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Abstract

These are notes of the seminar given by myself on physics for W-algebraists, in
the team seminar of Pr. Suh UhiRinn at Seoul National University in May 2024.
Following the �rst part of my seminar, I �rst introduce rational conformal �eld
theories, and derive the WZW-model from the Sigma model, one of the biggest
exemple of RCFT. I also compute its algebra, which is an a�ne Lie algebra.
Then, I more formally introduce W-algebras, give the exemple of Casimir alge-
bras, and then use this intuition to derive the more general class of the quantum
a�ne W-algebras known to mathematicians. Be aware that these notes weren't
proofread by anyone, and that there are most probably errors in it. One should
not have too much faith in the details of every formula. However, the intuition
behind each of them should be right.
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Chapter 1

W-algebras

This section aims at introducing W-algebras from a physical perspective, and
at giving a quick overview of the general theory of W-algebras on the physical
side.

1.1 Minimal models

Before we start discussing W-algebras, we should go to the basics to understand
their origin and importance. Let's consider a 2D conformal �eld theory. We
recall from the last notes that the Hilbert space of the theory takes the form

H =
⊕
a,b

V (ha, c)⊗ V̄ (h̄b, c) (1.1)

where a indexes the holomorphic dimensions of primary �elds, and b indexes
the antiholomorphic dimensions.

One of the important objects of a conformal �eld theory is its partition
function, which allows one to compute correlation function among other things.
In particular, if the theory is de�ned on a torus (if we assume we can compactify
and loop around time), we can read the partition function of the theory using
the formula:

Z(τ) =
∑
a,b

Nabχ(ha, c)χ̄(h̄b, c) (1.2)

Where, τ is the moduli of the torus, χ(ha, c) is the character associated to
V (ha, c), χ̄(h̄b, c) is the character associated to V̄ (h̄b, c), and Nab is the degen-
eracy of representations with conformal dimension (ha, h̄b) in the theory.

Now let suppose we are a physicist wanting to classify 2D conformal �eld
theories. Classifying all of them would be a very hard task, still unsolved today.
We must therefore restreign ourselves to a smaller class of "simple" conformal
�eld theories. How to choose which CFT is "simple enough" and which is not?
In view of (1.2), we might want to study theories where the rank of the matrix
Nab is �nite, or alternatively where the sum in (1.2) is �nite. This is what was
originally called rational �eld theories.

Indeed, the study of a theory gets simpler when the sum on the left is �nite.
Knowing the correlation function of the primary �elds of a theory is enough to
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know the correlation function of all �elds of the theory. But in a RCFT, this
number is �nite, such that one has a �nite number of correlation functions to
determine.

Moreover, assuming modularity, this condition of �niteness already puts
heavy constraints on conformal �eld theories. It has been shown by Moore and
Anderson that in a rational conformal �eld theory, the central charge c and the
conformal dimensions ha of the primary �elds are all rational numbers, hence
the name "rational".

For the sum in (1.2) to be �nite, there should be a �nite number of Vira-
soro primary �elds allowed in the theory, generating a �nite number of Verma
modules. This condition is known to be realized when c < 1. Indeed, when
c < 1, there exist only a �nite number of conformal dimensions h such that the
Verma module V (h, c) is unitary. This discrete set of numbers is given by the
Kac determinant. Therefore, unitary 2D CFTs with c < 1 are rational. They
have been entirely classi�ed, and are called minimal model.

However, the inverse happens for c ≥ 1. It has been shown that in any 2D
CFT where c ≥ 1, there always exists an in�nite number of Virasoro primary
�elds, generating an in�nite number of Verma modules. 2D CFTs with c = 1
have been entirely classi�ed [Flo93], as in the case of the minimal models. But
what about theories with c > 1?

1.2 Rational conformal �eld theories

All conformal �eld theories with c > 1 have an in�nite number of Verma mod-
ules. Is this the end of the discussion? Not necessarily. The solution lies in
extending the Virasoro algebra. To see this, let's study the structure of a mini-
mal model by changing perspective.

Let us consider a minimal model. Its Hilbert space takes the form

H =

Na∑
a=1

Nb∑
b=1

V (ha, c)⊗ V̄ (h̄b, c) (1.3)

From the operator perspective, this can be written as

H =

Na∑
a=1

Nb∑
b=1

[φha
]⊗ [φ̄ha

] (1.4)

Where [φha
] is the family of operators descending from the primary �eld φha

,
or in other words is the operator equivalent of V (ha, c).

Let's focus on the holomorphic dimension. Let φh, φh′ two primary �elds.
The conformal �eld theory is closed under the operator product expansion, and
it only contains a �nite number of conformal families. Moreover, we know that
the OPE of two �elds in each of the families will be similar to the OPE of
the two primary �elds, modulo the appearance of lowering operators from the
Virasoro algebra. Therefore, we can generally decompose the operator product
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expansion of members of the two families by counting the number of appearance
of operators from other families, as

[φh]× [φh′ ] =
∑
a

Na
hh′ [φa] (1.5)

This is called the fusion rule.

Among the di�erent holomorphic conformal families, only one has conformal
weight h = 0. Indeed, writing the �eld generating this module φ0, this �eld is
a Virasoro primary �eld of conformal dimensions 0. Therefore, it is constant
under any local conformal transformation. We can then assume it to be the
identity. We call this module the (holomorphic) chiral algebra of the theory,
and write it A. Since A contains the identity, we can determine its fusion rule
based of the OPE of the identity. We have

Na
b0 = Na

0b = δab (1.6)

This shows that the OPE gives an action of A onto all of the holomorphic
conformal families, or alternatively that all holomorphic Verma modules are
representations of A. A theory is then a rational conformal �eld theory in the
sense given above when both A and the antiholomorphic chiral algebra Ā have
a �nite number of possible representations.

This discussion is actually quite trivial, as A is the conformal family gen-
erated by the Virasoro algebra from the identity and is therefore nothing more
than the (holomorphic) Virasoro algebra itself. We are just saying that all
Verma modules are representations of the Virasoro algebra.

However, one can generalize such discussion by extending A and Ā into big-
ger algebras. Focusing once again on the holomorphic dimension, let us consider
a conformal �eld theory where the Virasoro algebra is embedded into a bigger
algebra A which can act on every state of the system. Instead of decomposing
the Hilbert space into highest weight representations of the Virasoro algebra,
one can decompose the Hilbert space into highest weight representations of A,
where the highest weight states are primary with respect to A, or alternatively
where the generating �elds are primary with respect to A.

In this case, on a torus, one can once again write the partition function

Z(τ) =
∑
a,b

Nabχ(ha, c)χ̄(h̄b, c) (1.7)

where the χ(ha, c) are instead characters of the holomorphic chiral algebra,
and similarly in the antiholomorphic dimension. We then de�ne generally a
rational conformal �eld theory (RCFT) as a theory where the rank of the newly
de�ned matrix Nab is �nite, or alternatively where the sum on the right hand
side is �nite. Equivalently, we can say that a CFT is rational if its Hilbert space
decomposes into a �nite sum of representations of the chiral algebras A and Ā

H =

Ni∑
i=1

Nj∑
j=1

Hi ⊗ H̄j (1.8)
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Once again, we see that RCFTs are easier to study than general CFTs. We
can still determine the correlation function of any �eld from the correlation
function of general primary �elds (with respect to the chiral algebra), of which
there is a �nite number. Thus, the complete understanding of a RCFT once
again reduces to the computation of a �nite number of correlation functions.

Classifying rational conformal �eld theories comes down to classifying all
acceptable, non trivial extensions of the Virasoro algebra which admits only a
�nite number of unitary representations. However, a lot of questions on this
subject are still open up to now. We know that additional symmetries in the
theory can in general help extend the Virasoro algebra. A construction of such
extension under some conditions is detailed in [Int90], for the interested reader.

1.3 Holomorphic CFTs

RCFTs are a very important class of CFTs, playing a huge role in the study of
string theory among other theories. A lot of theories naturally appearing are
RCFTs, without being minimal models. In particular, string theory requires
RCFTs with c > 1, as do phase transition systems of second order. But we
saw just before that the classi�cation of RCFTs can be reduced to that of
chiral algebras A extending the Virasoro algebra and having a �nite number
of representations.

We would therefore like to study in more details the possible extensions of the
Virasoro algebra, and more generally the identity sector of RCFTs (the space of
operators corresponding to the chiral algebra). As the identity sector of a RCFT
is just generated by the two chiral algebras acting on the identity operator,
this sector is closed under OPE. It therefore makes a completely consistent
theory by itself. Furthermore, in such a theory, both chiral parts are completely
decorrelated. As such, one could study only one side of the theory, which is also
completely consistent by itself.

De�nition 1.3.1. An holomorphic �eld theory is a conformal �eld theory where
the Hilbert space is reduced to its (without loss of generality, holomorphic) chiral
algebra. It can also be equivalently de�ned as a rational �eld theory whose fusion
rule is trivial, highlighting the motivation behind the study of such a theory.

However, we want to abstract ourselves from physics. What truly is the
object behind a holomorphic conformal �eld theory? We should have an Hilbert
space H corresponding to the space of states, and a map from the space of
states to the space of �elds |φ⟩ → V (|φ⟩, z) corresponding to the state-operator
correspondance. Moreover, the space of �elds should contain the stress-energy
tensor V (|L⟩, z) = T (z) such that writing

T (z) =
∑
n∈Z

Lnz
−n−2 (1.9)

the family (Ln)n satis�es the Virasoro algebra. The space of states should also
contain the vacuum |0⟩, which is the unique state such that

∀|φ⟩ ∈ H, V (|φ⟩, z)|0⟩ = ezL−1 |φ⟩ (1.10)
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Finally, the operators should act well on the states, to create nice correlation
functions. For all |φ1⟩, |φ2⟩, |φ3⟩, |φ4⟩ ∈ H, we should have that

� ⟨φ1|V (|φ2⟩, z)|φ3⟩ is meromorphic in z

� ⟨φ1|V (|φ2⟩, z)V (|φ3⟩, w)|φ4⟩ is meromorphic in z and w for |z| > |w|

� ⟨φ1|V (|φ2⟩, z)V (|φ3⟩, w)|φ4⟩ = εφ2φ3
⟨φ1|V (|φ3⟩, w)V (|φ2⟩, z)|φ4⟩ by ana-

lytic continuation, with εφ2φ3
depending wether |φ2⟩ and |φ3⟩ are "bosonic"

or "fermionic".

These axioms imply a few things, which are expected from the physical
point of view. First of all, the state-operator map is an isomorphism. Moreover,
the operator L0 is ad-diagonalizable on H and can only have integer or half-
integer eigenvalues. This leads to the de�nition of bosonic or fermionic states,
respectively as eigenstates of L0 with integer or half-integer eigenvalue.

According to the grading implied by L0, we write

H =
⊕
h

Hh (1.11)

Then, for |φ⟩ ∈ Hh, we write

V (|φ⟩, z) =
∑
n

φnz
−n−h (1.12)

where n is integer or half-integer depending on the integrity of h. With this
notation, we notice that

φ−h|0⟩ = |φ⟩
∀n ≥ −h+ 1, φn|0⟩ = 0

(1.13)

We can also rewrite the OPE as can usually be done in term of modes

A(z)B(w) = B(w)A(z) =

∞∑
r=r0

(A(r)B)(w)(z − w)r

(A(r)B)(w) = V (A−r−hA
B−hB

|0⟩, w)
(1.14)

which gives at the same time

: A(z)B(w) := V (A−hA
B−hB

, z − w) (1.15)

1.4 W-algebras

We want to further restreign the structure of a holomorphic conformal �eld
theory, and only consider "�nite" holomorphic conformal �eld theories, for some
notion of �niteness. Indeed, this is similar to considering RCFTs instead of
general CFTs. The objective here is to study some structure that we can actually
describe, and hope to classify.

What is the right notion of �niteness? As in the case of RCFTs where
we only consider theories with a �nite number of conformal families, that is
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theories with a �nite number of primary �elds (primary with regards to the
chiral algebras), we here want the holomorphic theory to be �nitely generated.
The question is then: generated with regards to what operation? We should
allow for the derivative and the normal-ordered product, as it is at the basis
of vertex algebras. Since any holomorphic conformal �eld theory should also
have an energy-momentum �eld, we can use the derivative to get all modes
of the energy-momentum �eld and applying it to the generators, we get the
descendants of the generator under the Virasoro algebra. We can therefore
suppose the generators are Virasoro primary. If we were to also allow for the
modes of the chiral algebra to act on the system, then any holomorphic CFT
would be �nite, generated by the vacuum only, by de�nition of the chiral algebra.
As such, we understand that only allowing for the derivative and the action of
the Virasoro algebra is the right way to de�ne the notion of �niteness. We
should consider holomorphic conformal �eld theories which are generated from
a �nite number of primary �elds (and from the energy-momentum �eldy), using
OPEs and derivatives. Looking at the original decomposition of the Hilbert
space in Verma modules, this amounts to saying that the chiral algebra should
be made up of �nitely many Verma modules.

De�nition 1.4.1. A quantum W-algebra is an holomorphic conformal �eld
theory such that the Hilbert space H is generated, under derivations and normal
ordered product, by a �nite set of states (|i⟩)i including |L⟩ whose corresponding
�elds (W (si)(z)) are quasi-primary �elds with integer conformal dimension si.

If H is a W-algebra, it is then spanned by lexicographically ordered states
of the form

W
(si1 )
−m1−si1

. . .W
(sin )
−mn−sin

|0⟩ (1.16)

We usually write the W-algebra generated by n �elds (|i⟩)i∈Nn
of conformal

dimensions (hi)i∈Nn
: W(h1, . . . hn). We notice that as the energy-momentum

�eld is always present in the theory, and is always of conformal dimension 2.
Therefore, there is always a 2 in the conformal dimensions (hi)i∈Nn . In fact,
the energy-momentum �eld is in general the only �eld which is not primary.
Moreover, we recall that the conformal dimensions should all be integers, for
reasons of modular invariance. The �rst known non-trivial exemple ofW-algebra
was Zamalodchikov's W(2, 3), usually written W3.

In the general case, we cannot construct a W-algebra for any conformal
dimension (hi)i∈Nn

. Finding the class of sequences of conformal dimensions
(hi)i∈Nn

such that W(h1, . . . hn) is well de�ned is still today an open problem.
Moreover, in certain case, W(h1, . . . hn) can have multiple constructions leading
to multiple di�erent W-algebras. Therefore, we should emphasize that this
nomenclature can be ambiguous.

It is not too hard to compute all possible W-algebras with a small number
of primary �elds. In particular, such extensive studies have been done for W-
algebras with 2 generating �elds, of the form W(2, n) for n ∈ N∗. However, it
is still important to understand all of the possible W-algebras, and not simply
the smaller ones which can be computed by hand. Indeed, this is shown by
the main result of [Eho+92], stating that any bosonic W-algebra generated by
k di�erent �elds and having a �nite number of representations (as to generate
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a RCFT) must have its central charge obey c < k. We must consider bigger
W-algebras to consider theories with bigger central charges.

We end this subsection by discussing possible generalizations of this de�ni-
tion. First, we can also allow for the W-algebra to have an in�nite number of
generating �elds. Relaxing the de�nition this way allows one to consider alge-
bras such as W∞ or Ŵ1,∞, which are useful in the quest for a universal cover
of W-algebras. We can also relax the de�nition by allowing for the generators
to have half-integer conformal dimensions. This allows one to de�ne graded
W-algebras, and twisted W-algebras.

1.5 Exemples and series

We should now discuss of exemples of suchW-algebras. The �rst known exemple
of W-algebra was the W3 algebra, introduced in [Zam85]. It is also known to
be the simplest W-algebra, meaning the simplest non-trivial extension of the
Virasoro algebra. In the notation given above, it corresponds to the algebra
W(2, 3).

This algebra is generated by two �elds, the energy-momentum �eld T with
modes (Ln) forming the Virasoro algebra, and the primary �eld W of conformal
dimension 3 with modes (Wn).

Let's look at the commutation relations of the algebra. We necessarily have
for any n,m

[Lm, Ln] = (n−m)Lm+n +
c

12
(n3 − n)δn,−n

[Lm,Wn] = (n− 2m)Wm+n

(1.17)

Then, setting the quasi-primary �eld

Λ =: LL : − 3

10
∂2L (1.18)

and the structure constants

CL
WW = 2, CΛ

WW =
32

5c+ 22

p334(m,n) =
n−m

2
, p332(m,n) =

n−m

60
(2m2 −mn+ 2n2 − 8)

(1.19)

We have

[Wm,Wn] = CL
WW p332(m,n)Lm+n + CΛ

WW p334(m,n)Λm+n +
c

3

(
n+ 2

5

)
δn,−m

(1.20)

We see here the appearance of a the new quasi-primary �eld Λ di�erent from
: LL :.

Since the discovery of this algebra, many other W-algebras have been found.
In particular, in the quest for the complete classi�cation of W-algebras, many
general constructions were found, leading to large series of W algebras.

The �rst systematic construction of W-algebras that was found after the
discovery of W3 gives the class of WN algebras, of type W(2, 3, . . . , N) and of
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central charge c = (3N+1)(N−1)
2(2N+1) . They are general extensions of W3, and are

constructed by each time extending the algebraWN−1 by a current of conformal
dimension N .

Another general class of W-algebras easy to �nd is the class of a�ne Kac-
Moody algebras ĝk, which we will describe in ??. The idea is to extend the
Virasoro algebra representing conformal transformations on a plane to an alge-
bra representing conformal transformations on a semi-simple Lie algebra g. To
each dimension of the semi-simple Lie algebra is then associated a current of
conformal dimension 1, e�ectively extending the Virasoro algebra. The theories
lying behind this class of algebras are the WZW-models.

Also considering a semisimple Lie algebra g, a second class of W-algebras
can be found by considering the Casimir invariants of the algebra. This lead to
the so-called Casimir algebras, written Wg-algebras. It is interesting to see in
particular that WAN−1 ≃ WN . These Casimir algebras can also be thought of
as the algebra of conserved currents of a Toda �eld theory, or as a WZW-model
where we have gauge-�xed most of the momentum of the particles, as we will
see in 3.

Using this point of view, we can generalise Casimir algebras to more general
forms of gauge �xing of the WZW-model using the BRST procedure, resulting in
the acclaimed quantum Drin�ed-Sokolov reduction. The gauge �xings depend-
ing on a sl2 subalgebra s ⊂ g, the resulting W-algebras were historically written
Wg

s . Understanding that s only depends on two elements (x, f) ∈ g de�ning a
good grading, we now more often write this kind of algebra Wk(g, x, f), where
k corresponds to the level of the reduced a�ne Kac-Moody algebra.

