θp2 + θk2a0 + (1− θ)a2
(4.18)

So
(1− θ)(p1 − p2) = (θk1 − θk2)a0 + (1− θ)(a1 − a2) (4.19)

Assuming θ doesn't have eigenvalues equal to 1, p1 and p2 therefore only di�er
by a vector of T . Recalling (4.9), we see that p1 and p2 are projected onto the
same point on the torus . Each conjugacy class can be associated to a point on
T2 �xed by the rotation θ. Saying it another way, the "sector twisted by θ" has
a subsector for each �xed point of θ on T2. This result is also easily shown to
be true with the rotation θ−1.

Rewriting (4.18), we see that

a0 = (1− θ)θ−k1p1 − (1− θ)θ−k1a1 (4.20)

But p1 is �xed by the rotation θ. We can thus write the coset associated to the
�xed point p:

Λ+
p = (1− θ)(p+ T ) (4.21)

Similarly, in the "sector twisted by θ−1", we can associate to each �xed point p
of θ−1 a subsector, whose conjugacy class is associated to the following coset

Λ−
p = (1− θ−1)(p+ T ) (4.22)

In general, the sectors associated with twists θj , j ̸= ±1 do not correspond
exactly to the �xed points of θj . The reason is that to get (4.21), we had to use
the fact that the �xed point considered was �xed by any θk. For j ̸= ±1, a �xed
point of θj is not necessarily �xed by all θk. There is thus a very large class
of twisted sectors, and twist �elds, in the orbifold ZN . We can however label
them with 2 indexes (j, ϵ), j corresponding to the twist θj of the sector, the
other corresponding to the coset associated to the conjugacy class of the sector.
In particular, we may write σj,ϵ the twist operator and HS

j,ϵ the twisted sector
space associated to the twisted sector (j, ϵ). For j ± 1, ϵ denotes the associated
�xed point of θj .

Now that we have classi�ed the twisted sectors by their conjugacy class, we
can write the boundary condition of �elds in the twisted sector spaces. Let (j, ϵ)
be a twisted sector, and let φ ∈ HS

j,ϵ. In a correlation function with the twist
operator σj,ϵ(0), when moving φ(z, z̄) around 0, we get the following condition

φ(e2πiz, e−2πiz̄) = e
2iπj
N φ(z, z̄) + a (4.23)

with a ∈ Λϵ the coset associated with ϵ. We call this condition the global
monodromy condition.

4.3 Modular invariance

We have seen up to now the importance of the torus. In particular, (4.9) shows
that the construction of any conformal �eld theory via orbifold �rst needs to
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go through the de�nition of a conformal �eld theory with values on a torus,
meaning having a torus as the target space. Quotienting a conformal �eld theory
C by a space group S composed of translations T and rotations P amounts to
quotienting the conformal �eld theory having values on the torus C/T by the
group of rotations, P .

Moreover, as discussed in 3.1, we can change the considered spacetime to, for
exemple, in the exemple seen in this section, a cylinder. In the case of orbifolds,
we would like to consider a torus for the spacetime, which corresponds to the
usual spacetime where we have compacti�ed the space and time dimensions. It
is natural to believe that choosing the same topology for the spacetime and the
target space can be very helpful. For these reasons, we will now study conformal
�eld theories de�ned on the torus.

4.3.1 The modular group

A torus T2 results of the quotient of R2 by a lattice Λ. We may thus de�ne a
torus by two linearly independent vectors v1 and v2 generating the lattice Λ.
On the complex plane, these two vectors may be represented by two complex
numbers, ω1 and ω2. We call these complex numbers the periods of the lattice.
Consider a conformal �eld theory living on the torus de�ned by (ω1, ω2). The
conformal �eld theory is invariant through dilatations and through rotations.
As such, the relative scale of the lattive or its orientation doesn't a�ect the
theory. the conformal �eld theory only depends on the ratio τ = ω2

ω1
, called the

modular ratio.