We also have ways of constructing W-algebras from preexisting ones. First,
we can use the orbifold procedure, already well-known in physics. The idea is to
use an outer automorphism of a preexisting W-algebra to enforce a symmetry
on it, leading to new currents and to a bigger algebra, most often also �nitely
generated. For exemple, the Z2 orbifold of W(2, 3) is W(2, 6, 8, 10, 12).

We can also take the tensor product of already known W-algebras. For ex-
emple we can �nd an algebra W(2, 2, . . . 2) by summing n copies of the Virasoro
algebra. However, the expression of the new central charge and the expression
of the new energy-momentum �eld are not always trivial to �nd.

Finally, given a W-algebra A having another W-algebra B as subalgebra,
we can consider the commutant of the subalgebra, giving rise to a new W-
algebra written A/B. This construction is called the Coset construction, and
is also quite classical in CFTs. Using this construction, one can for exemple
construct the serie of the DN parafermions, whose W-algebras are given by
ŝo(N)k ⊕ ŝu(N)1/ŝo(N)k+2.
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Chapter 2

The WZW model

We should now give a gentle introduction to the WZW-model, in order to give
strong natural intuition for the a�ne Kac-Moody algebras.

2.1 Motivation and de�nition

Let's �rst go to physics, and consider objects moving in spacetime. The rela-
tivistic dispersion relation tells us that for a general particle, its energy is given
by

E2 = (pc)2 + (mc2)2 (2.1)

With the usual c = 1, we would therefore want to consider a system where we
impose

E2 − p2 −m2 = 0 (2.2)

Suppose we want to study the evolution of a single object. We would then want
to consider its trajectory in the space of states T , which may be given by a �eld
φ : R → T , where for λ ∈ R parametrizing the trajectory, φ(λ) corresponds to
the state of the object at λ. For exemple, in the case of a relativistic particle,
we may choose T = M to be the Minkowski space. Writing φt the component
of φ in the time dimension and φa the components of φ in the space dimensions
(with implicit summation), we can rewrite the above equation as(

i∂φt
)2 − (−i∂φa)

2 − (mφ)
2
= 0

∂φa∂φa − ∂φt∂φt −m2φ2 = 0

gij∂φ
i∂φj −m2φ2 = 0

(2.3)

with g the metric on T , here the Lorentzian metric. We can generalize this for
a relativistic particle in a curved spacetime as in general relativity, by giving g
a dependance. To enforce this relation, we may choose the following action

S =

∫
R

1

2
gij(φ)∂φ

i∂φj − 1

2
m2φ2 (2.4)

Remark. We have added a 1
2 factor according to the conventions, though it does

not change the physics of the system.
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For a massless particle, this simply reduces to

S =
1

2

∫
R
gij(φ)∂φ

i∂φj (2.5)

which corresponds to the kinetic energy of the particle.

Now, suppose the object we want to study is a string. One could simply
repeat the above process, with instead T = MR. However, it might be more
convenient to instead change the parametrization space, and consider a more
general �eld

φ : Σ → T (2.6)

where for a relativistic string we have Σ = R2 and T = M. Modifying the
action accordingly, we have

S =
1

2

∫
Σ

gij(φ)∂
µφi∂µφ

j (2.7)

where we also accounted for the geometry of Σ in ∂µ = ηµν∂ν , with η the metric
on Σ. (2.7) is the action of the sigma model, which models arbitrary objects
living in T , parametrized by Σ.

2.2 Geometric interpretation

The action might seem complicated, but it is really just the most simple way of
computing a kinetic energy for objects living on T , accounting for the geometry
of T and Σ. To see this, we can reformulate the model in a more geometric
language. Locally, for each dimension i of T , the ∂µφ

i are di�erential forms on
Σ. From the point of view of Σ, we may thus write

S =
1

2

∫
Σ

dφ ∧ ∗dφ (2.8)

But

≪ α, β ≫=

∫
Σ

α ∧ ∗β (2.9)

is an inner product on the space of square-integrable forms on Σ. The action
the reduces to

S =
1

2
≪ dφ,dφ ≫ (2.10)

which makes it clear that the action is nothing more than the kinetic energy of
the considered objet.

The sigma model is well de�ned for any two manifolds Σ and T . Let's
discuss of some classical exemples of sigma models.

For Σ = Rn and T = C, the sigma model reduces to quantum mechanics
where the considered particle lives in Rn.

For Σ = R and T = Rn, the sigma model simply describes a classical particle
living in n dimensions. Switching Rn by T = Md the n-dimensional Lorentzian
manifold, the sigma model instead describes a relativistic particle living in n−1
dimensions.

12



For Σ = (τ, σ) = Σ2 and T = M, the sigma model describes a relativistic
string. More generally, for Σ = Σ2 and arbitrary T , the sigma model describes
a string living on T . This special case has been extensively studied, especially
for T a semisimple Lie algebra. The string serves as an excitable material where
the excitations can be viewed as particles, resulting in a model which can be
reformulated as a free particle system.

We should make explicit the di�erence between the case (Σ = Rn,T = C)
and the case (Σ = R,T = Rn). Both cases look similar, as the (almost) only
di�erence is the switch between the parameter space and the target space. In
fact, both cases describe a particle living in Rn. However, the interpretation of
the model is completely di�erent in both cases.

The case (Σ = Rn,T = C) is similar to what we are used to. The considered
�eld is going from the space(time) to a space expressing some form of "quantity".
The particle lives in Rn, and the value p ∈ C of the �eld in x ∈ Rn indicates the
probability of �nding the particle at x in the space, as well as its momentum.
Most of quantum �eld theories are based on a similar principle. For exemple,
when considering the free boson discussed in the previous notes, the base space
is the spacetime R⊭ in which the boson live, and the target space R can directly
be interpreted as a quantity scale to indicate how much boson are in each area of
the spacetime. The free fermion constitutes a similar but more complex exemple,
where the value of the �eld is a Grassman variable. In any case, the target space
constitutes a measure of probability whilst the base space constitutes the space
where the particles live.

On the opposite side, when taking (Σ = R,T = Rn), we are really looking
at a particle parametrized by the base space and where the target space is the
space in which the particle lives. Σ serves as a kind of proper time, which
parametrizes the position of the particle. This point of view is very similar to
classical mechanics, where one would usually consider the position of an object
according to time:

x⃗(t) : R → R3 (2.11)

The case (Σ = Σ2,T = M) is also similar, describing a string living in a general
manifold M, whose excitations describe particles living in a general manifold,
where the excitations in the base space serve as the measure of probability
instead of the value in the target space. We wish to really emphasize the fact
that usual (conformal) �eld theories describe a particle living in the base space,
while this kind of model describes a particle living in the target space. This
distinction will be very important in the future.

2.3 Sigma model on Lie algebras

We will now focus on a variant of the Sigma model de�ned on Lie algebras.
Lie structures have been known to appear naturally in physics for a long time.
Classically, in Hamiltonian mechanics, the Hamiltonian induces a sympleptic
structure on the phase space, which in turn can be endowed with a Lie structure
when a symmetry acts on the system. In a more general setup, symmetries
are encoded by Lie structures, and act on the space of any physical system
containing the symmetry. It may therefore be natural to consider the general

13



case of strings moving on a Lie structure. Moreover, the structure of Lie algebras
and in particular semisimple Lie algebra is very well known, and enable us to
generate a wide variety of sigma models. For these reasons among other ones,
from now on until the end of this paper, we will be considering sigma models
where Σ = Σ2 and where T is a semisimple Lie algebra.

Let g be a semisimple Lie algebra, and G be its Lie group. We set (Ta)a a
basis of g such that

Tr(TaTb) = δab (2.12)

We now consider a sigma model on g, that is a �eld φ : Σ2 → g. We can
decompose the �eld in its components φa, such that

φ(τ, σ) =
∑
a

φa(τ, σ)Ta (2.13)

The action for this �eld can then be written

S =
1

2

∫
Σ2

gab(φ)∂
µφa∂µφ

b

=
1

2

∫
Σ2

∂µφa∂µφa

=
1

2

∫
Σ2

Tr(∂µφ∂µφ)

(2.14)

where we hid the geometrical informations on g using the trace.

φ is a �eld de�ned on a 2 dimensional spacetime. In the future, we will want
to apply 2D CFTs techniques to it. In preparation for this, we may already take
the usual coordinates used in 2D CFTs. As is done conventionally, we de�ne

z ≡ τ + iσ ∂ ≡ 1

2
(∂τ − i∂σ)

z̄ ≡ τ − iσ ∂̄ ≡ 1

2
(∂τ + i∂σ)

(2.15)

Assuming Σ2 is �at1, the metric becomes

gµν =

(
0 1

2
1
2 0

)
(2.16)

In term of these coordinates, the action can be written as

S = 2

∫
Σ2

Tr(∂φ∂̄φ) (2.17)

Let's now try to reformulate this model on the Lie group instead of the Lie
algebra. We �rst need to de�ne g the pullback of φ onto G:

g : Σ2 → G

g(z, z̄) = eφ(z,z̄) = eφ
a(z,z̄)Ta

(2.18)

1the curvature of Σ2, if taken as a dynamic variable, makes a Gauge redundancy. Taking

a �at metric for Σ2 is thus a kind of gauge �xing
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Noticing that
∂µg = (∂µφ(z, z̄)) g = g∂µφ(z, z̄) (2.19)

we may rewrite the action as

S = 2

∫
Σ2

Tr(g−1∂g g−1∂̄g) (2.20)

This form of the action is easily understood geometrically, knowing that g−1dg
is the Maurer-Cartan form carrying all of the geometry of g, and recalling that
the Lagrangian density of S is nothing but the pullback on Σ2 of the metric of
g. With the action in this form, we understand that our model can also be seen
as a string moving on the group manifold G.

From now on, we will add a coupling parameter to the action. We will also
compactify Σ2 into S2, as is usually done in conformal �eld theory. Note that
both of these operations do not a�ect the dynamics of the system. We set

S =
1

λ2

∫
S2
Tr(g−1∂g g−1∂̄g) (2.21)

Or equivalently,

S =
1

4λ2

∫
S2
Tr(g−1∂µg g−1∂µg) (2.22)

This corresponds exactly to the action of the so called principal chiral model.
We will now see the explanation behind this name.

2.4 The G×G symmetry

In view of (2.21), a G × G global symmetry also appear almost explicitely.
Indeed, let (gL, gR) ∈ G×G. Then under the global transformation

g → gLggR (2.23)

S ′ =
1

λ2

∫
S2
Tr(g−1

R g−1g−1
L ∂(gLggR) g

−1
R g−1g−1

L ∂̄(gLggR))

=
1

λ2

∫
S2
Tr(g−1

R g−1g−1
L gL∂g gRg

−1
R g−1g−1

L gL∂̄g gR)

= S

(2.24)

The actions remains unchanged. This symmetry was expected. In a �at target
space (T = Rn), this corresponds to the usual invariance by translation. Here,
the G × G symmetry simply is a Lie group equivalent of the translational in-
variance, saying that the action doesn't change if we move our system using the
left or right action of G on itself.

Remark. G acts independently on the right and on the left of the �eld, so this
kind of symmetry is called a chiral symmetry. Moreover, the considered string
lives on G as a manifold. The string doesn't see the Lie group structure on G,
only its action on itself. As such, this model describes a massless string living
on a principal homogeneous space of G, a system on which there is a chiral G
symmetry. This is the reason behind the name "principal chiral model".
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Let's look at the conserved current associated to this symmetry. Classically,
the conserved current associated to spatial translations is the momentum, and
the conserved current associated to a time translation is energy. We therefore
expect to get a current which we can interpret similarly to energy-momentum.

We consider a variation of the �eld g → g + δg. Under this, the quantities
of study transform as follow

g−1 → g−1 − g−1δgg−1

∂µg → ∂µg + δ∂µg
(2.25)

With a few computations, we get

δS =
1

2λ2

∫
S2
Tr
(
(−g−1δgg−1∂µg + g−1δ∂µg)g

−1∂µg
)

= − 1

2λ2

∫
S2
Tr
(
g−1δg∂µ(g

−1∂µg)
) (2.26)

Which gives as a byproduct the equation of motion

∂µ(g
−1∂µg) = 0 (2.27)

Let's now specialize the transformation to the case of a right action of G. Let
εg = eϵ

aTa be an in�nitesimal element of G, and let us consider the transforma-
tion

g → gεg = geϵ
aTa ∼ g + gϵaTa (2.28)

We may identify δg = gϵaTa in (2.26). We see that the resulting conserva-
tion equation is nothing more than the equation of motion, and therefore the
conserved current associated to the right action of G is

Jµ = g−1∂µg (2.29)

We can proceed similarly for the left action. We have δg = ϵaTag which, in-
sterted in (2.26) and using the cyclicity of the trace, results in the following
conserved current

J̃µ = ∂µg g−1 (2.30)

We see that Jµ corresponds to the Maurer-Cartan form of G, and J̃µ is also
very similar, both giving information on the length of the string taking into
account the geometry of G. We can therefore interpret both of these currents
as momentums of the string, as was expected from the classical case.

2.5 Conformal invariance and geometric obstruc-

tions

Let's imagine our string moving on a manifold. The string is considered free
and massless, as the �eld of a free boson. The freedom of the string makes
it invariant under spatial translations on G as saw earlier, which leads to the
G×G symmetry. But this freedom should also make it more or less rotational
invariant2. Moreover, the string is massless, making it supposedly invariant

2We are nuancing this invariance with "more or less", as this invariance is obviously very

dependent on the geometry of G and is not as straightforward as in the classical case.
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under rescaling. These assumed invariance lead us to think that the string
should act invariant under conformal transformations on G.

Note that this form of conformal invariance is very di�erent from usual
conformal invariance, as the conformal transformations under which the system
is invariant do not act on the same space. In the theory of the free boson for
exemple, the boson is invariant under conformal transformation of the space it
lives on, the base space. Here, the string lives on the target space and should
therefore be invariant under some kind of conformal invariance of the target
space.

How does can this invariance manifest itself? Recall that we are considering
this string as a worldline, host for excitations and therefore particles. At the
end of the day, we are considering a quantum �eld coming from a 2 dimensional
base space, that is a 2D quantum �eld theory. Particles, or excitations, are able
to move on the string (itself moving on G) going right or left. But due to the
masslessness of the string and more generally due to conformal invariance, the
particles should always move at a �xed speed, and should not be able to turn
back. As such, there should be two decoupling momentums, one accounting for
the excitations of the string going left and one accounting for those going right.

This is a well known phenomenom in 2D CFTs. The left and right mov-
ing dimensions correspond to z and z̄, the holomorphic and antiholomorphic
dimensions. The energy momentum of a �eld in a 2D CFT is given by the
energy-momentum tensor Tzz̄, which answers to the following equations of mo-
tion

∂Tz̄z + ∂̄Tzz = 0

∂Tz̄z̄ + ∂̄Tzz̄ = 0
(2.31)

But the conformal symmetry of the system makes the energy-momentum trace-
less, reducing the above equations to

∂̄Tzz = 0 ∂Tz̄z̄ = 0 (2.32)

Which leads to the decoupling of the holomorphic quantity T = Tzz and the
antiholomorphic quantity T̄ = Tz̄z̄, representing the momentums of the left and
right moving particles.

In our case, the tensors accounting for the momentum of the string on the
manifold, or accounting for the momentum of the excitations (particles) of the
string on the manifold, are Jµ and J̃µ. Focusing on one current, recalling (2.16),
we have the conservation equation

∂Jz̄ + ∂̄Jz = 0 (2.33)

With respect to the discussion we just had on 2D CFTs, we should expect both
derivatives to vanish separately.

However, they do not vanish separately, showing that our system is in fact
not conformally invariant at the quantum level. Indeed, G is a connected Lie
group so we can make Jµ diseappear through the action of G. But the �eld
strength of Jµ is invariant through the action of symmetries, and so we have

∂µJν − ∂νJµ + [Jµ, Jν ] = 0 (2.34)
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If both ∂Jz̄ and ∂̄Jz did vanish, then the dual current ϵµνJ
ν would also be

conserved. This would lead to

0 = ∂µ(ϵ
µνJν)

=
1

2
ϵµν(∂µJν − ∂νJµ)

= −1

2
ϵµν [Jµ, Jν ]

= [Jν , Jµ]

(2.35)

This is true if and only if the Lie algebra is abelian, meaning if it is completely
�at. We already knew that this system is conformally invariant when the target
space is �at, by analogy with usual free particle systems. What (2.35) tells us
is that the geometry of G can locally constitute an obstruction to the conformal
invariance of the system. It is in fact not too hard to imagine how the topological
artefacts of a general manifold can obstruct rotational invariance or rescaling
invariance.

2.6 The Wess-Zumino term

Upon facing this issue, we would want to upgrade our model to remove this
obstruction. Witten found a way to solve this issue by adding the celebrated
Wess-Zumino term, leading to the Wess-Zumino-Witten model, or WZWmodel.

The �rst step into solving this obstruction is to extend the �eld g. This
�eld is de�ned on S2, which can be seen as the boundary of the ball B in 3
dimensions. We know that maps from S2 to G are de�ned, up to homotopy, by
the 2nd homotopy group π2(G), which is trivial for any Lie group. As such, g
is homotopic to a constant map, which can be extended to a map from B to G.
It is therefore clear that we can extend g into a map g : B → G.

Let's now think about what kind of term could be de�ned using this ex-
tension. Up until now, the action simply represented the kinetic energy of the
string, which can also be seen as its volume in G. As a matter of fact, the
Lagrangian was nothing more than a pullback of the metric of G onto S2, using
the Maurer-Cartan form g−1dg. This form brings a vector v ∈ TxG at x onto
TeG = g, thus transporting informations about the metric in x to g. If we want
to generalize this to the 3-dimensional ball, we could therefore consider the 3-
form ∧3g−1dg which brings a 3-vector at x onto g. Using this, one can pullback
the volume form with a term looking like

Tr(∧3g−1dg) (2.36)

It may thus be natural to consider the following term

S̃ =

∫
B

Tr(∧3g−1dg)

=
1

6

∫
B

ϵαβγTr(g
−1∂αg g−1∂βg g−1∂γg)

(2.37)

which is nothing more than a kinetic term generalized to the ball, to maybe
bypass the geometric obstruction.
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However, we must remember that the extension of g onto B is not unique.
Let's see if the term S̃ can de�ne a proper theory. Classically, the equations
of motion are found by varying the �eld g by an in�nitesimal transformation
g → g+δg. Let's compute the variation of S̃ for such a transformation, similarly
to what we have done in (2.26) and using Stokes' theorem:

δS̃ = 3

∫
B

Tr((−g−1δgg−1dg + g−1dδg) ∧ g−1dg ∧ g−1dg)

= 3

∫
B

dTr(g−1δgg−1dg ∧ g−1dg)

= 3

∫
S2
Tr(g−1δgg−1dg ∧ g−1dg)

= 3

∫
S2
Tr(g−1δgd(g−1dg))

(2.38)

As such, if g is �xed on S2 meaning δg|S2 = 0, then δS̃ vanishes. This shows that
the equations of motions are well de�ned for this term, at least at a classical
level. A classical model could therefore be de�ned by simply adding λS̃ to the
action, without any modi�cation, for any λ acting as a coupling constant.