However, τ does not uniquely constraints a conformal �eld theory on the
torus. Two sets of periods may de�ne the same lattice, but have di�erent mod-
ular ratios.

Let (ω1, ω2) and (ω′
1, ω

′
2) two sets of periods de�ning the same lattice. Then

ω′
1 and ω′

2 should both be in the lattice generated by (ω′
1, ω

′
2), meaning they

must be expressible as an integer combination of ω1 and ω2. Reciprocally, ω1

and ω2 should both be expressible as an integer combination of ω′
1 and ω

′
2. This

amounts to saying that there exist a, b, c, d ∈ Z such that(
ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
(4.24)

And reciprocally so. The fact that it must also be true reciprocally means that

the matrix

(
a b
c d

)
must be inversible. More precisely, for the two lattices

(ω1, ω2) and (ω′
1, ω

′
2) to be equivalent, their unit cell should have the same area.

Therefore, the determinant of

(
a b
c d

)
should be unity. The group of such

transformations is the group of integer 2 by 2 matrices with unit determinant,
that is SL(2,Z).

Under the change of period described by (4.24), the modular parameter
transforms as

τ → aτ + b

cτ + d
(4.25)

We notice that we can change the sign of all a, b, c, d simultaneously and still
get the same transformation. We can therefore restrain the considered group
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of transformations to SL(2,Z)/Z2, or equivalently PL(2,Z). This group is
called the modular group. In the future, we will compute quantities of our
conformal �eld theories, such as the partition function of a theory, according
to the modular ratio τ . Due to what we just saw, these quantities will need
to be invariant under the modular group. In a more general way, a conformal
�eld theory de�ned on a torus will need to be modular invariant according to
τ . This modular invariance will impose strong constraints on the system, much
as conformal invariance imposed a lot of constraints on conformal �eld theories.
This explains the name of this section, "Modular invariance", and justi�es the
importance of modular invariance in orbifold conformal �eld theories.

For now, let's try to see what the modular group looks like. The modular
group is generated by these two transformations

T : τ → τ + 1 or T =

(
1 0
1 1

)
S : τ → −1

τ
or S =

(
0 1
−1 0

) (4.26)

Satisfying the following equations

(ST )3 = S2 = 1 (4.27)

We can interpret these two generators as follows. We write

U = T ST : τ → τ

τ + 1
(4.28)

Considering a torus de�ned by the periods ω1 and ω2, applying T amounts to
transforming the periods as

(ω1, ω2) → (ω1, ω1 + ω2) (4.29)

whilst applying U amounts to transforming the periods as

(ω1, ω2) → (ω1 + ω2, ω2) (4.30)

Each time, the transformation corresponds to cutting the torus at a �xed
time or space, rotating one side by 2π, and gluing back the two ends together.

Now, let's see how modular transformations act on the complex plane. From
(4.26), it is obvious that the modular group preserves the upper-half plane H.
De�nition 4.3.1. A fundamental domain Γ of a group G acting on a space is a
connected subset of this space such that no pair of points in Γ can be connected
through the action of G, but any point outside of Γ in the space can be reached
by a unique point of the fundamental domain through the action of G.

Finding a fundamental domain of a group helps a lot in the general under-
standing of the group. In our case, the modular group acts on the upper-half
plane H. A common fundamental domain of the modular group is the subset
of points with real part between − 1

2 and − 1
2 , imaginary part higher than 0,

and with a norm greater than 1. To make this a well de�ned fundamental do-
main, we take the points with norm strictly greater than 1 for points with a real
part strictly greater than 0, and a norm greater or equal to 1 for points with
an imaginary part less than 0. This fundamental domain is represented as the
hatched part in the drawing below. In the drawing are also represented the �rst
few actions of the generators to the fundamental domain.
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4.3.2 Modular functions

Before diving into the calculations of a conformal �eld theory on a torus, we
�rst digress a bit to introduce some functions that will become useful when
manipulating modular invariant quantities. We will give some identities and
how these functions transform under the modular group, without proving it.
The proofs are not too di�cult but are quite long. For the interested reader,
they can be found here [FMS97, p. 390].