However, it might not always be the case at the quantum level. At the
quantum level, we must also consider the case where two extensions of g are not
homotopic, as the �eld may jump from one topological state to another. Let
2 extensions of g on B. We can glue them together on the boundary, as g is
known on S2. This gives a map

g : (B ⊔B)/∂B ≈ S3 → G (2.39)

Such map are classi�ed up to homotopy by π3(G), which is isomorphic to Z
for any simple compact Lie group. Even stronger, any map g : S3 → G is
homotopic to a map g : S3 → SU(2) ≈ S3 if G has a SU(2) subgroup. The
index in Z given by the homotopy group then simply tells how many times S3
wraps around itself.

We have seen that S̃ is invariant under homotopies, and that the homotopic
classes of extensions are classi�ed by an integer. Knowing that, we would like to
compute ∆S̃ the di�erence of S̃ for two neighbooring extensions. To compute
it, we may take g : S3 ⊂ R4 → SU(2) as follow

g(y) = y0 − iykσk

g−1∂kg = −iσk
(2.40)

Then S3 wraps around itself exactly once, so we can compute

∆S̃ =
1

6

∫
B

ϵαβγTr(g
−1∂αg g−1∂βg g−1∂γg)

=
1

6
(−i)32π2

∑
i,j,k

ϵijkTr(σ
iσjσk)

= −(2π)2

(2.41)
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The computations were done fastly, but a more detailed computation can be
found in [Ebe19]. Now in quantum �eld theories, we use the action to compute
correlators, which for a string of operators O take the form3

⟨O⟩ =
∫

[dg]O(g)eiS(g) (2.42)

This is well de�ned if the exponential under the integral is single-valued, so if S
is single-valued modulo 2π. If we want to add a topological term as aS̃ to our
action with a a constant, we must add it in such a way that aS̃ is single-valued
modulo 2π, which imposes

a∆S̃ = 2kπ

a = − k

2π

(2.43)

for some integer k ∈ Z. This brings us to considering the following new, modi�ed
action

S ′ = S − k

2π
S̃ (2.44)

which is well de�ned at the classical and quantum level for integer k. This new
action is composed of the kinetic term from the Sigma model, to which we have
added a topological term in hope it might help us decouple the holomorphic and
antiholomorphic parts of the currents Jµ and J̃µ.

2.7 The WZW model

Now that we have modi�ed the action and proved it is well de�ned, let's see if it
actually helps the situation. Let's �rst see if this action is still invariant under
the global G×G action. Let (gL, gR) ∈ G×G. Under the global transformation

g → gLggR (2.45)

Recalling that S is invariant under this transformation, S ′ becomes

S ′ → S − k

12π

∫
B

ϵαβγTr(g
−1
R g−1g−1

L gL∂
αg

gRg
−1
R g−1g−1

L gL∂
βg gRg

−1
R g−1g−1

L gL∂
γg gR)

→ S − k

2π
S̃ = S ′

(2.46)

So the system still contains a G × G chiral symmetry. We can then apply the
same techniques as we did previously for the sigma model. Reading the current
from (2.26) and (2.38) and adding the right coe�cient in front of each term, we
see that the current associated to the right action of G is still the same, but its
conservation equation has become:(

1 +
λ2k

π

)
∂(g−1∂̄g) +

(
1− λ2k

π

)
∂̄(g−1∂g) = 0 (2.47)

3Actually, this formulation doesn't make a consensus. Some people take the exponential to

be e−S(g), and other choose e−iS(g). It is only a matter of convention for the factor in front

of the action, but it will a�ect the expression of our algebra later on. It is therefore important

to remember that the expression of the action of the WZW-model can vary from one author

to the other. Here, we stay consistent with the previous lecture notes.
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and similarly for the left action of G. We now see that compared to (2.33),
there are coe�cients in front of the currents, which can be annihilated by a wise
choice of λ for k ̸= 0. Without loss of generality, even if it means exchanging
the holomorphic and antiholomorphic dimensions, we can suppose k > 0. Then,
we will choose λ2 = π

k , such that we have

∂(g−1∂̄g) = 0 (2.48)

thus de�ning the quantity J̄ = J̄(z̄) = kg−1∂̄g which only depends on the
antiholomorphic dimension. Similarly, from the left action of G, we obtain with
k > 0, λ = π

k

∂̄(∂gg−1) = 0 (2.49)

which gives the holomorphic quantity J = J(z) = k∂gg−1.

Remark. Just as in a usual 2D CFT where one �nd the holomorphic current T
and holomorphic current T̄ due to the symmetry through translation, we �nd
two currents through the symmetry given by the G action, which corresponds in
a Lie group to translations. However, we should note the dissymmetry between
the de�nition of J and J̄ .

The model thus de�ned is the acclaimed WZW model of level k on the Lie
group G. Its action reads4

SWZW =
k

π

∫
S2
Tr(g−1∂g g−1∂̄g)− k

2π

∫
B

Tr(∧3g−1dg) (2.50)

We have seen how the Wess-Zumino term enhances the principal chiral model
by decoupling the holomorphic and antiholomorphic currents. But how can this
term be interpreted? What is its nature? To answer these questions, we need to
see that Tr(∧3g−1dg) is a 3-form, and therefore a closed form, on B. Knowing
furthermore that B is simply connex, we can �nd a 2-form X such that

dX = Tr(∧3g−1dg) (2.51)

Resulting in ∫
B

Tr(∧3g−1dg) =

∫
B

dX

=

∫
S2
X

(2.52)

We may then �nd X(g)µν such that we can rewrite this term as∫
S2
ϵαβX(g)µν∂αgµ∂

βgν (2.53)

From this perspective, we see that the Wess-Zumino term is just an antisym-
metric coupling of the string.

In this model, the strictly positive integer k is called the level of the model.
It appears in front of the kinetic term and in front of the topological term.
In front of the kinetic term, it may be simply seen as an external adjustable

4Due to the di�erence in convention for the expression of the path-integral, there is also a

di�erence in convention here for the factor in front of the Wess-Zumino term.
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constant, that must be �xed this way to perfectly compensate for the other term
and to ensure conformal invariance on G. However, it has more meaning than a
simple coupling constant in front of the topological term. We have seen that k
must be an integer to ensure the exponential is single-valued. k can then be seen
as answering to a kind of monodromy condition, which de�nes the considered
sector in the theory, just like in the case of winding sectors for the free boson
on the torus. Here, instead of having a winding number counting the number
of turns made around the torus, k can be abstractly seen as a winding number
counting the "number of turns" made around the geometrical obstructions of
the Lie group.

2.8 Extended symmetry

Let G a simple Lie group, k a strictly positive integer. We consider the WZW
model of level k de�ned on G. Most of the discussion we will have can be
generalized easily to semisimple Lie algebra. However, we will only need simple
Lie algebras later on. We have shown that this model is invariant under the
right and left global action of G, symmetry inherited from the Sigma model.
In fact, adding the topological term even enhanced this symmetry. Consider a
small perturbation of g:

g → g + δg (2.54)

Then proceeding as we did to get (2.47), we get the following perturbation of
S:

δS = 2

∫
S2
Tr
(
g−1δg∂(g−1∂̄g)

)
= 0 (2.55)

The main di�erence with what we had previously (2.26) is that this equation
only looks at the derivative of J̄ along the holomorphic dimension. Therefore,
if we specialize this transformation to a right action of G local with respect to
the antiholomorphic dimension by εg(z̄) = eϵ

a(z̄)Ta , we have

δS = 2

∫
S2
Tr
(
g−1gϵa(z̄)Ta∂(g

−1∂̄g)
)
= 0

= 2

∫
S2
Tr
(
∂(ϵa(z̄)Tag

−1∂̄g)
)

= 0

(2.56)

So S is invariant under this kind of transformation. Similarly, S is invariant
under the left action of G local with respect to the holomorphic dimension.
Therefore, theG×G symmetry of the system has been upgraded to aG(z)×G(z̄)
symmetry.

Remark. Note how this allows us to easily �nd the solutions of the WZW-model.
Indeed, for any solution g0(z, z̄) of the model and for any chiral functions gL(z)
and gR(z̄) with values in G, the G(z)×G(z̄) symmetry forces the modi�ed �eld
g1 = gLg0gR to still be a solution of the system. Noticing that the trivial �eld

g0 : (z, z̄) → 1 (2.57)

is a solution of the system, we see that any �eld of the form

g(z, z̄) = gL(z)gR(z̄) (2.58)
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is also a solution of the system. It is in fact not too hard to show that any
solution of the theory takes this form.

Considering the chiral G(z)×G(z̄) symmetry of the theory, we may see sim-
ilarities with usual 2D conformal �eld theories, but where here the "conformal
invariance" is on the target space instead of the base space.

In our theory, the G×G symmetry corresponding to translations on the Lie
algebra got upgraded to a G(z)×G(z̄) symmetry where in each chiral dimension,
the action acts as an analytically local translation, that is as the left or right
action of G depending analytically on the dimension. Similarly in a 2D CFT,
the conformal group action decouples in the 2 chiral dimensions, by acting on
each dimension as a general analytical function. This action can also be seen
as a generalisation of the global translation symmetry on the base space, where
instead of a global transformation

φ(z) → φ(z + z0) (2.59)

The symmetry acts as local analytical translations of the form

φ(z) → φ(f(z)) (2.60)

We can also view this in�nite dimensional freedom as a consequence of the
decoupling of the chiral energy-momentum currents, as follow. Let's �rst con-
sider the case of a 2D CFT, and let's look at its holomorphic dimension. The
decoupling of the energy-momentum is written

∂̄T = 0 (2.61)

Therefore, we can de�ne the classically conserved charge

Q =
1

2πi

∫
Cz

dz T (z) (2.62)

Because T depends on z, we can expand it in modes as

T (z) =
∑
n

Lnz
−n−2 (2.63)

We recognize the original conserved charge Q = L−1, associated to translations.
But recalling (2.61) we see that due to the fact that (2.61) only depends on the
antiholomorphic dimension, all (Ln)n are conserved in the holomorphic dimen-
sion, leading to the chiral representation of the Virasoro algebra. This way, we
see that the existence of the two chiral algebras Vir×Vir classically representing
the conformal group is due to the decoupling of the two currents. However, it
is important to note that the conformal symmetry leads only to the presence
of this Virasoro algebra. It does not mean this algebra is a symmetry of the
model. Especially, only L0 generates a symmetry of the system as it is the only
one to commute with the Hamiltonian L0 + L̄0.

The same discussion can be made for our WZW-model. We can focus on
the holomorphic dimension, knowing the same things happen in the antiholo-
morphic dimension. The holomorphic conserved current is J(z), which can be
decomposed in multiple conserved currents on a basis of g:

J(z) = Ja(z)Ta (2.64)
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Using this decomposition, the decoupled equation of motion rewrites

∂̄Ja(z) = 0 (2.65)

But then, expanding each current into its modes

Ja(z) =
∑
n∈Z

Ja
nz

−n−1 (2.66)

we see that all of the (Ja
n)n,a are conserved charges in the holomorphic dimen-

sion, associated to the extended symmetry given by the left action of G(z). Sim-
ilarly, we have the charges conserved in the antiholomorphic dimension (J̄a

n)n,a,
associated to the extended symmetry given by the right action of G(z̄). Note
once again that they do not generate the symmetry, but are only hints of it.

2.9 The a�ne Kac-Moody algebra

As we saw in the previous subsection, due to the decoupling of the right and
left moving momentums, the family of operators (Ja

n)n,a is always present in the
operator space, much like the space of operators always contains a representation
of the Virasoro algebra in a 2D CFT. Understanding this family then leads to a
good comprehension of the Hilbert space of the theory, as we will discuss in 2.11.
This motivates why we will now study the algebra lying behind the currents and
their modes.

The WZW model is a 2D QFT, so we may freely use known results on
such theories to study the relations between the currents. Let us begin with
the OPE of the currents Ja(z). These currents obviously have antiholomorphic
dimension 0. But they are conserved currents, so their conformal weights is
(1, 0). We may assume that the identity is the only �eld of conformal weights
(0, 0). The original symmetry forms a closed algebra, so their OPE should also
be closed. Moreover, we can suppose the symmetry is unitary, such that the
OPE should not contain operators with negative conformal dimension. Knowing
these, we may write in a very general fashion

Ja(z)Jb(w) ∼ κab

(z − w)2
+

hab
cJc(w)

z − w
(2.67)

But due to associativity of the OPE and symmetry under the exchange of Ja

and Jb, we get
κab = κba hab

c = −hba
c

κcdhab
d = κbdhca

d = κadhbc
d

hab
dh

dc
e + hbc

dh
da
e + hca

dh
db
e = 0

(2.68)

This implies that the hab
c are actually the structure constants of a Lie algebra,

and that κab is a symmetric invariant tensor on this Lie algebra. In view of our
model, the Lie algebra in question must be g. Moreover, the only symmetric
invariant tensor on simple Lie algebra is, up to a scale, the Killing form (which
is just the trace). But we have chosen a basis on g such that the trace acts as
the identity on them. Therefore, we have

κab = cδab (2.69)
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for some constant c. It turns out c is actually the level of the model k. With
fab

c the structure constants of g, we can synthetize this discussion by writing
the �nal form of the OPE

Ja(z)Jb(w) ∼ kδab

(z − w)2
+

fab
c Jc(w)

z − w
(2.70)

This OPE de�nes an algebra structure on the currents, called the current alge-
bra.

Doing the same operations on the antiholomorphic currents, we see that our
theory actually contains 2 copies of the current algebra.

J̄a(z̄)J̄b(w̄) ∼ kδab

(z̄ − w̄)2
+

fab
c J̄c(w̄)

z̄ − w̄
(2.71)

Know that we know the structure of the current algebras, we can compute
the structure of the modes. We expand each current in its modes as

Ja(z) =
∑
n∈Z

Ja
nz

−n−1 (2.72)

Remark. Note that we shift the index of Ja
n by one in concordance with con-

ventions, due to the fact that Ja is a current of conformal dimension 1.

By means of contour integral, we can then compute the commutation rela-
tions of the Ja

n , as is done classically in the radial quantization. We have

[Ja
m, Jb

n] =
1

(2πi)2

(∮
dz

∮
|z|>|w|

dw −
∮

dz

∮
|z|<|w|

dw

)
zmwnJa(z)Jb(w)

= kmδabδm+n,0 + fab
c J

c
m+n

(2.73)
These commutation relations de�ne a non-linear a�ne Lie algebra, called

the a�ne Kac-Moody algebra. In a general fashion, one can de�ne the a�ne
Kac-Moody algebra of level k of any semisimple Lie algebra g by following this
procedure. We usually write it ĝk. We should not forget that these relations
de�ne the commutation relations of the conserved charges of our system, asso-
ciated to the local translational symmetries. The non-linear term proportional
to k corresponds to the topological modi�cation we have forced on the system,
as to bypass the obstructions to the conformal invariance on G made by the
geometry of G. These relations may therefore be seen as a "projection" of the
geometry of G onto the space of group manifolds where the theory of a free
string is conformally invariant. It is a form of regularization of the geometry of
G.

2.10 The Sugawara construction

So far, we have shown that adding the Wess-Zumino term to the Sigma model
made the string and its excitations "conformally invariant"5, meaning that we

5I quote "conformally invariant" because although the symmetry of the WZW-model looks

like a conformal group symmetry, it is not the actual conformal group acting on the system

but its equivalent on Lie groups.
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may reparametrize the space on which lives the string using conformal trans-
formations, without changing the dynamics of the string. Switching our point
of view, this should also imply that we can reparametrize the string without
changing the dynamics of the system, meaning the conformal group6 should act
on the parameter space as a symmetry. But in our theory, the parameter space
is the base space, and this just mean our theory should also be conformally
invariant in the usual sense. In other words, the G(z)×G(z̄) symmetry should
imply that the system is a 2D CFT, and the presence of the chiral a�ne Kac-
Moody algebras in the theory should imply the presence of the chiral Virasoro
algebras as well.

Let's prove that the Virasoro algebra is actually represented in the WZW-
model. To do so, we should �nd the energy-momentum tensor of the theory,
associated to translations on the string and along time instead of translations
on G. Classically, the energy of a free particle is given by half the square of its
momentum, such that we may classically want

T̃ (z) =
1

2k
Ja(z)Ja(z) (2.74)

However, expert as we are of quantum theories, we know better than this and
we know that we should take the normal ordering of this, as to avoid unphysical
states. We will therefore consider

T̃ ′(z) =
1

2k
: JaJa : (z) (2.75)

Notice how this is very similar to the theory of the free boson, where T (z) ∝:
∂φ(z)∂φ(z) :. Knowing that our theory is supposed to describe free particles
living on G, this is a good sign. We may however not be sure of the constant in
front of : JaJa : (z). To �x it, let's compute the OPE of T̃ ′ with the currents
Ja. We are only interested in the singular terms, and will use this fact in our
computations. We will denote the singular part of the OPE by a contraction.
We have

Ja(z)T̃ ′(w) =
1

2k

1

2πi

∮
w

dx

x− w
Ja(z)(Jb(x)Jb(w))

=
1

2k

1

2πi

∮
w

dx

x− w
(Ja(z)Jb(x)Jb(w) + Jb(x)Ja(z)Jb(w))

(2.76)

Inserting the OPE given in (2.70), we get

Ja(z)T̃ ′(w) =
1

2k

1

2πi

∮
w

dx

x− w

[
kδab

(z − x)2
+

fab
c Jc(x)

z − x

]
Jb(w)

+
1

2k

1

2πi

∮
w

dx

x− w
Jb(x)

[
kδab

(z − w)2
+

fab
c Jc(w)

z − w

] (2.77)

The second order poles don't contribute to the �nal expression since the kro-
necker delta are symmetric and the structure constant completely antisymmet-
ric. Expanding further, we can �nally compute

Ja(z)T̃ ′(w) =
1

2k

(
2kδabJb(w)

(w − z)2
+

fab
c f cb

d Jd(w)

(w − z)2

)
(2.78)

6This time the actual one
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fab
c f cb

d is a 2-invariant tensor, so it is proportional to the Killing form which is
in our basis the identity. This de�nes the Coxeter number h∨:

fab
c f cb

d ≡ h∨δad (2.79)

With this de�nition, we have

T̃ ′(z)Ja(w) = Ja(w)T̃ ′(z)

=
k + h∨

k

Ja(z)

(w − z)2

=
k + h∨

k

(
Ja(w)

(z − w)2
+

∂Ja(w)

z − w

) (2.80)

This is very close to what we would like to have for the OPE between our current
and an energy momentum-tensor. The only wrong part is the factor in front,
which should be 1 since currents have conformal dimension 1. To correct this,
we �nally de�ne

T (z) =
1

2(k + h∨)
: JaJa : (z) (2.81)

which results in

T (z)Ja(w) ∼ Ja(w)

(z − w)2
+

∂Ja(w)

z − w
(2.82)

Remark. Once again, the geometry of the Lie algebra makes itself visible and
forces us to make corrections to what we would usually expect. The geometry
is taken into account here by changing the expected 1

2k into 1
2(k+h∨) .