We �rst introduce the theta functions, which arise from solution of the heat
equation or from the elliptic functions theory. For τ ∈ H, we write q = e2πiτ .
We de�ne

Θ2(τ) =
∑
n∈Z

q(n+
1
2 )

2/2 = 2q
1
8

∞∏
n=1

(1− qn)(1 + qn)2

Θ3(τ) =
∑
n∈Z

qn
2/2 =

∞∏
n=1

(1− qn)(1 + qn−
1
2 )2

Θ3(τ) =
∑
n∈Z

(−1)nqn
2/2 =

∞∏
n=1

(1− qn)(1− qn−
1
2 )2

(4.31)

These functions transform as follows under the modular group

Θ2(τ + 1) = e
πi
4 Θ2(τ) Θ2(−

1

τ
) =

√
τ

i
Θ4(τ)

Θ3(τ + 1) = Θ4(τ) Θ3(−
1

τ
) =

√
τ

i
Θ3(τ)

Θ4(τ + 1) = Θ3(τ) Θ4(−
1

τ
) =

√
τ

i
Θ2(τ)

(4.32)

We now de�ne Dedekin's η function

η(τ) = q
1
24

∞∏
n=1

(1− qn) (4.33)

η transforms as follows under the modular group

η(τ + 1) = e
πi
12 η(τ) η(−1

τ
) =

√
τ

i
η(τ) (4.34)
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Linking the theta functions and Dedekin's function, we have the following iden-

tity

η3(τ) =
1

2
Θ2(τ)Θ3(τ)Θ4(τ) (4.35)

4.3.3 Partition functions on the torus

Let's imagine a conformal �eld theory, living on the torus de�ned by the periods
ω1, ω2. This does not necessarily mean that the conformal �elds are periodic
according to the periods. In the path integral formalism, it simply means that
the action is invariant when translated by a period. Depending on the action,
some freedom may be given to the �eld, resulting in di�erent possible boundary
conditions. For exemple, if the action of a �eld φ is quadratic in φ and φ̇, φ
could pick up a sign −1 when translated accross a period. In this case, there
would be 4 possible boundary conditions

φ(z + ω1) = φ(z) φ(z + ω2) = φ(z)

φ(z + ω1) = −φ(z) φ(z + ω2) = φ(z)

φ(z + ω1) = φ(z) φ(z + ω2) = −φ(z)
φ(z + ω1) = −φ(z) φ(z + ω2) = −φ(z)

(4.36)

leading to 4 di�erent sectors. This is exactly the same phenomenon as was
observed in the section 4.2.2, leading to the boundary condition (4.10). Indeed,
the torus is de�ned by R2/S where S is the space group generated by the
translations by ω1 and ω2.

Given a boundary condition and supposing the boundary condition leaves
the action invariant, we have a well de�ned conformal �eld theory on the torus,
which can be formulated in the path-integral formalism. Knowing that, we
would like to compute correlation functions. As in statistical mechanics, (2.11)
shows us that the most important quantity to know in order to compute cor-
relaton functions is the normalization constant of the correlation functions, the
partition function Z. If we can compute the partition function Z of a conformal
�eld theory on the torus, and if we know the correlation functions of the same
theory on the in�nite spacetime, we should be able to compute the correlation
functions by renormalizing the correlation functions. This is especially useful
when constructing a conformal �eld theory using orbifolds, where we already
know the details of our conformal �eld theory befor quotienting it.

We continue the analogy with statistical mechanics. In statistical mechanics,
one has

Z = Tr(e−
H
kT ) (4.37)

with H the Hamiltonian. We would like to �nd a similar formula.