Now that we have �xed what we would like to be an energy-momentum
tensor, let's show it actually is one. Showing that the modes of T form the
Virasoro algebra is su�cient to prove that this tensor is an energy-momentum
one, and proving as a by-product that the theory is indeed a 2D CFT. But the
commutation relations of the modes of an operator can be read from its OPE
with itself. We therefore only have to show that the OPE T (z)T (w) looks like
what we expect from an energy-momentum tensor. We have

T (z)T (w) =
1

4πi(k + h∨)

∮
dx

x− w
(T (z)Ja(x)Ja(w) + T (z)Ja(x)Ja(w))

(2.83)
Inserting (2.82) in this, we have

T (z)T (w) =
1

4πi(k + h∨)

∮
dx

x− w

(
Ja(x)

(z − x)2
+

∂Ja(x)

z − x

)
Ja(w)

+
1

4πi(k + h∨)

∮
dx

x− w
Ja(x)

(
Ja(w)

(z − w)2
+

∂Ja(w)

z − w

) (2.84)

Then summing over all generators of g, we �nally have

T (z)T (w) ∼ k dim g

2(k + h∨)(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
(2.85)

Wich is exactly the form we would expect, showing the modes of T indeed form
the Virasoro algebra and the WZW-model indeed is a 2D CFT. From this, we
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read the central charge of the model

c ≡ k dim g

k + h∨ (2.86)

This construction of the energy-momentum tensor is called the Sugawara
construction.

To �nish this section, we may compute the commutation relations of the
Virasoro algebra with the a�ne Kac-Moody algebra. The modes of the energy
momentum tensor read

Ln =
1

2(k + h∨)
(: JaJa :)n

=
1

2(k + h∨)

Ja
nJ

a
0 +

∑
m ̸=0

[
Ja
mJa

n−m + Ja
n−mJa

m

] (2.87)

With an extensive use of the normal ordering, we may �nd

[Ln, J
a
m] = −mJa

n+m (2.88)

This shows explicitely that any a�ne Kac-Moody algebra contains a Viraso al-
gebra naturally embedded in its universal envelopping algebra. Thinking about
it the other way around, this also gives a general non-trivial extension of the
Virasoro algebra for any simple Lie algebra. Moreover, such extensions can
be extended to semisimple Lie algebras, by taking a sum of WZW-models on
simple Lie algebras. These facts should already hint at the importance of the
WZW-model. We will try to understand better the role of these models in the
study of 2D CFTs in the next subsection.

2.11 Representations of the algebra

To understand better the role of WZW-models and a�ne Kac-Moody algebras
in the study of 2D CFTs, let's consider the WZW-model of level k associated
to a simple Lie algebra g and let's take a closer look at its space of states.

The Kac-Moody algebra ĝk acts on the Hilbert space of the theory, hence
all states will transform in representations of ĝk. We can then decompose the
space of state in a sum of representations of ĝk, as in the general case where the
space of states decomposes in a sum of representations of the Virasoro algebra.
Let's consider a representation M of ĝk in the space of state.

As for the case of representations of the Virasoro algebras seen in the previous
lecture notes, a physical representation must have its energy bounded from
below. We therefore have an eigenstate |λ⟩ with eigenvalue e such that its
eigenvalue is the lowest inside M. But we have seen previously that

[L0, J
a
m] = −mJa

m (2.89)

which leads to
L0J

a
m|λ⟩ = (Ja

mL0 + [L0, J
a
m])|λ⟩

= (e−m)Ja
m|λ⟩

(2.90)
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From this, we deduce that for all n > 0, we must have

Ja
n |λ⟩ = 0 (2.91)

Remark. States obeying these conditions are called Kac-Moody primary states,
or more generally primary states when the context is clear. They are the exact
analog of the Virasoro primary states, and generate the representations of the
a�ne Kac-Moody algebra. Kac-Moody primary states |λ⟩ are generated by
Kac-Moody primary �elds φλ, where the condition of being Kac-Moody primary
becomes

Ja(z)φλ(w) ∼ Ja
0φ

λ(w)

z − w
(2.92)

But how can we label highest-weight modules? We have that the zero-modes
(Ja

0 )a commute together as the elements of g. So a highest-weight representation
of g is included in M, and we can choose |λ⟩ to be the highest-weight state of
this representation. This subrepresentation in facts completely determines M.
We can thus choose λ to label this subrepresentation, labeling the whole module
as a consequence. We call Mλ the module associated to the subrepresentation
λ. We can then decompose the space of states as

H =
⊕
λ

Mλ (2.93)

An important theorem [Per15, p. 89] is that for any a�ne Kac-Moody algebra
ĝk, there exist only a �nite number of λ such thatMλ is unitary and irreducible.
Hence, the sum (2.93) is always �nite, and WZW-models are rational 2D CFTs.

We cannot emphasize enough the importance of this result. We have seen
in 1.2 that studying RCFTs boils down to �nding non-trivial extensions of the
Virasoro algebra having a �nite number of representation. The a�ne Kac-
Moody is just that, for any simple Lie algebra. What's more is that we can
"add" such extensions of simple Lie algebras as much as we want, by considering
the sum of the associated theories.

Semisimple Lie algebras are a very general and broad class of structures,
able to express any symmetry. We can therefore have very big and general
extensions of the Virasoro algebra using a�ne Kac-Moody algebras. But then,
constraining the theory behind these algebras and partially gauge �xing WZW-
model, we can get an even broader class of extensions of the Virasoro algebra,
generating a very broad class of RCFTs. As we will see, these extensions have
the good property of not containing any null �eld for generic values of the central
charge. It is theorized that all RCFTs whose chiral algebra doesn't contain any
null �eld can be obtained by reducing a WZW-model.
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Chapter 3

Casimir algebras

In this section, we derive the historically �rst kind of W-algebra found after
a�ne Kac-Moody algebra, which can be derived by reducing the WZW-model.

3.1 Classical Toda �eld theories

To understand Casimir algebras, we �rst need to introduce properly Toda �eld
theories. Toda �eld theories are 2D CFT associated to semisimple Lie algebras
along with a few external parameters, in the same fashion as WZW-models. We
will introduce them following the original work of Leznov and Saveliev.

As with WZW-models, we want to de�ne a nice model on a semisimple Lie
algebra g. Our objective is to study RCFTs and extended Virasoro algebras.
Therefore, by nice, we mean a conformally invariant, solvable model taking into
account the structure of the Lie algebra. To make it solvable, we will try to
make an integrable model.

We want to take into account the structure of the Lie algebra g. Let's give
a few notations for it. We write r the rank of g, and write Φ ⊂ Rr the set of
roots of g. We will usually write α ∈ Φ a root. Moreover, we write ∆ = {αi}
a set of simple roots. When using the subscript i, we will often imply that
i ∈ Nr. For each of these simple roots, we associate an element Hi of the
Cartan subalgebra. The other generators of g are labelled by roots, and written
Eα. As the generators associated to simple roots will be of special interest to
us, we also write E±

i ≡ E±αi .

The set of simple roots gives a basis for Φ, where the coordinates are either
all positives or all negatives. This allows to divide the roots in two parts, those
with positive coordinates Φ+ and those with negative coordinates Φ−. In turn,
this allows us to de�ne 2 subalgebras of g, which are

g± = < (Hi)i, (Eα)α∈Φ± > (3.1)

We are now ready to de�ne the object of study. As with the WZW-model, we
would like to consider (massless) particles moving on g. Moreover, as with the
WZW-model, since we want to consider a CFT, these particles will be massless
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and will �rst move on the worldsheet, which will itself move on g. Therefore,
we will once again have left and right moving particles.

We would like to consider the momentums of the left and right moving
particles. We therefore consider a two components �eld (depending on the
chiral coordinates)

A(z, z̄) =
(
A(z, z̄), Ā(z, z̄)

)
∈ (g2)R

2

(3.2)

where A(z, z̄) corresponds to the momentum of the right moving particles whilst
Ā(z, z̄) corresponds to the particle of the left moving particles.

Since we want these �elds to describe the momentum of particles, we should
put as a constraint that there should be a �eld g : R2 → G actually describing
the particles as in the WZW-model, where G is the Lie group associated to g.
Given the �eld g, what are the chiral momentums of the particles? It should be
some form of derivative of the �eld in the left and right coordinates, pulled back
to 0 as to be well de�ned on g. Looking back at the momentum of particles on
a Lie group found in 2.4, we see that a good de�nition of the momentum can
be the Maurer-Cartan form, which also take into account the symmetry of the
Lie structure. We will take the opposite of the Maurer-Cartan form, though it
is only a matter of convention

A = g∂ g−1

Ā = g∂̄ g−1
(3.3)

Remark. Note that this is di�erent from the WZW-model, where the momentum
of the left and right moving particles have a di�erent expression. In particular,
in the WZW-model, the momentum of the right moving particles takes the form
J = ∂g g−1

We also want to re�ect the decoupling of the particles in left and right
moving parts on the Lie algebra g. To do so, we also de�ne a notion of "left"
and "right" on the Lie algebra, by assigning a di�erent "direction" to the left
and right moving particles. In practice, we add the following constraint

A ∈ g+

Ā ∈ g−
(3.4)

We may want g to be smooth, su�ciently to assume that

∂∂̄g = ∂̄∂g (3.5)

In this case, (3.3) implies that (and is locally equivalent to)

[∂ +A, ∂̄ + Ā] = 0 (3.6)

which is a condition of integrability for the system, as desired.

Now, let's precise (3.4). It is not necessary to have both right and left moving
particles be able to move along the Cartan subalgebra, which acts as a neutral
place. Therefore, we may choose without loss of generality to have only the
right moving particles moving along the the Cartan subalgebra. This can be
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described by a �eld Ψ = (Ψi)i : R2 → Rr, directly representing the particles
projected onto the Cartan subalgebra. We may express their momentum as

PCartan =
∑
i

∂ΨiHi (3.7)

We may also arbitrarily choose to only have particles move along simple roots
and their opposite counterparts, for simplicity. Then, the remaining momentum
should be generated by the (E+

i ) for A, and by the (E−
i ) for Ā. We are only

interested in the di�erence between the two, as we can always renormalize the
(E±

i ) without loss of generality. Therefore, we could set

A = PCartan +
∑
i

E+
i

Ā =
∑
i

φiE
−
i

(3.8)

for some �eld φ = (φi)i : R2 → Rr.

We will modify this in 3 ways, as to have a prettier model in the end. First,
we add an external coupling parameter γ to the momentum along the (E±

i ), as
to understand the way it is coupled with the momentum PCartan. Second, as
φ should describes some kind of energy of the system, we expect some kind of
Boltzmann distribution, and therefore put φ in an exponential. Third, as usually
done in statistical physics, we also add another external coupling constant β in
front of φ as to represent some kind of temperature of the system. We rewrite

A =
∑
i

(
∂ΨiHi + γE+

i

)
Ā =

∑
i

γeβφiE−
i

(3.9)

As motivated, we see that γ controls the momentum on the roots. The bigger
γ is, the more momentum there is along the roots (compared to along the
Cartan subalgebra). On the other hand, we see that β controls the di�erence
of momentums between the left and right moving particles. If φi > 0, then the
sign of β also controls wether there is more momentum along E+

i or E−
i , with

a bigger momentum along the latter for β > 0.

We want Ψ and φ to obey the constraints mentionned earlier, and in par-
ticular the integrability condition (3.6). Still supposing enough smoothness to
have ∂∂̄ = ∂̄∂, inserting the expression for the �elds (3.9), we get

0 = ∂Ā − ∂̄A+AĀ − ĀA

=
∑
i

(
γβ∂φie

βφiE−
i − ∂∂̄ΨiHi + γ2eβφiHi

)
−
∑
i,j

γ∂Ψie
βφjkj,iE

−
j

(3.10)

where we have used the known commutation relations of the (E±
i ) and (Hi),

and where (ki,j) is the Cartan matrix of g. Projecting this equation onto the
(Hi), we have

Ψi = β
∑
j

k−1
i,j φj (3.11)
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whilst projecting onto the (E−
i ), we get

∂∂̄Ψi = γ2eβφi (3.12)

Putting these two equations together, we get the classical generalised Toda �eld
equation

∂∂̄φi =
γ2

β

∑
j

ki,je
βφj (3.13)

Identifying the di�erent spaces Rr as φ =
∑

i φiαi, the Toda �eld equation can
be rewritten in term of vectors

∂∂̄φ =
γ2

β

∑
i

αie
βαi·φ (3.14)

Remark. This is the most general Toda �eld equation. We have added the
external parameters γ and β as is done by some authors. Note that some other
authors may keep γ = 1 or β = 1

We can make up a Lagrangian whose equation of motion gives (3.14)

L = ∂φ∂̄φ+
γ2

β2

r∑
i=1

eβαi·φ (3.15)

This Lagrangian de�nes the Toda �eld theory. We should emphasize the natural
form of this Lagrangian, considering it describes massless particles. It is made
up of a �rst kinetic term, equal to (∂µ)2φ in the usual (x, t) coordinates. It is
then followed by a potential term, enforcing the constraints we have set on our
theory similarly to a Lagrange multiplier, making sure that the direction of the
particles is coupled with the sign of the (positive or negative) simple roots. We
easily see here how γ controls the momentum on the roots (if γ = 0, there is no
potential) and how β disperses the particles.

3.2 Symmetries

In the following discussion, we will suppose without loss of generality that α = 1.
We have introduced Toda �eld theory by saying we were looking for a solvable
conformal invariant model on Lie algebras. The model we then de�ned is solv-
able, and takes into account the geometry of Lie algebras. The question one
should now ask is: is the theory conformally invariant?

To answer this, let's take a conformal transformation (z, z̄) → (f(z), f̄(z̄)).
Under this transformation, the �eld φ changes as

φ(z, z̄) → φ(f(z), f̄(z̄)) +
1

β
ρ ln(f ′(z)f̄ ′(z̄)) ≡ φ′(z, z̄) (3.16)

where ρ is the sum of the fundamental weights of g. But the Toda �eld equation
(3.14) is invariant under this transformation, meaning φ′ is still a solution of the
equation. Therefore, the theory is invariant under conformal transformation.
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Knowing this, we can look at how the �eld transform under an in�nitesi-
mal transformation. We will only look at the holomorphic dimension. For an
holomorphic in�nitesimal transformation z → z + ϵ(z), the �eld changes by

δϵφ = ϵ∂φ+
1

β
ρ∂ϵ (3.17)

From this, one can read the associated energy-momentum �eld

T = ∂φ · ∂φ− 2

β
ρ · ∂2φ (3.18)

Now that we know the classical Toda �eld theory is invariant under conformal
transformations, we want to know if the theory has other symmetries. Indeed, if
it has other symmetries, and if the other symmetries do not decouple completely
from the conformal symmetry, then the algebra of symmetries will form a W-
algebra.

We should now emphasize that this theory is a classical theory, where we
are not taking into account any quantum e�ect whatsoever. Therefore, the
algebra of symmetries would form what we call a classical W-algebra, and not
a quantum W-algebra as de�ned earlier in the chapter.

Let's try to �nd some symmetries. We may try to �nd symmetries by ex-
ploiting properties of the system. We know our system decouples into right and
left moving particles. Let's concentrate �rst on symmetries in the holomorphic
part.

We consider the fundamental representation of g. This representation pos-
sesses a highest weight vector, which can be found by summing all (E+

i )i. We
write its dual ⟨w|. Because we have constrained the particles moving left to
move on g−, recalling that their momentums is given by Ā, we have

Ā ∈ g− ⇒ ⟨w|Ā = 0

⇒ ⟨w|Āg(z, z̄) = 0

⇒ ∂̄⟨w|g(z, z̄) = 0

(3.19)

Such that de�ning χ = ⟨w|g(z, z̄), χ is a function only of z. From there, we
should treat every di�erent types of simple Lie algebra di�erently. We will only
give the general idea of the construction, though a detailed construction for each
type of simple Lie algebra can be found in [MS91]

We can decompose χ in some double-indexed basis (viewing the elements of g
as matrices, we decompose χ in the natural basis of Mn(R)), which turns (3.19)
in a serie of equations in which we can introduce A. From these equations, one
may build an operator Γ(A), the Lax operator associated to the fundamental
representation of g, acting on g, which reduces all of the equations found above
in

Γ(A)χ = 0 (3.20)

We should emphasize the fact that Γ(A) embodies the constraint that left
moving particles should move along g−. As this is a constraint enforced on the
whole system, we �nd as we can expect

[Γ, ∂̄] = 0 (3.21)
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Therefore, Γ is a conserved quantity, and generates symmetries of the Toda �eld
theory, symmetries associated to the constraint on the left moving particles. The
algebra made of these generators is the so called classical Wg-algebra, and is
thus part of the complete algebra of symmetries of the theory.

Similarly, we can derive the same result from the antiholomorphic con-
straints, considering |w⟩ instead. Therefore, another decoupled classical Wg-
algebra appears in the complete algebra of symmetries of the theory.

Are these all of the symmetries of the theory? Let's recall how we derived
the Toda �eld equation. We started with two �elds A and Ā, representing the
momentum of right and left moving particles. We then asked for the two �elds
to obey

[∂ +A, ∂̄ + Ā] = 0 (3.22)

which is locally equivalent to asking for the existence of a �eld g such that A
and Ā are indeed the right and left momentums of excitations on g.

Then, we asked the �elds A and Ā to take the speci�c form (3.9). With this
speci�c form, we derived the Toda �eld equation from (3.22).

One can show that (3.22) is invariant under transformations of the form

A(φ) → A(φ) + [∂ +A(φ), ω]

Ā(φ) → Ā(φ) + [∂̄ + Ā(φ), ω̄]
(3.23)

for arbitrary ω. However, this kind of transformation does not necessarily pre-
serve the form of the �elds (3.9). Knowing that the Toda �eld equation is
equivalent to the double constraint from (3.9) and (3.22), we understand that
the symmetries of the Toda �eld theory are exactly the transformations of the
form (3.23) which preserve the form of the pair of �elds.

These symmetries form a space. We will not dive into the heavy computa-
tions needed to �nd this space, which must be done individually for each type
of simple Lie algebra. The detail of the computations can be found in [MS91].
The main result is that the dimension of this space corresponds exactly to the
number of generators found from the holomorphic and antiholomorphic Lax
operators described above. Therefore, the symmetries generated by the Lax
operators are precisely the symmetries of this system.

We conclude that the algebra of symmetries associated to the classical Toda
�eld theory de�ned on g is made up of two decoupled copies of the classical
Wg-algebra. The next subsections will try to get the same result in a quantum
version of the classical Toda �eld theory.

3.3 Quantum Toda �eld theory

We now want to quantize the whole theory to make a quantum �eld theory, in
hope of obtaining a serie of quantum W-algebras, the quantum Wg-algebras.
To do so, we use canonical methods for quantizing �elds.

First, �elds can only interact with each other if they are not space-like sepa-
rated, fromWightman's axioms. We will consider therefore be driven to consider
light cones, that is in 2 dimensions light rays. Without loss of generality, we
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will assume the light rays originate from x = 0. Given a time τ , we will then
write (Tτ , T̄τ ) the two light rays originating from (τ, 0), that is

Tτ = z =
1

2
τ, z̄ ≥ 1

2
τ , T̄τ = z̄ =

1

2
τ, z ≥ 1

2
τ (3.24)

We write ε(x) the sign function, such that ε(R∗
+) = {1}, ε(R∗

−) = {−1}, and
ε(0) = 0. With these, the commutation relation of a r scalar components �eld
(φi)i∈Nr

taken in two distinct points of a single light ray writes

[φ(z, z̄), φ(w, z̄)] = −1

4
iℏδijε(z − w)

[φ(z, z̄), φ(z, w̄)] = −1

4
iℏδijε(z̄ − w̄)

(3.25)

Moreover, we set an arbitrary mass1 m which will describe the particles of our
theory. This way, we can set the energy of a particle depending on its momentum
using the relativistic dispersion relation

m2 = ω(p)2 − p2 (3.26)

We write p(p) = (ω(p), p) the energy-momentum of a particle. With all of these,
we can de�ne an annihilation operator, which creates an "anti" excitation of
momentum p on the �eld φj along some arbitrary light-cone (Tτ , T̄τ )

aj(p) =

∫
Tτ

idz̄
(
eip·(t,x)∂̄φj − ∂̄eip·(t,x) φj

)
+

∫
T̄τ

idz
(
eip·(t,x)∂φj − ∂eip·(t,x) φj

) (3.27)

and we can compute its commutation relations using (3.25)

[ai(p), aj(q)] = 0

[ai(p), a
†
j(q)] = 4πℏω(p)δijδ(p− q)

(3.28)

We can then construct the Fock space F(Tτ ,T̄τ ) on which these operators act, by
de�ning a vacuum state |0⟩ such that

ai(p)|0⟩ = 0 ∀i, p (3.29)

and by successively applying creation operators of the form a†i (p) for arbitrary
p and i.

By inverting (3.27), one can �nd an expression for φ on (Tτ , T̄τ )

φj = ϕj + ϕ̄j , ϕj = ϕ̄†
j

ϕj =

∫ ∞

−∞

dp

4πω(p)
e−ip·(t,x) (3.30)

In this formula, we see the di�erence between the "creation" part ϕ̄i and the
"annihilation" part ϕi of the �eld φi, made of creation operators a†i (p) and

1We know a theory must describe massless particles for it to be conformal. And indeed,

the mass will diseappear later on to preserve conformal invariance.
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annihilation operators ai(p) respectively. The operation of normal ordering,
necessary in any quantum �eld theory to prevent one from getting something
from the vacuum, thus places the ϕi to the right of the ϕ̄i. This explains the
particular importance of the commutator of those two �elds. For x, x̄ on the
same light ray, we have

[ϕi(x), ϕ̄i(x̄)] = δijℏ∆(x− x̄) (3.31)

with

∆(x) =

∫ ∞

−∞

dp

4πω(p)
e−ip·x (3.32)

However, this diverges for x ·x → 0. We should therefore add a lower and upper
energy bound to the theory, as is usually done in quantum �eld theory. We
de�ne

ϕregj =

∫ Λ2

−Λ1

dp

4πω(p)
e−ip·(t,x) (3.33)

and similarly for ϕ̄regj , which gives the commutator

∆reg(x) =

∫ Λ2

−Λ1

dp

4πω(p)
e−ip·x (3.34)

Now that we have quantized the �elds, we must adapt the classical Toda
�eld equation. We recall from (3.13) that they can take the form

∂∂̄φi =
γ2

β

∑
j

ki,je
βφj (3.35)

The most straightforward way of adapting this would be to simply normal-order
the exponential, as to have vanishing vacuum expectation values. However, as
we have seen from the discussion earlier, taking the normal ordering of this
exponential would lead to the apparition of an exponential of ∆. This is prob-
lematic, as ∆ depends in its de�nition of ω, which itself depends on the mass of
the particles. We have chosen an arbitrary mass to determine the creation and
annihilation operators, but the resulting quantum model shouldn't depend on
mass knowing the original classical model doesn't.

Let's compute exactly how the mass appears. We know that for any A,B,
supposing [A,B] commutes with A and B, we have

eA+B = eAeBe−
1
2 [A,B] (3.36)

We can then compute that for a transformation of mass m → µ, the normal
ordered exponential changes as

eβφ̄ieβφi → eβφ̄ieβφie
1
2β

2ℏ(∆m(0)−∆µ(0)) (3.37)

where ∆m and ∆µ corresponds to ∆ taken with mass m and µ respectively. We
know that ∆(x) is divergent when x → 0. However, we can compute

lim
Λ1,Λ2→∞

(∆reg
m (0)−∆reg

µ (0)) =
1

4π
ln(

µ2

m2
) (3.38)
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such that the normal ordered exponential transforms as

eβφ̄ieβφi → eβφ̄ieβφi
µ

m

1
4π β2ℏ

(3.39)

Therefore, we see that

m− 1
4π β2ℏ : eβφj : (3.40)

does not depend onm. Writing the above factor as σ, we can de�ne the quantum
Toda �eld equation as

∂∂̄φi =
γ2σ

β

∑
j

ki,j : e
βφj : (3.41)

3.4 The underlying quantum algebra

We now want to study the quantum algebra behind the symmetries of this
theory. We remember from 3.2 that the symmetries of the theory are classically
generated by the Lax operator. We thus want to adapt the Lax operator to the
quantum theory.

Once again, we won't go into the technical details as they are di�erent for
each type of simple Lie algebra. The details can be found in [MS91]. We will
also once again consider the holomorphic dimension. We remember that we
constructed the Lax operator from a serie of equations by putting one after the
other a sequence of operators each embodying one of the equations, such that
the serie of equations could take the form

Γ(A)χ = 0 (3.42)

We will write this sequence of operators (bi)i∈Nn such that writing the depen-
dance in z, we have

Γ(z) = bn(z) . . . b2(z)b1(z) (3.43)

In a quantum theory, we want everything to be normal ordered. However, it
might not be trivial to compute the normal-ordered Lax operator. We instead
use Wick's theorem, which gives a relation between normal ordered operators
and time ordered operators. This reduces the problem to �nding the time-
ordered Lax operator, which we will do juste now.

To make sure the Lax operator is time ordered, instead of taking each of the
(bi)i at z, we should take them at (z+iε) as to forcibly time-order this operator.
We write the resulting new Lax operator Γε.

Γε(z) = bn(z + nε) . . . b2(z + 2ε)b1(z + ε) (3.44)

Then, Wick's theorem says that

: Γε := Γϵ −
∑

(bi,bj)

bn . . . bi . . . bj . . . b1 (3.45)

From this, one may compute [∂̄, : Γε :] in term of [∂̄,Γε] and a sum of complicated
but computable terms. On the other hand, one can also compute [∂̄,Γε] using
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the quantum Toda �eld equation. One can then obtain an expression for [∂̄, :
Γε :] for which we can take ϵ to 0. Then, one can �nally obtain that

[∂̄, : Γ0 :] = 0 ⇔ γ = β +
1

β
(3.46)

Remark. The holomorphic (quantum) energy-momentum �eld is then

T =: ∂φ · ∂φ : −2

(
ρ∨

β
+ βρ

)
· ∂2φ (3.47)

We notice that in comparison with the classical energy-momentum �eld (3.18),
quantum corrections have added a −2βρ·∂2φ term, and have turned the already
present ρ into its dual ρ∨.

We know the form γ has to take from (3.46). In fact, the real condition is a
bit more �exible, as it takes the form of a linear equation. But linear equations
have the particularity that the sum of 2 solutions is still a solution. This leads to
considering the sum of 2 Toda �eld equations, and to de�ning the new following
model

∂∂̄φ =
∑
i

αi

(
: eβαi·φ : + : e−

1
βαi·φ :

)
(3.48)

for which one can prove that we have [∂̄, : Γ0 :] = 0.

This new equation de�nes what is known as the conformally extended Toda
�eld theory. Thanks to their conservations, the holomorphic normal-ordered
Lax operator generates the holomorphic part of the symmetries of this theory,
whilst the antiholomorphic one generates the remaining of the symmetry. But
each of these Lax operator form the quantum Wg-algebra, also known as the
Casimir algebra associated to the Lie algebra g. In particular, we know that
a Virasoro algebra is contained in any Casimir algebra. This proves that the
theory contains 2 chiral Virasoro algebras among its symmetries, thus proving
the theory is conformally invariant at the quantum level.

The study of conformally extended Toda �eld theories has been of great im-
portance in the study of W-algebras, because it generates a serie of W-algebras
but also because it provides the Lagrangian formulation for a minimal model
associated to each of these algebras, that is a theory where the only set of sym-
metries is the W-algebra. Finding a Lagrangian to describe a minimal model of
a W-algebra is highly non-trivial.

3.5 The WZW-model perspective

Up until now, we have derived a serie of non-trivial W-algebras, which are very
interesting in their own right. However, their study is quite limited and we would
now like to continue our quest for new W-algebras. The question is therefore:
can we use Casimir algebras to derive new W-algebras? Can we generalise
them? And to this question, the answer is yes thanks to a key insight found in
[For+89]. In this paper, the authors showed that one can approximately2 see
Toda �eld theories as constrained WZW-models. This point of view then allows

2This approximation should be precised later on.
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one to see Casimir algebras as constrained a�ne Kac-Moody algebras, raising
the question of wether one can generalise this kind of constraint.

Let's �rst recall some of the results we found on WZW-models in 2. The
WZW-model is a 2D CFT de�ned for a given Lie algebra g and level k by the
Lagrangian (2.50), describing particles moving on a string itself living in the Lie
group G associated to the Lie algebra g. As seen in 2.4 and 2.8, this theory has a
G(z)×G(z̄) symmetry, whose conserved currents correspond to the momentums
of the left and right moving particles, given by

J(z) = Ja(z)Ta = k∂g g−1

J̄(z̄) = J̄a(z̄)Ta = kg−1∂̄g
(3.49)

We can rewrite these currents in term of the generators of g given in the previous
section, as

J =
∑
αi∈∆

(
JiHi + J+

i E+
i + J−

i E−
i

)
+

∑
α∈Ψ+\∆

(
J+
α Eα + J−

α E−α

)
J̄ =

∑
αi∈∆

(
J̄iHi + J̄+

i E+
i + J̄−

i E−
i

)
+

∑
α∈Ψ+\∆

(
J̄+
α Eα + J̄−

α E−α

) (3.50)

where the dependance in z and z̄ is implicit. The equations of motion of the
WZW-model write

∂̄J = 0, ∂J̄ = 0 (3.51)

Instead of decomposing the momentums on a basis (Ta)a of g, we can give them
a dependance in the Lie algebra through the trace operation

J(λ)(z) = Tr(λ · J(z))
J̄(λ)(z̄) = Tr(λ · J̄(z̄))

(3.52)

Remark. We must notice that this decomposition of the momentum is dual to
the decomposition we previously had, with regards to the trace. For λ ∈ g, J(λ)
corresponds to Jλ∗

where λ∗ is the dual of λ through the trace. E�ectively,
we are switching the momentum along a root with the momentum along the
opposite of this root, thus switching g+ with g−.

Now, the main result is that for arbitrary numbers (µi)i, (ν
i)i ⊂ R∗

+, if we
constrain the momentums of the left and right moving particles in the WZW-
model by saying

J(Eαi
) = kµi, J̄(E−αi

) = −kνi for αi ∈ ∆

J(Eα) = 0, J̄(E−α) = 0 for α ∈ Φ+\∆
(3.53)

Then the theory reduces (locally) to a Toda �eld theory.

Remark. We can rewrite (3.53) using the decomposition (3.50) as

J−
i =

1

2
k|αi|2µi, J̄+

i = −1

2
k|α|2νi for αi ∈ ∆

J−
α = 0, J̄+

α = 0 for α ∈ Φ+\∆
(3.54)

40



This kind of result should feel somewhat intuitive. Indeed, both the WZW-
model and the Toda �eld theory describe massless particles moving on a string
moving on a Lie group. Moreover, both models have the particles separated
in 2 groups, those moving left and those moving right. The di�erence is that
in a Toda �eld theory, the particles moving left move only along g− whilst
the particles moving right move only along g+. But the constraints above �x
the movement of the particles moving left along g+ and �x the movement of
the particles moving right along g− in the WZW-model, thus allowing them
to freely move only on the part they would be able to move in a Toda �eld
theory. However, we see that everything is not �xed by these constraints. In
fact, there is a residual gauge redundancy left when using the constraints above,
which leads to the locality of the result. This phenomenom is discussed in more
details in [Bal+90].

To show that the WZW-model indeed reduces to a Toda �eld theory, we �rst
need to use the local Gauss decomposition.

Remark. We should insist that this decomposition only works locally in a general
semisimple Lie algebra. It cannot be extended to the whole algebra. For this
reason, the reduction of the WZW-model to a Toda �eld theory is only local.
Global solutions of a reduced WZW-model may not lead to global solutions of
the associated Toda �eld theory

Given the �eld of study in the WZW-model g, Gauss's decomposition says
that we can locally write

g = ABC (3.55)

where

A = exp

( ∑
α∈Φ+

aαEα

)

B = exp

(∑
αi∈∆

ϕiHi

)

C = exp

( ∑
α∈Φ+

cαE−α

) (3.56)

Let's look at the holomorphic current J �rst. Using this decomposition, we can
rewrite it as

J = k∂(ABC) C−1B−1A−1

= k∂A A−1 +A∂B B−1A−1 +AB∂C C−1B−1A−1
(3.57)

Using the derivative of exponentials and the commutation relations of the (Hi)i
and (Eα)α, we can see that the term [∂A A−1] contributes to the (J+

α )α∈Ψ+ ,
the term [A∂B B−1A−1] contributes to the (J+

α )α∈Ψ+ and (Hi)αi∈∆, whilst the
term in [AB∂C C−1B−1A−1] contributes to the (J−

α )α∈Ψ+ and (Hi)αi∈∆.

But (3.53) only constrains the (J−
α )α∈Ψ+ , such that we may discard the

two �rst terms. Moreover, the contribution from this term to the (Hi)αi∈∆ is
generated by the commutation of A with B∂C C−1B−1, and this commutation
only generates contributions to (Hi)αi∈∆. Therefore, the constraint directly
writes out

kB∂C C−1B−1 =
1

2
k
∑
αi∈∆

|αi|2µiE−
i (3.58)

41



Or equivalently

∂C C−1 =
∑
αi∈∆

1

2
|αi|2µiE−

i e
1
2

∑
αj∈∆ kijϕj (3.59)

Similarly, doing the same kind of analysis for J̄ = k C−1B−1A−1∂̄(ABC), we
�nd that the condition on the antiholomorphic current given in (3.53) rewrites

A−1∂̄A =
∑
αi∈∆

1

2
|αi|2νiE+

i e
1
2

∑
αj∈∆ kijϕj (3.60)

Looking at the equation of motion for the holomorphic current, we see

0 = ∂̄
(
k∂A A−1 +A∂B B−1A−1 +AB∂C C−1B−1A−1

)
(3.61)

But inserting (3.59) and (3.60), assuming that all �elds are smooth enough to
freely permute ∂ and ∂̄, we can remove all �elds A and C, such that we get an
equation only on (ϕi). The same happens for the other equation of motion on
the antiholomorphic current.

Finally, putting everything together, we can obtain the equivalent equations

∂∂̄ϕi +
1

2
|αi|4µiνie

1
2

∑
αj∈∆ kijϕj = 0 (3.62)

which is equivalent to the Toda �eld equation (3.14) for a general Toda �eld
theory where β = 2, where we have decomposed ϕ into its components in an
orthonormal basis (ei)i instead of the basis given by the simple roots (αi), and
where we have given a dependance to the external parameter γ in i such that
γi = |αi|2µiνi. We see that the bigger µi or νi is, the bigger the momentum on
the roots will be in the equivalent Toda �eld theory, which seems logical.
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Chapter 4

The general Drin�eld-Sokolov

reduction

We have seen how one can reduce WZW-models to obtain Casimir algebras,
which are a kind of W-algebras. In this section, we will generalise this reduction
in order to obtain a broader class ofW-algebras. We refer to the annex A for any
reader incomfortable with Hamiltonian reductions and the BRST procedure.

4.1 General constraints

We consider the WZW-model of level k on a semisimple Lie group G. As
was done in 3, we �rst consider the classical theory, which is simpler to deal
with. We will consider the quantum theory afterwards. We want to reduce the
WZW-model in the most general way possible, by imposing constraints on the
momentums J(z) and J̄(z̄), respectively of the right and left moving particles.

We will only consider the holomorphic part of the theory (particles moving
right) since we know the same process will apply to the other part. Since the
model describes particles moving on G, the momentum J(z) is an element of
g. How can we impose constraints on it? We would like to divide g into 2
complementary parts such that it is �xed on one of the parts, and free on the
other. But �rst, we need to be able to decompose J(z) onto a basis of g in an
expressible way. To do so, we use the trace operator as an inner scalar product
of g

⟨u, v⟩ = Tr(u · v) ∀u, v ∈ g (4.1)

With this, we can choose a subalgebra Γ ⊂ g on which we want to �x the
momentum, meaning we want to �x ⟨Γ, J⟩. We also set M , to which we want
our momentum to correspond on Γ. Then, the momentum J should take the
form

J(z) = M + j(z) with j(z) ∈ Γ⊥ (4.2)

where Γ⊥ is the subspace orthogonal to Γ with regards to the trace.