We de�ne Tω to be the operator translating the system by a period ω of the
torus. Tracing back the computations from (2.10) to (2.8), we see that Z =
Tr(Tω). We thus want to compute Tω. We haven't yet �xed the time and space
dimensions on the torus. As was discussed in the section on radial quantization,
we can choose any orthogonal basis. We choose the space dimension to be along
the real axis, and the time dimension to be along the imaginary axis. Let H be
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the Hamiltonian, generating translations in time, and P be the total momentum,
generating translations in space. We have

Tω = e−HIm(ω)+i (4.38)

Let's now see our torus as a cylinder of length ω, with a circumference L = ω′,
ω′ being the other period of the torus. We recall the relation (3.45). We write
the same relation but shifting the Hamiltonian by a constant, to ensure the
vanishing of the vacuum energy density when L→ ∞

H =
2π

L
(L0 + L̄0 −

c

12
) (4.39)

We can also �nd

P =
2πi

L
(L0 − L̄0) (4.40)

Injecting all of these into (4.37) and introducing the modular parameter τ = ω
ω′ ,

we get

Z(τ) = Tr(e2πi[τ(L0− c
24 )−τ̄(L̄0− c

24 )]) (4.41)

Introducing as in 4.3.2
q = e2πiτ q̄ = e2πiτ̄ (4.42)

we �nally write
Z(τ) = Tr(qL0− c

24 q̄L̄0− c
24 ) (4.43)
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Chapter 5

Orbifolds of the free boson

In this section, we apply all precedent results to construct orbifolds of the free
boson. In 5.1, we construct the free boson on the torus. In 5.2, we construct
the orbifold of the free boson by a group of translations. Finally, in 5.3, we
construct the orbifold of the free boson by Z2.

5.1 The boson on the torus

We have seen that any orbifold construction must �rst be projected onto the
torus, and that it is therefore helpful to consider the spacetime to also be a
torus. We would therefore like to use our results so far to calculate the partition
function Z of the free boson on a torus.

Let's try to compute the partition function in a roundabout way. Recall
what we have seen in 1.2.4. We call χc,h(τ) the character of a Verma module,
de�ned by

χc,h(τ) = Tr(qL0− c
24 ) with q ≡ e2πiτ

=

∞∑
n=0

dim(h+ n)qn+h− c
24

(5.1)

where dim(h + n) is the number of linearly independent states of the Verma
module V (c, h) at level n. We can induce from (1.31) that for a generic Verma
module, dim(h + n) is equal to p(n) the number of partitions of Nn. Knowing
the generating function of p(n)

∞∏
n=1

1

1− qn
=

∞∑
n=0

p(n)qn (5.2)

we can rewrite (5.1) in terms of the Dedekin's η function

χc,h(τ) =
qh+

1−c
24

η(τ)
(5.3)

Based on this, recalling the formula for the partition function (4.43), we can
expect the partition function of the free boson to behave as

Z(τ) ∝ 1

|η(τ)|2
(5.4)
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The proportionality constant is important, as 1
|η(τ)|2 is not modular invariant.

After a quick computation, we can show that to make |η(τ)| invariant, we need
to multiply it by (Im(τ))

1
4 . Thus, we can expect the partition function to take

the form

Z(τ) =
1

(Im(τ))
1
2 |η(τ)|2

(5.5)

In fact, computing explicitely Z(τ) from its explicit formula (2.11) with the
action of the boson given in (1.33) using complex analysis, we �nd exactly

Z(τ) =
1

(Im(τ))
1
2 |η(τ)|2

(5.6)

The details of this explicit computation can be found here [FMS97, p. 341].

The next two sections will display two exemples of orbifolds construction, by
computing the partition function of two new theories obtained by quotienting
the theory of the free boson on a torus by two di�erent spatial groups.