Remark. Actually, we are not �xing J along Γ but along its dual with regards
to the trace. The intuition is the same, but it allows for a better expression of
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the constraint. In particular, we directly have that Γ⊥ is a complement of the
dual of Γ with regards to the trace.

The formulation (4.2) allows for an easy understanding of the constraint we
are considering. But we can equivalently reformulate it as a function which
should vanish, as it is usually done in Lagrangian or Hamiltonian mechanics
with constrainted systems, as discussed in A.3. To do so, we simply de�ne a
function measuring the distance between J and M on (the dual of) Γ:

ϕγ(z) = ⟨γ, J(z)⟩ − ⟨γ,M⟩ = 0 ∀γ ∈ Γ (4.3)

We should note that there is some ambiguity in the de�nition of M . In
particular, M can be arbitrarily shifted along Γ⊥, as the constraint only �xes J
to M on the dual of Γ. As such, we can suppose without loss of generality that
M vanishes on Γ⊥.

(4.2) can describe any kind of constraint put on the momentum J . However,
in the general case, we do not know how to impose it, or wether it is even
possible. We should therefore put some conditions on the choice of Γ and M ,
to only keep constraints we know how to enforce. Following [Feh+92], we will
suppose that the constraints we want to enforce are all �rst-class constraints.
This means that for any α, β ∈ Γ, we should have in the reduced theory

{ϕα, ϕβ} = 0 (4.4)

where the Poisson bracket comes from the full theory. This assumption is ac-
tually not so strong, and covers most of the known reduced WZW-models. It
also makes sense physically, as we are interested in "proper" reductions, were
the constraints really modify the dynamics of the system.

Let's now see what this �rst-classness implies. We have derived the quantum
structure of the current algebra of the WZW-model in (2.71). At a classical level,
the Lie bracket becomes a Poisson bracket, and the bracket of the components of
the momentums can be written at equal time using the trace and delta functions
as

{⟨u, J(x)⟩, ⟨v, J(y)⟩}|x0=y0 = ⟨[u, v], J(x)⟩δ1(x− y) + k⟨u, v⟩δ′1(x− y) (4.5)

where δ1 is the spatial delta function, meaning δ1(x − y) = δ(x1 − y1) for
x = (x0, x1) in the usual (non-chiral) coordinates. Having the bracket of the
momentums at equal time is su�cient, since we are only considering quantities
depending on the holomorphic dimension, which can therefore be moved along
the antiholomorphic dimension to be at equal times. Using this to compute the
bracket of the constraints (4.3), we get

{ϕα(x), ϕβ(y)} = ϕ[α,β](x)δ1(x−y)+⟨M, [α, β]⟩δ1(x−y)+⟨α, β⟩δ′1(x−y) (4.6)

It is interesting to note that in this relation, the dependance in the level k
diseappear, meaning the way we are bypassing the geometry of G doesn't matter
for the "properness" of the constraints. (4.4) holds if and only if each of the
terms in the above expression vanish weakly, individually meaning

[Γ,Γ⊥] ⊂ Γ⊥

[M,Γ] ⊂ Γ⊥

Γ ⊂ Γ⊥

(4.7)
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Given the second condition, we see that the choice of a valid M is reduced
to

M ∈ [Γ,Γ]⊥/Γ⊥ (4.8)

intuitively meaning that we can give the momentum of the particles a non-zero
�xed part only as a counterpart (dual) of the residue of the free part. This
residue always exists, as the last condition implies that Γ must be solvable.
Note that the last condition can be satis�ed by choosing Γ nilpotent, although
the nilpotency is not necessary.

4.2 Ensuring conformal invariance

Imposing a constraint of the form 4.2 breaks the classical conformal symmetry of
the WZW-model. Indeed, if M is non-zero (and isn't in Γ⊥), some components
of the momentum are �xed to non-zero constants, which stay constant through
rescales of the system. However, the momentum is supposed to have conformal
dimension 1, meaning all components of the momentum should scale linearly
under rescales of the system. The question is then to know wether the reduced
model, where the constrained surface has been gauged out, is once again con-
formally invariant or not. For it to be again conformally invariant, the action
of the conformal group on the WZW-model phase space needs to be modi�ed
as to leave the constrained surface invariant.

Therefore, the question is: how can we modify the action of the conformal
group to make it leave the constrained surface invariant? We know that the
action of the (holomorphic) conformal group action is encoded in the energy-
momentum �eld TWZW(z) of the WZW-model, which gives the energy of the
theory. We may thus change the landscape of the question, to ask: how can
we modify the energy of the system to take into account the reduction of the
theory?

To answer this, we should take a step back. We want to prevent the particles
from going into certain directions, or more generally we want to modify the
general behaviour of free particles as to prevent them from going into certain
directions. We can see this as removing certain directions from the phase space,
or more generally as modifying the phase space as to prevent free particles from
going into certain directions. This kind of modi�cation can be achieved by
curving the space in which the particles live, as to create with the worldsheet
some sort of funnel for them to stay in.

This way, we can see a link with general relativity. The main idea of general
relativity is to curve the space to modify the behaviour of free particles. In
Einstein's picture, mass curves the space as to attract other objects to it. In our
case, we could put some very very large �ctive mass along the path the particles
can take, such that they are funneled into this path, e�ectively implementing
the reduction of the phase space.

From this perspective, we can then understand what form should the modi-
�cation of the energy TWZW(z) take. We want to add a very very large �ctive
mass, creating a gravitational potential to capture the particles and force them
to go in some directions. In fact, we do not need the �ctive mass, but only the
gravitational potential generated from it. We want to be in the approximation
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Figure 4.1: Illustration of general relativity

where the �ctive mass generating the potential is so big that it is not a�ected by
external forces, and never moves, much like how we consider gravity on earth.
On earth, we assume the gravitational �eld is constant and equal to g⃗, such that
the potential energy generated by gravity is equal to

Ep = mg⃗ · z⃗ (4.9)

with m the mass of the object subject to the gravitational �eld, and z its height
(its distance to the ground). In our theory, we would like to have something
similar, and write

Tred(z) = TWZW(z) + Ep (4.10)

with Ep some sort of potential energy generated from the �ctive mass. The
question is then, how to replace m, g⃗ and z⃗ in (4.9)? Let's look at the case of
gravity on earth once again. The gravitational �eld is assumed to be constant,
equal to g⃗. It thus exert a force equal to mg⃗ on the objects. But according to
Newton's �rst law,

mg⃗ = F⃗ = ma⃗ = m⃗̇v = ⃗̇p (4.11)

such that we can replace mg⃗ by the derivative of the momentum J ′(x). On the
other side, z⃗ should be some measure of the distance from the direction we want
the particles to stay in, and can just be an element −H ∈ g for now. With
these, we then rewrite the energy-momentum �eld

Tred(z) = TWZW(z)− ⟨H,J ′(z)⟩ (4.12)

Without giving big interpretations of H, we can already see it will only a�ect
the compontents of J ′ and thus of J along a complement of J⊥. Therefore, the
geometry of the space will be modi�ed only on a complement of J⊥, inting at
the fact that we should have J⊥ = Γ⊥.

Now, let's actually compute wether the modi�cation we made to the energy-
momentum �eld actually corrected the action of the conformal group on the
WZW-model phase space, and what are the conditions imposed on H for it to
work. To do so, let's consider an in�nitesimal (holomorphic) conformal trans-
formation z → z − f(z). We have δfz = −f(z), such that assuming Tred is the
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energy-momentum �eld of the theory,

δfJ(z) = −
∫

dyf(y){Tred(y), J(z)}

= f(z)J ′(z) + f ′(z) (J(z) + [H,J(z)]) + f ′′(z)H

(4.13)

Injecting the constraint (4.2) in this, we get

δf j(z) = f(z)j′(z) + f ′(z) (j(z) + [H, j(z)] + [H,M ] +M) + f ′′(z)H (4.14)

Now, we know the issue with the previous action of the conformal group was
that it didn't leave the constraints invariant. For our modi�cation to repair the
conformal invariance of our system, Tred should leave the constrained surface
invariant, meaning it shouldn't a�ect the components of the momentum along
the trace dual of Γ, meaning we should have δf j(z) ∈ Γ⊥. For it to be true, we
must have

H ∈ Γ⊥

[H,Γ⊥] ⊂ Γ⊥

([H,M ] +M) ∈ Γ⊥

(4.15)

Reciprocally, if there a H ∈ Γ⊥ satisfying these conditions, then we know how
to modify the energy-momentum �eld to get a new working energy-momentum
�eld for the reduced theory, proving the reduced theory is conformally invariant.
Note however that the non-existence of such an element doesn't imply a priori
that the theory is not conformally invariant. It only means that we haven't
found the right way to modify the energy-momentum �eld.

From now on, we will assume that our choice of M and Γ is such that we
can �nd an element H satisfying the above conditions. This assumption is not
automatic, but should cover a su�ciently large spectrum of reductions, since
modifying the energy-momentum tensor by an element H is a very natural and
general way to do it as explained above.

Let's look at the last condition imposed on H, that is ([H,M ] +M) ∈ Γ⊥.
Since M /∈ Γ⊥, we understand that H should be chosen to compensate for M .
We could then expect that H only compensate for M , without creating further
shifts in Γ⊥. This leads us to considering a H such that [H,M ]+M = 0. When
can we choose such H?

To answer this, let's look back at the intuition behind H. H should describe
a potential vector �eld on g, associating to each X ∈ g a vector pointing in
the direction of Γ⊥, the space of directions along which the particles should be
free. But since Γ⊥ is nothing more than a linear subspace, H should be able to
decompose g in a basis of proper elements (Xa)a, where the vector associated
to each Xa is in the direction of Xa itself. We can thus safely assume that H is
diagonalizable, giving a grading on g. But if H is diagonalizable, we can always
shift it by a constant such that we have [H,M ] +M = 0. This further hints at
the fact that H should be diagonalizable.

From now on, we will therefore always assume that H is diagonalizable,
and that [H,M ] = −M . Note that H then induces a grading on g. For any
eigenvalue m of H, we will write gm the associated eigenspace.
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4.3 The classical W-algebra

We consider the WZW-model de�ned on the Lie algebra g at level k. Let (Γ,M)
a pair de�ning a reduction of the WZW-model, and H the associated element
verifying the conditions described above. We now want to study the algebra
behind the reduced theory. The theory comes down to the dynamics of the
momentums J and J̄ , commuting with each other. The algebra we want to
study is thus the algebra formed by the components of each momentum. But
since the 2 momentums commute, their components will commute too, forming
2 distinct algebras. We will therefore restrict our study to the algebra of the
components of a single momentum, say J .

The constraints we are imposing on the theory is that J(z) must take the
form

J(z) = M + j(z) with j(z) ∈ Γ⊥ (4.16)

The algebra is thus generated by the components of j(z).

Since adH leaves Γ and Γ⊥ invariant, we can decompose these spaces in
a graded basis. Let (Xi

m)i,m∈I×R be a graded basis of Γ⊥, such that for any
(i,m) ∈ I × R we have [H,Xi

m] = mXi
m. Then we can decompose j(z) in this

basis, and write

j(z) =
∑

i,m∈I×R
jim(z)Xi

m (4.17)

Now, let's recall 4.14. Using the decomposition above and the fact that
[H,M ] = −M , we have

δf j
i
m(z) = f(z)jim(z)′ + f ′(z) (1 +m) jim(z) + f ′′(z)H (4.18)

But we know from the previous lecture notes that a Virasoro primary �eld φ of
conformal dimension h should transform under conformal transformations as

δfφ = f(z)∂φ+ f ′(z)hφ (4.19)

Therefore, we see that the algebra of the theory is generated by the �elds
(jim(z))i,m which are almost primary with conformal dimension (1 + m), with
the exception of the H term.

We see what is the reduced algebra behind the reduced theory. But in this
form, the algebra is not very computable. Moreover, there is a lot of gauge
redundancies in the theory, since the theory is invariant under a local action of
Γ. We should therefore try to �x the form of the current J(z) in a normal form
through gauge transformations, such that the algebra takes a nice form.

What would be the right normal form? Inspired by (4.6), we might want to
de�ne the 2-form

ωM (α, β) = ⟨M, [α, β]⟩ ∀α, β ∈ g (4.20)

such that the second condition of (4.7) ensuring the primarity of the constraints
rewrites

ωM (α, β) = 0 ∀α, β ∈ g (4.21)
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We may then want to de�ne a graded subset Θ ⊂ g such that Θ would be dual
to Γ with respects to ωM , and ask the current J(z) to be in the form 1

Jred(z) = M + jred(z) with jred(z) ∈ Γ⊥ ∩Θ⊥ (4.22)

This constraint e�ectively restricts the form of the current. But is it really
nothing more than a gauge �xing? In other words, are we not further reducing
the model by imposing this constraint? To show that this constraint is actually
a gauge �xing constraint, we may explicitely give for any current J(z) an as-
sociated gauge transformation such that the transformation brings J(z) to the
form (4.22). We do not know how to do this in the general case. However, under
some very natural assumptions, this transformation can be expressed polynomi-
ally using an algorithm found in [Feh+92]. Following the authors of [Feh+92],
we will therefore call a reduction obeying these assumption a polynomial re-
duction. Note however that not all reductions are polynomial. Considering a
polynomial reduction only allows for a better form of the algebra.

The �rst obvious assumption we should make is being able to take Θ a dual
of Γ under ωM . But to take its dual, Γ should be a sympleptic space under ωM .
Let's analyse ωM . We write KM = Ker(adm), and set TM a complementary
space to KM such that g decomposes in a direct sum as

g = KM ⊕ TM (4.23)

With these notations, seeing using the linearity and cyclicity of the trace that

⟨[a, b], c⟩ = ⟨[c, a], b⟩ (4.24)

we �nd that ωM (KM , g) = 0, and that ωM is non-degenerate on (TM , TM ).
Therefore, to be able to take Θ a dual of Γ, we should have Γ ⊂ T , or more
generally

Γ ∩ KM = {0} (4.25)

This is our �rst additional condition.

Now, before actually discussing of the algorithm, let's reformulate the con-
straint (4.22). Recall how we reformulated the original constraint (4.2) as a
function which must be annihilated (4.3), similarly to Lagrange multipliers. We
can once again use the same strategy, and reformulate (4.22) as

χθ(z) = ⟨J(z), θ⟩ − ⟨M, θ⟩ = 0, ∀θ ∈ Θ (4.26)

We should also write the general form of a gauge transformation

g(z) = e
∑

h,l a
l
h(z)γ

l
h (4.27)

which acts on the constrained current as

j(z) → jg(z) = ea·γ(j(x) +M)e−a·γ + (ea·γ)
′
e−a·γ −M (4.28)

The objective of the algorithm is thus to provide a gauge transformation
g(z) such that jg(z) answers χθ(z) = 0.

1This form is often called the Drin�eld-Sokolov gauge, as it was developped by analogy

with their work
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Before diving into the computations, we should set a basis (γl
h) of Γ and a

dual basis (θjk) of Θ, such that the grade of γl
h under H is h, with l labelling the

multiplicity of the elements of the basis with grade h. Note that with these, θjk
has grade (1− k) under H.

With these notations, let's try to understand (4.28). To do so, we will
�rst consider graded gauge transformations, generated by the local action of
gh for �xed h. Let h ∈ R a grade. We consider a transformation of the form

gh(z) = e
∑

l a
l(z)γl

h . We should also set Θh = ⟨ θlk / k ≤ h ⟩.

Let's consider the e�ect of (4.28) on χθ(z)|θ∈Θh
. First, the derivative term

does not contribute, since ⟨γl
h, θ

j
k⟩ = 0 for k < h. Let's now look at the e�ect of

j(z). We have

eah·γhj(z)e−ah·γh = j(x) + [ah(z) · γh, j(z)] + . . . (4.29)

It would simplify things greatly to consider only the �rst term and remove the
e�ects of the gauge transformation. But noticing that every other term is the
commutator of something along γh (which is of grade h) with something in
Γ⊥, and recalling (4.24), we see that the e�ects of the gauge transformation
diseappear on Θh if [gh,Θh] ∈ Γ. But knowing that the degree of the bracket
of two elements is the di�erence between their degrees plus one, we see that
[gh,Θh] ⊂ g≥1. Therefore, we may impose

g≥1 ⊂ Γ (4.30)

to make the commutators diseappear. This is our second additional condition.

Now, we can also use the fact that the two basis (γl
h) and (θjk) are dual one

to the other and the identity (4.24) to compute the terms with an M , which
putting everything together yields

⟨θik, jgh(z)⟩ = ⟨θik, j(x)⟩ − aih(z)δhk ∀k ≤ h (4.31)

But by identi�cation, we see that

⟨θik, j(x)⟩ = 0 (4.32)

is equivalent to
⟨θik, jgh(x)⟩ = 0 for k < h (4.33)

and by setting
aih(z) = ⟨θih, j(x)⟩ (4.34)

we can �x
⟨θih, jgh(x)⟩ = 0 for k = h (4.35)

Therefore, we may de�ne the family (aih) recursively following (4.34), such that
the gauge parameter aih(z) always has a closed expression polynomial in the
current, and such that eventually we have χθ(z) = 0.

Now, let's try to properly understand the reason for each assumption. First,
we assumed that Γ∩KM = {0}. This assumption is necessary to be able to take
the dual of Γ through ωM , and to de�ne the normal form the current should take.
But intrinsically, what is this form? We can notice that the space V = Γ⊥ ∩Θ⊥
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to which we constrain the momentum is graded, and is the complementary of
the image of Γ through adM (which is injective on Γ by assumption). Therefore,
we have the direct sum decompositon

Γ⊥ = [M,Γ] + V (4.36)

Written like this, we can see the momentum in its normal form as constrained
on Γ⊥ (as prescribed by (4.2)) but gauged out of Γ2, and therefore constrainted
to the small interstice between Γ⊥ and Γ.

In fact, this perspective should be the right one, since for any V complemen-
tary to [M,Γ] in Γ⊥, we can choose a Θ dual to Γ such that V = Γ⊥ ∩ Θ⊥.
Therefore, the data of Θ is equivalent to that of V.

Now, let's consider the second assumption. Its statement is equivalent to
saying that

Γ⊥ ⊂ g>−1 (4.37)

In fact, this statement is very natural, to the point we could almost take it as
an axiom and never consider reductions which do not verify this. Indeed, as
we saw at the beginning of this section (4.18), the algebra associated to the
model is made up of the components of j(z), which are all primary �elds of
conformal dimension (1 + h) where m is the grade of the component. However,
we have seen in the previous lecture notes how the conformal dimension dictates
the behaviour of the �eld under rescales. In particular, a �eld will loose energy
when it is zoomed on if and only if its conformal dimension is positive, whilst
the inverse will happen if its conformal dimension is negative. This implies that
the conformal dimension of any physical �eld must be positive. But j(z) is
constrained to Γ⊥, which means that we should have (1 + h) positive for any
graded component of j(z), meaning we should have (4.37).

Remark. Note that this assumption also implies that M is uniquely determined,
since no element of Γ⊥ is of grade −1 and can shift M .

Finally, let's look at what we can get by combining the 2 assumptions. Using
the two assumptions along with the conditions put on Γ, we get that Γ can only
contain positive grades

Γ ⊂ g>0 (4.38)

which also implies that
g≥0 ⊂ Γ⊥ (4.39)

This clearly shows the freedom left by the pair (M,H) in choosing Γ: given a
grading and a nilpotent element, there exist a small number of di�erent choices
for Γ, resulting in di�erent physical reductions of the theory.

g≥1 ⊂ Γ ⊂ g>0 g≥0 ⊂ Γ⊥ ⊂ g>−1 (4.40)

4.4 Quantum a�ne W-algebras

We have derived the classical a�ne W-algebras known to mathematicians,
through the imposition of constraints which are themselves constrained by a

2Actually, gauged out of the injective image of Γ in Γ⊥ through adM
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variety of conditions. But how do we quantize this algebra, in a way that is
usable? The answers comes in 2 parts. First, how do we choose the right
Γ,M,H,Θ?

The solution in front of such a complex data subject to so many conditions
is to constrain further the data, as to be able to summarize the conditions in a
few words. In particular, the known approach is to only consider a good pair
(M,H), whose conditions are discussed in appendix B. Given such a good pair,
we can choose to have

Γ = g>0 Γ⊥ = g≥0 (4.41)

which yields a valid reduction. Therefore, we can associate a polynomial reduc-
tion of the WZW-model to any good pair of the underlying Lie algebra. We
usually write the pair (f, x) such that f describes the constant shift of the mo-
mentum of the particles, whilst x describes the potential keeping the particles
along some Γ⊥.

But then, how do we quantize the algebra? We should �rst make the theory
quantum. We have already looked at the quantum version of the WZW-model,
which has very small nuances. However, these nuances won't a�ect the �nal
result. Therefore, we should simply directly apply the BRST procedure. The
BRST procedure as described in the annex A can be applied straightforwardly
to our Lagrangian multiplier (4.3), as to get a quantum a�ne W-algebra as
known by mathematicians.

Actually, someome attentive enough might notice that the algebra we ob-
tain by using the BRST procedure with the Lagrangian multiplier (4.3) doesn't
exactly correspond to the algebra described in [DK06]. Indeed, this paper con-
siders more general kind of WZW-models, where the underlying Lie algebra may
actually be a Lie superalgebra. In this more general case, M can be either even
or odd. Our method works if M is even, but breaks for odd M . To solve this
issue, [KRW03] introduced the addition of another ghost to add the possibility
of M being odd. It is this enhanced W-algebra that is now often considered by
mathematicians.
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Appendix A

Hamiltonian reductions

In this appendix, we give a quick tour of the di�erent methods to quotient
out the symmetries of a physical system. We review the classical Hamiltonian
reduction, and another algebraic prodecure allowing for the same reduction,
namely the BRST procedure.

A.1 The space of con�gurations

We consider a physical system, which is described by a point in its space of
con�gurations. The space of con�gurations forms a di�erentiable manifold M ,
the space in which the system lives. For exemple, in classical non-relativistic
mechanics, M may be R6 with coordinates (x, y, z, px, py, pz) where the con-
�guration of the system takes into account the position and momentum of the
system.

From classical mechanics, we know that the position and momentum of a
system are very important. The con�guration of any system1 should at least
contain some sort of position q and momentum p, both making the phase space
(q, p) of the system. Therefore, we should be able to know what is q or p on M ,
meaning we should be able to equip M with an additional structure as to take
into account the position and momentum.

In the case where M is a �at vector space, this is quite easy. The right
additional structure is a Poisson bracket, turning M into a Poisson manifold,
classically de�ned for any two functions F,G ∈ C∞(M) by

{F,G} =
∂F

∂q

∂G

∂p
− ∂G

∂q

∂F

∂p
(A.1)

This structure allows one to think about Hamiltonian mechanics in a very
convenient way. Indeed, let H be the Hamiltonian of the system

H : M → R (A.2)

H is a function giving the energy of a system according to its con�guration. The
Euleur-Lagrange equation, equivalent to Newton's �rst law, can be reformulated

1Living freely in a continuous space. As we are interested in continous symmetries, we

won't talk about systems de�ned on lattices
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using the Hamiltonian as

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
(A.3)

which are known as Hamilton's equations. Notice how the two equations are
dissymmetric, setting a di�erence between q and p. Using the Poisson bracket
de�ned on C∞(M), we can rewrite these equations as

q̇ = {q,H}, ṗ = {p,H} (A.4)

which �rst of all is nice looking, but also symmetrizes the role of p and q.
Furthermore, for any quantity of the system F (q, p) depending on the position
and/or momentum of the system, we have

Ḟ = {F,H} (A.5)

In particular, we have {H,H} = 0, which is nothing but the law of energy
conservation. In a more general fashion, for any quantity F , the fact that
{F,H} = 0 means F is a quantity conserved along the motion of the system.

Furthermore, the Jacobi identity tells us that if we have two functions F,G
such that {F,H} = 0 and {G,H} = 0, then we also have {{F,G}, H} = 0,
meaning the Poisson bracket of two conserved quantities is still a conserved
quantity. The Poisson manifold structure on M therefore induces a Poisson
algebra structure on the space of all conserved quantities of the system.

Geometrically, we can easily interpret the Poisson bracket on C∞(M). To
any smooth function H on M , the Poisson bracket gives a derivation {_, H},
which can be seen as a vector �eld ξH . Interpreting H as a function giving
the energy of the system depending on its con�guration (interpreting it as a
Hamiltonian), we see that the associated vector �eld ξH gives for any point in
the con�guration space the direction in which the system evolves.

However, M is not always �at and it is not always possible to de�ne a
Poisson manifold in this straightforward manner. For exemple, when studying
a pendulum, the position is only de�ned modulo 2π, such that M is an in�nite
cylinder. How does one generalise this Poisson bracket? Instead of de�ning a
Poisson bracket

{_,_} : C∞(M)× C∞(M) → R (A.6)

we should consider a more general 2-form

ω : X (M)× X (M) → R (A.7)

A 2-form doesn't exactly takes the same arguments as a Poisson bracket. How-
ever, supposing it is non-degenerate, it gives a mapping between vectors and
1-forms, such that as with the Poisson bracket, it gives a mapping between
smooth functions and vector �elds by

ξF ≡ ω−1(dF, ·) ∀F ∈ C∞(M) (A.8)

Then, we can make the link between the Poisson bracket and the 2-form by

{F,G} = ω(ξF , ξG) (A.9)
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We have seen how one can translate a Poisson bracket into a 2-form. But
in a general space, what are the constraints one should put on ω for it to
describe an actual physical space of con�gurations? A Poisson bracket must
be bilinear, antisymmetric, and generates derivatives on C∞M . A 2-form is
also bilinear and antisymmetric, but how does one translate the condition of
generating derivatives? The answer is by asking ω to be a closed form.

Therefore, we can equip the space of con�gurationsM of any physical system
with a closed non-degenerate 2-form ω. (M,ω) is then called a sympleptic
manifold, and is the subject of study of a whole area of mathematics.

A.2 Symmetries in this space

Now, let's look at how symmetries are represented on this sympleptic manifold.
M usually posseses symmetries. As an exemple, if M is the position-momentum
space in 3 dimensions (for a total of 6 dimensions), then M is symmetric under
translations in space and under a shift of momentum. This doesn't mean that
these are symmetries of the considered theory, but only encodes the structure
of the space of con�guration. On the other side, any symmetry of the system
considered should also be a symmetry of the space of con�gurations.

We know that symmetries are encoded by (connected) Lie groups. We there-
fore dispose of the Lie group G of symmetries of M , along with an action of
G on M . If the theory itself has symmetries, it is encoded as a (connected)
subgroup H ⊂ G of G also acting on M by the induced action of G.

Deriving the action of G on M , we get a map from g to the set X (M) of
vector �elds on M .

g → X (M)

g → ξg
(A.10)

Inuitively, given a "direction of transformation" g, this map transmits the move-
ment from g to M , by giving the direction in which this transformation would
go for each point of M . In the case of a symmetry by spatial translations, g
can for exemple be a direction in which the system can translate, resulting in
ξg being a �eld of vectors pointing in this direction.

We should now discuss of the interactions between the action of G and the
sympleptic structure. We will give a few de�nitions, allowing us to determine
the "quality" of the action. To do so, we will write ι the contraction operator,
such that for a n-form ω and a vector �eld ξ, we have

ι(ξ)ω(η1, . . . , ηn−1) = ω(ξ, η1, . . . , ηn−1) (A.11)

For a vector �eld ξ, we will also write ξb its associated 1-form, given by ξb =
ι(ξ)ω

First, we want to qualify how "natural" is a vector �eld. We are discussing
of Hamiltonian mechanics, and we are considering vector �elds as directions in
which the system should evolve. Therefore, we want to know if a vector �eld
ξ can originate from some potential (or energy) function H, such that if the
energy of the system is given by H then the direction in which it will evolve
is given by ξ, i.e. ξH = ξ. We thus say a vector �eld ξ is sympleptic if ξb is
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closed, and we say it is hamiltonian if ξb is exact. Note that the exactness is
exacly what we want: if a vector �eld ξ is hamiltonian, we can associate to it a
function ϕξ ∈ C∞(M) such that

ξb + dϕξ = 0 (A.12)

We emphasize the fact that ϕξ should be seen as a potential, such that a system
living in this potential moves in the direction given by ξ. Therefore, a vector
�eld ξ is hamiltonian if we can associate a potential to it.

We say that the action of G on M is hamiltonian if and only if, for every
g ∈ g, ξg is hamiltonian. This means G acts on M hamiltonianely if and only
if for any in�nitesimal symmetry transformation of the space of con�gurations
g ∈ g, we can associate a potential ϕg such that a system moving under this
potential would move "in the direction of the symmetry".

We now come back to the Poisson structure on M . To any potential H ∈
C∞(M), we associate the hamiltonian vector �eld ξH such that ξbH + dH = 0.
This allows us to de�ne the Poisson structure on M , by

{F,G} = ω(ξF , ξG) (A.13)

From this, we say the action of G on M is Poisson if we have for any two
elements g, h ∈ g

ϕ[g,h] = {ϕg, ϕh} (A.14)

meaning that the Poisson structure on M is compatible with the Lie structure
on g.

Now, let's suppose that our theory is very regular, and that the action of G
on M is Poisson. This allows us to freely speak of the potential ϕg associated
to an element of g.

Remark. Recall however that the map

g → C∞(M)

g → ϕg

(A.15)

is very arbitrary. For g ∈ g, the function ϕg can be shifted arbitrarily by a
function. This freedom will have its importance later on.

We de�ne the moment map of the action by

µ : M → g∗

µ(p)(g) = ϕg(p)
(A.16)

This map can be seen as a dual to the map g → ϕg. It takes a point in M , and
associate to it some kind on potential on g. This association is very dependant
on the choice of the potentials (ϕg)g. To better interpret it, let's suppose we
have a point p ∈ M such that for all g ∈ g, ϕg(p) = 0. This point can be seen
as an origin for the potentials, the starting point of 0 energy.

Remark. Notice that due to the freedom in the choice of the potentials (ϕg)g,
given a point p, we can always rede�ne them such that for all g ∈ g, ϕg(p) = 0.
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Then, given another point m ∈ M , for g ∈ g, µ(m)(g) is equal to the
di�erence in "energy" associated to g between the points p and m. Therefore,
looking at µ(m) as an element of g, we understand that µ(m) points in the
direction of the symmetries which have been used to go from p to m. We can
see µ(m) as the momentum of the point m starting from p in the space of
symmetries, which explains the terminology "moment map". In particular, we
see that the set of points m for which µ(m) = 0 is the set of point having the
same "energy" as p according to all symmetries g. Looking at the symmetries
of the space as gauge redundancies, we see that this set is the set of all points
of M having the same gauge �xing.

A.3 Classical Hamiltonian reduction

We know have the tools to de�ne an Hamiltonian reduction. Suppose our theory
has a set of symmetries H ⊂ G that we want to remove. We can see the
symmetries H as generators for gauge redundancies. We will then have to �x
the gauge. We �rst �x a point p ∈ M , in the gauge we want to keep. We
therefore want to keep all of the points of M having the same gauge as p, and
only those. We de�ne the momentum map µ of H, where the potential �elds
have been �xed with p for origin (such that ϕg(p) = 0 for all g ∈ g). From the
discussion above, we understand that the set of points we want to keep is

M0 ≡ {m ∈ M/µ(m) = 0} (A.17)

If 0 is a regular value of µ, then M0 is a closed embedded submanifold of
M . Thanks to the fact that the action of H is Poisson, the momentum map
is H-equivariant for the coadjoint representation on g, which implies that H
preserves M0. We have gauged out the redundancy. We still need to quotient
out the symmetry. This can be simply done by considering M̃ ≡ M0/H, which
is a smooth manifold if the H-action is free and proper. A central theorem
in sympleptic geometry is then that if all of the conditions aforementioned are
met, then M̃ can be equipped with a unique sympleptic structure, induced by
the sympleptic structure on M . M̃ is called the Hamiltonian reduction of M .
Its construction can be resumed by the following diagram

M̃

µ−1({0}) M

M/H

Up until now, our discussion has been purely geometric. We should now
discuss of an equivalent reduction, but from an algebraic point of view.

So far, we have discussed of manifolds, which are by nature geometric. What
is the algebraic object associated to a manifold? We may study the space
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of smooth functions on manifolds instead, which has an algebraic structure
and which contains most of the informations on the manifold itself. We would
therefore like to construct C∞(M̃) from C∞(M) and from the action of H on
M .

The �rst step would be to construct C∞(M0). We have M0 = µ−1({0}), so
we want to construct functions who only matter where µ is equal to 0. We start
by the opposite, and de�ne the vanishing ideal of M0

I = {f ∈ C∞(M) / ∀p ∈ M, µ(p) = 0 ⇒ f(p) = 0} (A.18)

I corresponds to the Poisson ideal where M0 doesn't matter. Then, we natu-
rally have

C∞(M0) = C∞(M)/I (A.19)

Now, we want to express C∞(M̃), which is the set of functions of C∞(M0)
which are constant on the leaves of the action of H. But the tangent of these
leaves are precisely the hamiltonian vector �elds whose functions are in I , such
that

C∞(M̃) = {f ∈ C∞(M0) / {f,I } = 0} (A.20)

Going back to the full space M , this writes

C∞(M̃) = {f ∈ C∞(M0) / {f,I } ⊂ I } / I (A.21)

We recognize here the Poisson normalizer N(I ) of I in C∞(M), which allows
us to �nally write

C∞(M̃) = N(I ) / I (A.22)

Once again, this reduction can be pictured in the following diagram

C∞(M̃)

C∞(M)/I C∞(M)

N(I )

The advantage of the algebraic point of view is that it can easily be general-
ized to any kind of system, without necessarily any physical meaning. This also
helps relax some conditions, allowing for a more extensive study of Hamiltonian
reductions.

A.4 The BRST procedure

We have seen how to reduce a system by removing its symmetries, geometrically
and algebraically. The objective of such a reduction, especially algebraically, is
to afterwards be able to compute things from it. However, the structure of
the reducted algebra C∞(M̃) might not always be clear. In particular, it may
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be di�cult to �nd and compute I , which makes it di�cult algebraically to
study C∞(M̃). This motivates the use of a better technique, which should give
some algebra isomorphic to C∞(M̃) but constructed in a much more clear and
straightforward way, without using I .

We once again consider a physical system whose space of con�guration is
given by M , on which a symmetry group H acts, and which we want to reduce
using the moment map µ. We have seen that we can construct M0 using the
momentum map, such that the Hamiltonian reduced space is nothing more than
the set of function on M0 which are constant on the leaves of the action of H, or
equivalently which are invariant under the action of h assuming H is connected.

C∞(M̃) = C∞(M0)
h (A.23)

This can be constructed using the cohomology of h on C∞(M0), from the
Chevalley-Eilenberg complex. We now proceed to this construction.

We want to �nd the elements of M ≡ C∞(M0) invariant under the action
of h. To do so, let's try to register the action of h on M. We �rst de�ne the
space of p-forms on h with values in M

Cp(h,M) ≡ Hom(Λph,M) ≃ Λph∗ ⊗M (A.24)

We equip these spaces with a derivative d : Cp(h,M) → Cp+1(h,M) de�ned by

� (dm)(h) = h ·m for m ∈ M, h ∈ h

� (dα)(h, g) = −α([h, g]) for α ∈ h∗, h, g ∈ h

� d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ

� d(ω ⊗m) = dω ⊗m+ (−1)|ω|ω ∧ dm

which results in the complex

Cp−1(h,M) Cp(h,M) Cp+1(h,M)
d d dd

This complex forms a very powerful tool, called the Chevalley-Eilenberg
complex, which registers a lot of the structure of the action of h. Considering the
natural action of h onto itself, it is for exemple known that H1(h) = H2(h) = 0
if h is semisimple. We can also easily see from the expression of the derivative
that

H0(h,M) = Mh (A.25)

which is exactly what we wanted. We have

C∞(M̃) = H0(h, C∞(M0)) (A.26)

However, this expression still depends on M0, which we do not want. We will
therefore try to �rst derive C∞(M0).
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To do so, recall that C∞(M0) = C∞(M)/I . Therefore, if we manage to
generate I , we should be able to get C∞(M0) from an homology.

The key point is then to see that the ideal I corresponding to functions
vanishing on M0, that is on µ−1({0}), is generated by the potentials (ϕh), which
can be seen as the components of the map ϕ : h → ϕh. This can be proved
locally, with dimensionality arguments. Using this, we can create the 2-steps
complex

h⊗ C∞(M) C∞(M) 0
δ δ

where for f ∈ C∞(M) we have δf = 0, and given a basis (hi)i of h for
∑

i hi⊗fi
we have δ (

∑
i hi ⊗ fi) =

∑
i fiϕhi

. In 0 degree, we then have that the homology
of this complex is equal to

H0
δ = C∞(M)/I = C∞(M0) (A.27)

However, this complex has non-trivial homology in positive degrees.