5.2 The compacti�ed boson

The Lagrangian of the boson (1.33) is invariant through translation φ→ φ+C.
We can thus try to de�ne the �eld φ on a circle of radius R hoping that it
doesn't modify much the dynamics of the system. This is done by identifying
φ with φ + 2πR, or equivalently by supposing that the �eld φ is invariant
under symmetries of the form φ→ φ+ 2nπR. This theory is usually called the
compacti�ed boson. De�ning S as the space group generated by translations of
2πR, we are thus trying to compute the orbifold of the usual free boson by the
space group S. This has 2 main consequences:

� For the vertex operators to be well de�ned, the momentum operator π0
can no longer take any value, and must be an integer of 1

R .

� As described by the section 4.2.2, an in�nite number of winding sectors
are created, each associated with a di�erent boundary condition.

If we consider the free boson on a cylinder of circumference L, we can associate
to each winding sector an integer m ∈ Z called the winding number, such as the
boundary condition for �elds in the sector is

φ(x+ L, t) = φ(x, t) + 2πmR (5.7)

Considering the free boson on the torus de�ned by the periods ω1, ω2, wind-
ings can occur in 2 di�erent directions: when going from z to z+ω1, and when
going from z to z+ω2. The boundary conditions (and the winding sectors) are
therefore parameterized by two integers (m,m′) ∈ Z:

φ(z + kω1 + k′ω2) = ϕ(z) + 2πR(km+ k′m′) (5.8)

We can de�ne the partition function Zm,m′ as the partition function of �elds in

the sector (m,m′).
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Just as one would solve a di�erential equation using the homogeneous solu-
tion and a special solution, we can decompose our �eld φ into a special solution
φcl
m,m′ , solution to the classical equation of motion, and a periodic �eld φ̃, the

"free part" of φ. We have

φ = φcl
m,m′ + φ̃φcl

m,m′ = 2πR

(
z

ω1

mτ̄ −m′

¯tau− τ
− z̄

ω∗
1

mτ −m′

¯tau− τ

)
(5.9)

We can easily check that φcl
m,m′ is real, and indeed veri�es the boundary condi-

tion (5.8). We have ∆φcl
m,m′ = 0 and∫

d2x ∇φcl
m,m′∇φ̃ = −

∫
d2xφ̃∆φcl

m,m′ = 0 (5.10)

so recalling the action given of the �eld given by (1.33), the action S[φ] decouples
into §[φ̃] and S[φcl

m,m′ ]. We can easily compute S[φcl
m,m′ ]:

S[φcl
m,m′ ] =

1

8pi

∫
d2x (∇φcl

m,m′)2

=
1

2π

∫
dzdz̄ ∂φcl

m,m′ ∂̄φcl
m,m′

= 2πR2Im(ω2ω
∗
1)

1

|ω1|2

∣∣∣∣mτ −m′

τ − τ̄

∣∣∣∣2
= πR2 |mτ −m′|2

2Im(τ)

(5.11)

We write Zbos the partition function of the boson on a torus, given by (5.6).
Integrating according to the formula for Z given in (2.11) the "free part" of the
�eld results in Zbos. We therefore have

Zm,m′(τ) = Zbos(τ)e
−πR2|mτ−m′|2

2Im(τ) (5.12)

Summing the partition function of all possible winding sectors, we get the par-
tition function of the theory

Z(R) =
R√
2
Zbos(τ)

∑
m,m′

e−
πR2|mτ−m′|2

2Im(τ) (5.13)

which is modular invariant. Using Poisson's resummation, we get

Z(R) =
1

|η(τ)|2
∑

e,m∈Z
q(

e
R+mR

2 )2/2q̄(
e
R+mR

2 )2/2 (5.14)

We do not go into the details of this computation, which can be found here
[FMS97, p. 351]

5.3 The Z2 orbifold

We now want to consider another kind of symmetry added to our system. We
suppose again that the �eld φ has values in the circle, but we identify φ to
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−φ, such that the resulting space for φ is a segment. We recognize here the Z2

orbifold shown as an exemple in 4.2.2, where the elements of the spacegroup are
of the form (±1, n) for n ∈ Z. Let's consider the orbifold made of the free boson
on the torus quotiented by this spacegroup. We still have the winding sectors
(m,m′) as for the compact boson. But as seen in 4.2.2, we now also have the
possibility of twisted sectors, associated with the following twisted boundary
conditions