For i, we can rewrite fi in term of a sum of (ϕhj
)j , recalling (ϕhj

)j generates
I and seeing that the part of fi along M0 will diseappear anyways since ϕi is
equal to 0 on M0. Writing

fi =
∑
j

fijϕhj
(A.28)

we get

δ

∑
ij

hi ⊗ fijϕhj

 =
∑
ij

fijϕhiϕhj (A.29)

which is equal to zero if fij = −fji. But these cocycles may be killed by
extending the complex as

Λ2h⊗ C∞(M) h⊗ C∞(M) C∞(M) 0
δ δδ

and by extending δ as an odd derivation

δ(h ∧ g ⊗ f) = h⊗ ϕgf − g ⊗ ϕhf (A.30)

Once again, we will get a non trivial homology at the left, which can be killed
once again by extending the complex to the left. We can continue this process
inde�nitely, which lead to what is called the Koszul complex. De�ning Kq =
Λqh ⊗ C∞(M) and extending δ on these spaces as a derivation, the Koszul
complex is given by (K•, δ):
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Kq+1 Kq Kq−1
δ δ δδ

Its homology is 0 for all degrees higher than 0, and we have

H0(K•, δ) = C∞(M0) (A.31)

which is exactly what we want. We may �nally augment this complex as into
an exact sequence

K1 K0 C∞(M0) 0
δ ϵδ

where ϵ is the canonical projection. Thisis called the Koszul resolution.

Now, in order to derive C∞(M̃), one can take the homology of the Koszul
complex, and then take the cohomology of its Chevalley-Eileinberg complex.
However, one strong result of homology is that we may do both at the same
time, for a more straightforward result. The resulting complex will be called
the BRST complex.

We want to take both the homology and the cohomology at the same time.
We therefore consider the complex

Cp,q = Cp(h;Kq) = Λph∗ ⊗ Λqh⊗ C∞(M) (A.32)

This complex can be equipped with the two derivatives d and δ, where δ and
ϵ simply ignore the components in Λph∗, whilst d acts as the derivative of
the Chevalley-Eileinberg complex of h with values in the h-module Λqh ⊗ M .
Moreover, the two derivatives commute, meaning the following diagram is com-
mutative

Cp+1,q

Cp,q Cp,q−1

Cp+1,q−1
δ

δ

d d

Since the homology of the Koszul complex is concentrated in 0 degree, we can
hope to only get the Lie algebra cohomology of h with values in C∞(M0) by
taking a derivative like D = δ + d, as to �nally get C∞(M̃) in 0 degree.

D = δ + d is a good candidate for a derivative on this extended complex.
However, a derivative needs to be closed, and δ and d commute. As a conse-
quence, the derivative isn't closed. To correct this, we would like for d and δ to
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anticommute. This can be done by adding an alternating sign in front of δ, by
de�ning δ1 = (−1)pδ on Cp,q. Writing D = d + δ1, we then have D2 = 0 as it
should be.

D goes from Cq,p to Cp+1,q ⊕ Cp,q−1. This motivates the notion of total
degree n = p− q. De�ning the space of total degree n as

C n =
⊕

p−q=n

Cp,q (A.33)

we have that D goes from C n to C n+1. We call (C •, D) the total complex.
Now, the main result is that its cohomology is equal to H(h; C∞(M0)), namely
the Lie algebra cohomology of h with values in C∞(M0). In particular, we have

H0(C •) = C∞(M̃) (A.34)

Details of the proof can be found in [Fig06].

A.5 Ghosts and antighosts

We have derived a method to get C∞(M̃) in a way that is computable. But
how can it be used in physics, and what is its interpretation? To answer this,
we should reformulate the BRST procedure in the same langage as the original
theory.

To do so, the �rst step is to see that the total space C • has a physical struc-
ture. We have seen in A.1 that for a given space of con�gurations M , C∞(M)
should be equipped with a Poisson algebra structure. We should therefore ex-
pect that C • can also be equipped with a similar structure, giving it physical
meaning. In fact, the right structure to give to C • is that of a (graded) Poisson
superalgebra.

The space C∞(M) naturally has a Poisson superalgebra structure without
odd part. Moreover, we can give Λ(h⊕h∗) a Poisson superalgebra structure, by
de�ning the product as the wedge product, by de�ning the bracket for X,Y ∈ h
and α, β ∈ h∗ as

{α,X} = {X,α} = α(X)

{X,Y } = {α, β} = 0
(A.35)

and by extending it as an odd derivation. We then only need to combine the
2 structures together, which can be done by setting for a, b ∈ Λ(h ⊕ h∗), f, g ∈
C∞(M),

(a, f)(b, g) = (−1)|f ||b|(ab, fg)

{(a, f), (b, g)} = (−1)|f ||b| (({a, b}, fg) + (ab, {f, g}))
(A.36)

Therefore, C • has a Poisson superalgebra structure. We can also give it a
Z-grading, using the total degree de�ned earlier. D should then be a Poisson
derivation of degree 1. We can then hope forD to be an inner Poisson derivation,
meaning we can hope for the existence of an element Q of the total space C •

such that {Q,−} = D. This would give a nice expression of D inside of the
theory's framework, and would allow for physical interpretations.
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Let's therefore search for such an element Q. We set (Xi)i a basis for h, and
(αi)i its dual basis on h∗. We also set fk

ij the structure constants of h, such

that [Xi, Xj ] = fk
ijXk. Since D and {Q,−} are derivations, it is enough to �nd

an element Q which acts well on the generators of C •, meaning on functions
g ∈ C∞(M), on elements Y ∈ h and on elements β ∈ h∗. We write Y = Y iXi

and β = βiα
i the decompositions of Y and β in their respective basis.

On these generators, we know that δ ignores β, that δf = 0 and that δY =
Y iϕXi . Moreover, we know that

df(Z) = {ϕZ , f} = Zi{ϕXi
, f}

dY (Z) = [Z, Y ] = f i
jkZ

jY kXi

dβ(Z,Z ′) = −β([Z,Z ′]) = −1

2
βiZ

jZkf i
jk

(A.37)

such that
df = αi{ϕXi

, f}
dY = f i

jkY
kαj ∧Xi

dβ = −1

2
βif

i
jkα

j ∧ αk

(A.38)

Summing the two derivatives, we should therefore have

{Q, f} = αi{ϕXi
, f}

{Q,Y } = Y iϕXi
+ f i

jkY
kαj ∧Xi

{Q, β} = −1

2
βif

i
jkα

j ∧ αk

(A.39)

We may then see that taking

Q = αiϕXi −
1

2
f i
jkα

j ∧ αk ∧Xi (A.40)

gives exactly the equations above. This proves that D is an inner derivation,
with inner element Q. Q is usually called the BRST operator. We may rewrite
Xi as bi, α

i as ci, ϕXi
as ϕi, and drop the mention to the wedge product, as to

get the convenient expression

Q = ciϕi −
1

2
f i
jkc

jckbi (A.41)

which is the most common expression in physics literature.

How does one interpret this? Let's �rst look at the expanded space. The
space of functions on the space of con�gurations C∞M has been extended to
the sum

C • =
⊕
p,q

Cp,q =
⊕
p,q

Λph∗ ⊗ Λqh⊗ C∞(M) (A.42)

Looking at each Cp,q = Λph∗⊗Λqh⊗C∞(M) individually, we see that they can
be interpreted as

Cp,q ≃ C∞

(
M ⊔

(
p⊔

k=1

{c1, . . . , cr}k

)
⊔

(
q⊔

k=1

{b1, . . . , br}k

))
(A.43)
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Recalling that M represents the space of con�gurations, we can understand
Cp,q as the space describing a system whose con�guration can be either in M
as before, either an element of the basis of one of the p di�erent copies of h∗,
either an element of the basis of one of the q di�erent copies of h. Then, C • is
the space of function on the disjoint sum of all of these spaces, and can be seen
as the space describing a system whose con�guration is described by one of the
Cp,q.

This classical description can seem very messy. However, moving our theory
to the QFT framework, we can get a much nicer intuition. Let's suppose our
theory is a QFT. M is then the space of con�guration of a "particle" in the
theory. But in a QFT, the exact state of a system and exact number of "par-
ticles" are not known, such that an actual state of the system (a �eld φ) is a
distribution on M, meaning φ ∈ C∞(M)2. The height of φ at some point x ∈ M
is then the probability for this system to have particles in the con�guration x.

From this perspective, upgrading C∞(M) to C • means upgrading �elds
from being elements of C∞(M) to being elements of C •. A given �eld is then
a sum of �elds in the (Cp,q)p,q, meaning a given state of the system is a sum of
particles in the (Cp,q)p,q. But given p, q, a �eld in Cp,q is a �eld on M added
to �elds on p copies of {c1, . . . , cr} and q copies of {b1, . . . , br}. Furthermore,
a �eld on {c1, . . . , cr} simply represents a set of particles which can be in the
con�gurations c1, . . . , cr, whilst a �eld on {b1, . . . , br} simply represents a set of
particles which can be in the con�gurations b1, . . . , br.

We call ghosts the particles in one of the con�gurations c1, . . . , cr, whilst
we call antighosts the particles in one of the con�gurations b1, . . . , br. We also
call ghost �elds and antighost �elds the associated �elds. A ghost particle
can be imagined virtually as a direction in the Lie group H: if the particle
is determined, it is necessarily one of the generators of the Lie algebra. The
same thing is valid for antighosts. With this intuition, a �eld on Cp,q is nothing
more than particles as described by the original theory, with the addition of an
arbitrary number of ghosts and antighosts, where we can distinguish p di�erent
types of ghosts and q di�erent types of antighosts. The complete theory then
describe an arbitrary number of particles as desrcibed by the original theory, but
where they are each coupled to an arbitrary number of ghosts and antighosts,
with each time an arbitrary number of di�erent possible kinds of ghosts and
antighosts.

Ghosts and antighosts are understandably called this way, because they are
particles which only interact with particles from the original theory. Therefore,
the only way to probe them is indirectly, by measuring their e�ects on the par-
ticles from the original theory. Why do new particles appear when trying to
reduce the theory? We can think of the ghosts and antighosts as particles regis-
tering the geometry of H. Then, to impose constraints on the original particles
taking into account the geometry of H, we must consider a new extended theory
where there are also ghosts and antighosts, as to allow for interactions between
ghosts, antighosts, and the original particles, using the ghosts and antighosts to
impose the constraints we want on the original particles. Ghosts and antighosts

2Here, we do not make the di�erence between distributions and smooth functions, as we

are only interested in intuition
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can also be thought of as walls which prevent the original particles from going
into directions we do not want.

Remark. From the point of view of a mathematician, it might seem weird to
interpret the ghosts and antighosts as particles. However, historically, this is
how they were �rst introduced.

Now, how does one intepret the BRST operator Q? Q is a �eld of the theory,
which can be seen as a function on the space of con�gurations as described by
(A.43). But from the point of view of Hamiltonian mechanics described in A.1,
we can see this function as a potential, giving some kind of potential energy to
each con�guration of the system. Then, for another given �eld φ of the theory,
its time evolution in this energy potential is given by {φ,Q}. In particular, if
{φ,Q} = 0, it means that φ is stationnary in the potential given by φ, meaning
it doesn't change.

With this point of view, let's look at what actually is the reduced space.
The reduced space is the cohomology of the complete space C • by the inner
derivative generated by Q, in degree 0. First, the condition to keep only the
degree 0 of the cohomology means in any state of the system, there should always
be one more type of ghost than antighost. Seeing ghosts as walls and antighosts
as wall, this is similar to saying that walls should always be of dimension 1. Note
that in some cases, we will have that the cohomology of the BRST complex is
concentrated in degree 0 anyways, meaning we can forget about this condition.

Now, what does taking the cohomology really mean? We are taking the
kernel of the derivative, and quotienting out its image. This means that we
are only considering �elds φ such that {φ,Q} = 0, meaning we only consider
�elds that do not change under the potential Q. Seeing {Q,−} as the generator
for the symmetries we want to quotient out, this is expected since we are then
asking for φ to be unchanged under the action of the symmetry. Moreover, we
do not consider �elds φ if there exists another �eld ϕ in the complete space
such that {ϕ,Q} = φ, meaning we do not consider �elds that give the �ow of
another �eld in the potential energy given by Q. Looking back at Q, we see
that it describes a potential energy linked to the ones given by the momentum
map, but with a ghost associated to each potential �eld given by the momentum
map. It also has a component in the space with 2 ghosts and 1 antighost, as
some sort of momentum on the ghost �elds. Seeing this, we may understand
how taking the �elds stationnary under this energy can yields the same result
as the classical Hamiltonian reduction seen in A.3.
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Appendix B

Good gradings

This appendix serves as a quick discussion of the idea of good gradings, and
aims at giving a few equivalent de�nitions to this notion. We will not prove
most results, and refer to [EK04] for detailed proofs and a further discussion on
good gradings of Lie algebras.

The adjective "good" of "good gradings" describes the G-grading of �nite-
dimensional Lie algebras, where G is a discrete additive subgroup of R, that is
of the form aZ. Without loss of generality, we can choose any a and study only
aZ-gradings, as all such groups are isomorphics. [EK04] chooses for exemple
G = Z. However, we will take the more physical G = 1

2Z, which will also be the
case we encounter in these notes.

B.1 De�nition

We consider a 1
2Z-graded �nite-dimensional Lie algebra g, that is a Lie algebra

g endowed with a decomposition in subspaces

g =
⊕
j∈ 1

2Z

gj (B.1)

such that the decomposition is compatible with the Lie bracket, meaning

[gi, gj ] ⊂ gi+j (B.2)

Remark. From a physical perspective where g corresponds to the algebra of
operators of a quantum �eld theory, j can be seen as the spin of the �elds
generated by the operators in gj . The algebra of bosonic operators is then
gb =

⊕
j∈Z gj , whilst the algebra of fermionic operators is gf =

⊕
j∈Z gj+ 1

2
.

We de�ne according to the usual conventions

g+ =
⊕
j>0

gj g− =
⊕
j<0

gj

g≥ =
⊕
j≥0

gj g≤ =
⊕
j≤0

gj
(B.3)
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Let e an element of g1. Due to the compatibility of the grading with the Lie
bracket, the adjoint action of g gives the map ad(e) which to any element of gj
associates an element of gj+1. Therefore, ad(e) creates two disjoint chains on
g, one on gb and the other on gf .

We say that e is good if

ad(e) : gj → gj+1 is injective for j < 0 (B.4)

ad(e) : gj → gj+1 is surjective for j ≥ −1

2
(B.5)

This implies in particular that

ad(e) : g− 1
2
→ g 1

2
is an isomorphism (B.6)

Note that (B.4) is equivalent to

ge ⊂ g≥ (B.7)

We say that a grading is good when there exist an element e ∈ g1 such that
e is good.

An important class of such good gradings is given by triples {e, h, f} such
that [e, f ] = h, [h, e] = e, [h, f ] = −f . The grading given by the eigenspace
decomposition of h is a good 1

2Z-grading, with good element e. Notice that if
we had chosen to study Z-gradings instead of 1

2Z-gradings, we would have the
same result for {e, h, f} an sl2-triple. The result is then well-known from the
representation theory of sl2.

B.2 Good grading of semisimple Lie algebras

We would like to see how much the above exemple is "classical", and how far
can a good grading stray from it. We suppose now and for the remaining of this
appendix that g is semisimple.

All derivations of g are inner. But the "spin" map ȷ : g → g de�ned for all
j ∈ Z, x ∈ gj by ȷ(x) = jx can easily be shown to verify the Leibnitz rule. So
it is a derivation and there exist x ∈ g such that ȷ = ad(x). The (gj)j can be
seen as the eigenspaces of ad(x), with eigenvalues j. We say that x de�nes the
grading. Reciprocally, given any element x ∈ g, the eigenspace decomposition
of its adjunction gives a grading on g, where the eigenvalues give a label on the
decomposition subspaces.

Suppose now that the grading on g is good, and let e a good element. Adapt-
ing the Jacobson Morozov theorem to our case, we can �nd h̃, f̃ ∈ g such that
[e, f̃ ] = h̃, [h̃, e] = e, [h̃, f̃ ] = −f̃ . But then, by projecting onto the subspaces
given by the grading and by re-using the theorem, we can �nd h ∈ g0, f ∈ g−1

such that [e, f ] = h, [h, e] = e, [h, f ] = −f .

Theorem B.2.1 ([EK04], 1.1). Given g a semisimple Lie algebra equipped with
a good grading and a good element e, let x, h, f ∈ g such that the grading is

generated by x, and such that [e, f ] = h, [h, e] = e, [h, f ] = −f . Then

x− h lies in the center of g{e,h,f} (B.8)
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In particular, if the center of g{e,h,f} is trivial, then x = h and we are in the
case of our exemple above.

g0 is a reductive subalgebra of g, and a Cartan subalgebra h of g0 is also a
Cartan subalgebra of g. We let

g = h⊕

(⊕
α∈∆

gα

)
(B.9)

the root space decomposition of g according to h. Writing ∆+
0 a system of

positive roots of the subalgebra g0, the set ∆+ = ∆+
0 ∪ {α ∈ ∆ / gα ⊂ g+}

is a system of positive roots. Let then Π ⊂ ∆+ the set of simple roots. We
decompose Π according to the grading, setting Πj = {α ∈ Π / gα ⊂ gj}. We
then have the following important result:

Theorem B.2.2 ([EK04], 1.2). If g is a semisimple Lie algebra equipped with

a good grading, then Π = Π0 ∪Π 1
2
∪Π1, with Π and Πj de�ned as above.

Another result which follows is

Theorem B.2.3 ([EK04], 1.3). The properties (B.4) and (B.5) are equivalent
in the de�nition of a good element of a semisimple Lie algebra

As such, given a semisimple Lie algebra g, let a pair of elements (x, e) (resp.
(x, f)) such that x is ad-diagonalizable with half-integer eigenvalues, such that
[x, e] = e (resp. [x, f ] = −f) and such that the centralizer of e (resp. f) lies in
g≥ (resp. g≤) with the notations of (B.3) where the grading structure is given
by the eigenspace decomposition of x. Then the pair gives a structure of good
grading on g where the 1

2Z-grading is given by the eigenspace decomposition of
x. In this case, we call (x, f) a good pair, following [DK06]. Reciprocally, any
good grading on a semisimple Lie algebra can be described by a good pair.
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