φ(z + kω1 + k′ω2) = eπikφ

φ(z + kω1 + k′ω2) = eπik
′
φ

φ(z + kω1 + k′ω2) = eπi(k+k′)φ

(5.15)

Once again, we get more di�erent possibilities of boundary conditions, as on the
torus there are two ways of looping from z back to z: z → z+ω1 and z → z+ω2.
We consider the general boundary condition parametrized by (u, v):

φ(z + kω1 + k′ω2) = e2πi(kv+k′u)φ (5.16)

with v, u each being 0 or 1
2 .

We call Zv,u the partition function associated to the sector (v, u). In particu-
lar, Z0,0 = Z(R). As the holomorphic and antiholomorphic �elds are decoupled,
we can integrate only the holomorphic part in the de�nition (2.11) of the par-
tition function, and writing the result fv,u, we then have

Zv,u = |fv,u|2 (5.17)

We want to compute fv,u. To do so, we will use a method presented in [Hub13].
We will not go through every details, but rather present the general tricks. We
want to compute the partition function in the operator formalism. However, we
need to implement the boundary condition. For a boundary condition v = 0 or
u = 0, nothing needs to be done. In fact, upon integration, the �elds inside the
correlation function commute due to the time-ordering, but commutating 2 �elds
has no impact on the correlation function as the �eld is bosonic. To implement
an antiperiodic boundary condition, we need to implement the operator G such
that GφG−1 = −φ. Using it, we can calculate

f0, 12 = Tr(GqL0− 1
24 ) f 1

2 ,0
= Tr(qL0− 1

48 ) f 1
2 ,

1
2
= Tr(GqL0− 1

48 ) (5.18)

With (3.44), we can further develop these expressions

f0, 12 = Tr(Gq
∑

n a−nan− 1
24 )

f 1
2 ,0

= Tr(q
∑

n a−nan− 1
48 )

f 1
2 ,

1
2
= Tr(Gq

∑
n a−nan− 1

48 )

(5.19)

But we know that G acts on vacua |m,n⟩ as

G|m,n⟩ = | −m,−n⟩ (5.20)

and that G anticommutes with the (an)n. We can then see that due to the
action of G, most of the terms in the expression of f0, 12 in (5.19) cancels out,
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and that only the states descending from the vacuum |0, 0⟩ has a contribution
to the trace. Similarly, we see that in the expression of f 1

2 ,
1
2
, only the vacua

|0, 0⟩pm contribute. Putting everything together, we get

f0, 12 =

√
2η(τ)

Θ2(τ)
f 1

2 ,0
=

√
2η(τ)

Θ4(τ)
f 1

2 ,
1
2
=

√
2η(τ)

Θ3(τ)
(5.21)

where the thetas are de�ned in (4.31).

With the help of (4.32), we can compute how these quantities transform
under the modular group. We deduce that the only two quantities that are
modular invariant are Z0,0 = Z(R) and∣∣∣f0, 12 ∣∣∣2 + ∣∣∣f 1

2 ,0

∣∣∣2 + ∣∣∣f 1
2 ,

1
2

∣∣∣2 (5.22)

We get the total partition function of the theory by summing the partition
function of all types of boundary conditions, and projecting everything on G-
invariant states, as described in 4.2.1. We get

Zorb(R) =
1

2
Z(R) +

|η|
|Θ2|

+
|η|
|Θ3|

+
|η|
|Θ4|

(5.23)

Using the identity (4.35), we �nally get

Zorb(R) =
1

2

(
Z(R) +

|Θ2Θ3|
|η|2

+
|Θ2Θ43|

|η|2
+

|Θ3Θ4|
|η|2

)
(5.24)
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